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1 Introduction

In the last century much of physics has been built on the properties of symmetry. For example,
Special Relativity, which was built on space-time symmetries, or internal conserved charges
discovered due to the existence of internal symmetries. Symmetries are always related to the
conservation of generalized charges, which makes them attractive. In Nature however, they
are not always observed. Many symmetries prefer massless particles, but we only observe a
few, one of them the photon. At the same time, the massive elementary particles with different
properties have different masses. The idea that the underlying symmetry, which is important
for interactions, must be somehow hidden, gave rise to different possible explanations.
One explanation is that the symmetry is simply not observed on the scale of the experiment.
An example is the hydrogen atom which appears in low energy physics as an entity. Today,
we know that it consists of a proton and an electron. These two are only observed as particles,
when we apply enough energy to separate them. Otherwise the symmetry related to charge is
not observed at all. The important difference to the following considerations is that we do not
experience an asymmetry.

However, in this thesis the concept of symmetry breaking is of more importance. When
symmetry is broken, it undergoes a transition from a symmetric system to an asymmetric sys-
tem. This can occur in two ways, through the explicit or the spontaneous symmetry breaking.
Explicit symmetry breaking happens if a symmetry is broken by additional objects. Just as a
scar in a man’s face breaks the face’ reflection symmetry explicitly, the small difference in
mass between a neutron and a proton breaks their symmetry of exchange explicitly as well.
In the case of a symmetric Lagrangian we can add terms that themselves do not obey the
symmetry of the Lagrangian. This leaves the new Lagrangian asymmetric. In the case of
Spontaneous symmetry breaking the underlying system or Lagrangian remains symmetric but
the symmetry is hidden when observing the vacuum state, as will be shown later. An example
from biology would be the houses of snails [4]. In nature we find that all houses have a spiral
structure which is in general right turning. This observation is called spiral tendency of veg-

etation (Goethe). There are few exceptions, snails with left turning houses as a consequence
of mutation. However, they are not capable of reproduction with other right turning snails due
to important DNA differences. At first sight, it seems to be an asymmetric law of nature that
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1 Introduction

snails always have right turning houses. It is an example of spontaneous symmetry breaking
because nature can produce the other turning snails. In principle both house types are possible
(symmetric system). We could say that at the beginning there were two small populations of
snails with different house types. But in evolution the snails with the one type of houses dom-
inated and the other ones did not find appropriate reproduction partners and died out. Which
type of house survived was of random choice, it could have been exactly the other way around.
This example shows that the underlying system can be symmetric even though reality first ap-
pears asymmetric and is described by asymmetric laws.
Physical examples of spontaneous symmetry breaking are the ferromagnet and the electroweak
interaction and will be explained later on.

This bachelor thesis will give an introduction into the field of spontaneous symmetry break-
ing. The 2 main chapters each start with a brief introduction to the global or local symmetries,
which is based on the books "Fields, Symmetries, and Quarks" [8] and "Quantenmechanik,
Symmetrien" [11]. After the introduction of some important terminology, we come to the case
of global continuous symmetries leading to the Goldstone [2] theorem. Goldstone and Nambu
[9] were the first to find massless particles in specific models. These particles are called the
Goldstone- or sometimes Nambu-Goldstone bosons and the proof of their existance was then
given by Goldstone, Salam and Weinberg [7]. This proof and the derivation of the number
of appearing Goldstone bosons can be found in the books "Quantum Field Theory" [10] and
"The Quantum Theory of Fields" [12] and are performed in detail in this thesis. Afterwards
the theorem is demonstrated on the U(1) and U(1)⊗SU(2) example.
Chapter 4 will discuss the spontaneous breakdown of local symmetries, since Goldstone
bosons are absent whenever the broken symmetry is local [6],[1],[3]. The phenomenon called
Higgs mechanism, will be introduced with the help of a simple U(1) example followed by an
application to a U(1)⊗ SU(2) invariant system. The strong dependence of the Higgs mech-
anism on the Goldstone theorem will be shown by argumentation and by comparison of the
global and local results. At the end, following a summary of my discussion, I will give some
insight into the physical importance of these concepts.
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2 Preliminaries

2.1 Notations

We will shortly introduce the notion used in this thesis. In general the unit convention is used,
where we set the speed of light and Planck’s number equal to one, meaning that we choose
them as units for velocity and action

c = 1 = h̄. (2.1)

It follows that length and time have the same dimensions and the relativistic energy - momen-
tum relations becomes

E2 = p2 +m2. (2.2)

This leads immediately to the use of four vectors and four operators since time and space are
connected. The four vectors are denoted by a greek index, whereas three-component vectors
are denoted by an arrow

Aµ = (A0,−~A). (2.3)

Four vectors with subscripts are called covariant vectors, contravariant vectors are four vec-
tors with superscripts, defined by

Aµ = gµνAν (2.4)

where gµν = gµν is the metric tensor, that can be given in the Minkowski space (space and
ct-time axes) in Cartesian coordinates

gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (2.5)
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The space-time four vector, the four-momentum operator and the four-current are then given
by

x̂µ = (t,~x) = (x0,~x), (2.6)

p̂µ = i∂ µ = i
∂

∂xµ
= i(

∂

∂ t
,∇) (2.7)

jµ = (ρ,~j). (2.8)

The scalar product of four-vectors is defined by the the scalar product of a covariant and a con-
travariant four-vector. It is very important that under exchange of covariant and contravariant
vectors this scalar product remains invariant

AB = AµBµ = AµBµ = gµνAνBµ . (2.9)

Then the square of four-vectors is invariant under Lorentz transformations

A2 = AµAµ = A2
0−~A2. (2.10)

2.2 Euler-Lagrange Equation and Noether Theorem for Classical Fields

All of our further considerations are going to be connected to fields, which will be described
by

φα(x) with x = xµ = (t,~x), (2.11)

where α labels the different fields appearing in the theory. In classical mechanics we obtained
our equation of motion from the Lagrangian via the Ansatz of Hamilton’s principle of least ac-
tion. This can be used in full analogy for fields. In this case the field amplitude at a coordinate
xµ can be considered as the coordinate of the theory. For an adequate discussion of classical
field theory see [8] or [5]

We will see that for fields φα we obtain an analogous outcome as for generalized variables
qi. For the further short derivation of the Euler-Lagrange equation and the Noether Theorem
we will drop the index in the field variables.

Let us consider a variation of the Lagrangian L (φ ,∂µφ ,xµ)→L ′(φ ′,∂µφ ′,x′µ) under the
following condition that simplify calculations but maintain applicability of the results:

L ′(φ ′,∂µφ
′,x′µ) = L (φ ′,∂µφ

′,x′µ).
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2 Preliminaries

We consider the following transformations

coordinate transformation: xµ → x′µ = xµ +δxµ (2.12)

field variable transformation: φ(x)→ φ ′(x) = φ(x)+δφ(x) (2.13)

where the δ indicate infinitesimal variations in the coordinates or fields. This restricts the ap-
plication of the Noether theorem, we want to derive at this point, to continuous transformations
only. Asking for a vanishing variation of the action we obtain

δS =
∫

δL d4x =
∫

L ′(φ ′,∂µφ
′,x′µ)d4x′−

∫
L (φ ,∂µφ ,xµ)d4x = 0.

The transformed space volume element d4x′ can be transformed, recalling the transformation
of the coordinates, by the corresponding Jacobian

J(x′,x) = det
(

∂x′µ

∂xλ

)
= det(δ µ

λ
+∂λ (δxµ)) = 1+∂µ(δxµ).

Inserting this in the previous expression for the variation of the action we get

δS =
∫ [

L (φ ′,∂φ
′,xµ)J(x′,x)−L (φ ,∂φ ,xµ)

]
d4x =

∫ [
δL +L ∂µ(δxµ)

]
d4x

with δL = L (φ ′,∂φ ′,xµ)−L (φ ,∂φ ,xµ), L (φ ′,∂φ ′,xµ) = L and changing the notation
φ ′→ φ . Expressing the variation of L in terms of partial variations we obtain

δS =
∫ [

∂L

∂φ
δφ +

∂L

∂ (∂µφ)
δ (∂µφ)+

∂L

∂xµ
δxµ +L ∂µ(δxµ)

]
d4x.

Uniting the last two terms by the product rule and using the commuting properties of δ and
∂µ to apply ∂µ(δφ) = δ (∂µφ), we arrive at

δS =
∫ [

∂L

∂φ
δφ +

∂L

∂ (∂µφ)
∂µ(δφ)+∂µ(L δxµ)

]
d4x.

(2.14)
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The second term might be rewritten by reverse use of the product rule in order to collect terms

δS =
∫ [

∂L

∂φ
δφ −∂µ

(
∂L

∂ (∂µφ)

)
δφ +∂µ

(
∂L

∂ (∂µφ)
δφ

)
+∂µ(L δxµ)

]
d4x

=
∫

d4x
[{

∂L

∂φ
−∂µ

(
∂L

∂ (∂µφ)

)}
δφ +∂µ

{
∂L

∂ (∂µφ)
δφ +L δxµ

}]
= 0. (2.15)

In order that the integral vanishes for all variations we first observe the Euler-Lagrange Equa-
tion to be valid for field variables

∂L

∂φ
−∂µ

(
∂L

∂ (∂µφ)

)
= 0. (2.16)

Further the second term in (2.15) has to vanish. We enhance the description of this term by
introducing a variation with R infinitesimal parameters εr, r = 1,2, ....,R. Then the changes in
xµ and φ are given by

δxµ = εrX µ
r and δφ = εrψr, (2.17)

where X µ
r is a matrix and ψr is a set of numbers. In this notation we obtain the following

condition that needs to be satisfied for every parameter εr

∂µ

(
∂L

∂ (∂µφ)
ψr +L X µ

r

)
= ∂µJµ

r = 0 (2.18)

This is of the form of a continuity equation resulting in the conservation of charges. We obtain
an array of continuity equations with the parameter r. This means that for each infinitesimal
parameter that describes a transformation under which the Lagrangian is invariant, we ob-
tain a conserved current Jµ

r and therefore a conserved charge defined by the integral over the
spacelike hypersurface σµ .

Qr =
∫

σ

Jµ
r dσµ (2.19)

This is the quintessence of the Noether Theorem mainly that we obtain as many conserved
currents as the number of symmetries of the Lagrangian, defined by the number of infinitesi-
mal parameters of the transformation under which the Lagrangian remains invariant.

These results allow us to approach the Lagrangians in a way known from classical me-
chanics, regarding the field as a generalized coordinate. It furthermore provides the use of
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2 Preliminaries

theorems known from classical mechanics, for instance the mentioned Noether theorem. So
for our purposes we can reduce the inconvenient formalism of classical field theory to a more
practical mechanical formalism.
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3 Global Symmetry Breaking

In this chapter the origin and the consequences of global symmetry breaking will be discussed.
This will be done, starting with exploring general global symmetry transformations of the
U(N) and SU(N) transformation groups followed by a general discussion of the Goldstone
theorem. The consequences of this theorem will be shown and we finish with two examples.

3.1 Global Symmetries

In order to understand what global symmetries are, we have to understand the meaning of
global transformations. The translation back to symmetries is simple: A global symmetry is
achieved if a system or a state is invariant under a certain global transformation.

Global transformations are characterised by applying the same transformation everywhere
in our space, independent of the coordinates. An easy example is the rotation of a coordi-
nate system by an angle θ , because the transformation rotates every position vector in our
coordinate system by the same angle, independent on its direction and length. Transformation
operators can be collected in groups. We can define the Lie-groups as continuous groups,
whose elements are given by operators Û(α1, ...,αn;~r) depending on n parameters and pos-
sibly on the coordinates. In the case of global symmetries these Lie-groups do not have a~r

dependence. One parameter of the group is in general defined such that Û(0) = 1, where 1 is
the identity matrix. Then we can generalize the operators of a Lie-group in the form

Û(~α) = e−iαkQ̂k , (3.1)

where the αk are parameters, with ~α = (α1, ...,αn) and the Q̂k are the basic (unknown) oper-
ator functions of the group. In general we will use the Einstein sum convention, i.e. double
appearing indices are summed up. This leads to the identification of the generators Q̂k by
partial derivatives of the operator with respect to the corresponding parameter

−iQ̂k =
∂

∂αk
Û(~α)

∣∣∣
~α=0

. (3.2)
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3 Global Symmetry Breaking

This will be of use later, when we discuss the number of Goldstone bosons. From the in-
finitesimal expansion we can obtain commutator relations for our Lie-algebra, which will not
be discussed in this context. For a detailed discussion I refer to W.Greiner "Quantenmechanik,
Symmetrien"[11]

We will now discuss two specific global symmetry groups, U(N) and SU(N). The U(N)
group, meaning unitary group in n-dimensions, is formed with respect to matrix multiplication
by unitary quadratic n×n matrices

Û = eiĤ , with (3.3)

Û†Û = 1. (3.4)

Ĥ is a hermitian quadratic matrix, so that

H∗ii = Hii and (3.5)

H∗i j = H ji (3.6)

for all i, j. This leads to real eigenvalues for the operators and to N2 real parameters of
Ĥ and Û . U(N) is a compact Lie-group because the multiplication of any two matrices of
the group results in a matrix that belongs to U(N). The trace of an hermitian matrix can be
shown to be always real (3.5), so that for unitary matrices it follows from (3.4) that

detÛ = eitr(Ĥ) = eiα

|det(Û)|2 = (det(Û))∗ det(Û) = det(Û†)det(Û) = (det(Û))−1 det(Û) = 1. (3.7)

The SU(N) group is called the special unitary group in n dimensions and requires in addition
to the U(N) conditions that

detÛ = +1. (3.8)

This makes it a subgroup of U(N), but it is still a continuous compact Lie-group, with N2−1
real parameters.

We recall the U(N) group has N2 parameters and therefore also N2 generators, where the
SU(N) group has N2− 1 parameters and generators. If you now consider global symmetries
again, we can see that a U(N) symmetry is achieved, if a system or a state is invariant under
any global transformation belonging to U(N). The same holds true respectively with SU(N)
or any other transformation group. In this context we sometimes talk about symmetry groups,
referring to the invariance under the transformations of that specific group.
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3 Global Symmetry Breaking

In general one can check for the invariance under a transformation group by inserting the
transformation and observing for changes. In the case of the global U(1) symmetry, meaning
invariance under a constant phase shift, the Lagrangian is automatically invariant if it only
consists of terms of φ∗φ . Then the phase terms eiα cancel with their complex conjugate and
since they are independent on position they do not contribute to the derivatives. If we consider
a SU(2) symmetry which is a rotation in the two dimensional isospace, we only have to require
that the φi are interchangeable in the Lagrange function. Thus the Lagrangian is required to be
symmetric with respect to commutation of the φi. This will be clear when it comes to working
with symmetric Lagrange functions later on.

3.2 The Meaning of Vacuum

In a quantum mechanical notation the vacuum state |0〉 shall be defined as the state of the
system for which the energy is minimal or in other words

〈0|H |0〉= min. (3.9)

If the Lagrangian is invariant under a continuous symmetry, then in many cases also the vac-
uum possesses the same symmetry. If this holds, we say that the symmetry is realized in the
"Wigner mode" and it holds

e−iεQ |0〉= |0〉 −→ Q |0〉= 0, (3.10)

where Q is a generator of the specific symmetry transformation under consideration and ε is an
infinitesimal parameter. This follows from the fact that the exponential function can be written
in terms of cos() and sin(). These can again be Taylor expanded in the first components in the
region of identity such as

e−iεQ = 1− iεQ+ ... (3.11)

In the following we will consider a Lagrangian L that is invariant under a certain symmetry
operation but the vacuum state |0〉 is not.
One classical example for this occurrence is the ferromagnet. The atoms inside interact
through a spin-spin interaction, which is scalar and invariant under rotations. Above the crit-
ical Curie temperature TC the spins are randomly oriented and the ground state is symmetric;
but below TC all spins align parallel and the actual ground state of the ferromagnet is no longer
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3 Global Symmetry Breaking

symmetric under rotation. This means that the rotational symmetry of the Hamiltonian of the
system is "spontaneously" broken down to cylindrical symmetry determined by the direction
of magnetisation. This direction is totally random and all infinitely many other possibilities
have, in absence of an external field, the same energy. The vacuum, or ground state is said to
be degenerate and does not share the symmetry of the system.

In order to be well prepared we now introduce the notion of physical fields. In physics we
expect fields, that vary around the vacuum state, having a non-vanishing vacuum expectation
value. This fulfills the idea of the vacuum, being the ground state of the system and thus being
the focus of the problem. In other words this means that the field shall describe excitations
above the vacuum state. Only in this case we can talk about fields, that carry an actual physical
meaning, especially mass terms. A classical example would be the harmonic oscillator in a
potential that does not obtain its minimum at the origin. In this case we would either shift
our potential or rewrite our variables in such a way, that they describe the known harmonic
oscillator; we would introduce physical variables. To shortly show the analogous procedure
for fields, we consider a field ρ(x) in a one-dimensional linear system, whose vacuum state
lies at a distance a from the origin of the coordination system

〈0|ρ |0〉= a. (3.12)

Then the physical field ρ ′(x) is defined in such a way, that the vacuum state is vanishing and
it describes variations around the vacuum

ρ(x) = ρ
′(x)+a → 〈0|ρ ′ |0〉= 0. (3.13)

We see that this is really analog to the classical example of shifting our variables in order to
obtain deviations around the minimum.

3.3 Goldstone Theorem

Now we are prepared to discuss the Goldstone theorem. There are two formulations that will
be given in this section, the classical and the quantum mechanical one. After the formulation
the predictions of the theorem will be proven with the quantum mechanical approach. Due to
the consistence principle this will immediately lead to the verification of the classical approach
as well.

13



3 Global Symmetry Breaking

Classical Formulation: Consider the Lagrangian L to be invariant under a (continuous)
global symmetry transformation. If furthermore the vacuum state does not share the
same global symmetry we say that the symmetry is "hidden", or that the symmetry is
realized in the "Goldstone mode". In this case there will appear massless particles, so
called Goldstone bosons.1

Quantum Mechanical Formulation: Assume a field operator φ̂(x) exists, whose vacuum ex-
pectation value 〈0| φ̂(x) |0〉 is not zero and that is not a singlet under the transformation
of some symmetry group of the Lagrangian, i.e. the transformation that leaves the La-
grangian invariant results in new vacuum states s.t.

Q |0〉 6= 0. (3.14)

Then, since [Q,H] = 0, the vacuum states are degenerate and there must exist massless
particles in the spectrum of states.

The existence of massless particles is not a trivial conclusion and therefore will be proven
now. The proof is based on the books [8] and [10]. We recall that we set c = 1 = h̄, where
c is the speed of light and h̄ is the Planck’s constant. We begin with the requirement that
the Lagrangian is invariant under a continuous global transformation. Noether’s theorem (see
(2.19)) states that a Lagrangian with a continuous symmetry implies the existance of a con-
served current

∂
µ ĵµ = 0. (3.15)

This leads instantaneously to the conservation of a charge, at constant time defined by

Q̂ =
∫

d3x ĵ0(x). (3.16)

As was shown earlier, the global transformation can then be applied by the unitary operator

Û = e−iεQ̂,

where ε is an infinitesimal parameter and Q̂, the conserved charge, is the generator.
We consider the operator φ̂(y) that is not invariant under this transformation i.e. [Q̂, φ̂(y)] 6= 0.
Since φ̂(y) is not a singlet under the transformation there must exist another operator φ̂ ′(y)
such that

[Q̂, φ̂ ′(y)] = φ̂(y) 6= 0. (3.17)
1In cases of supersymmetry breaking there may also appear particles with spin 1

2 [10]
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3 Global Symmetry Breaking

We furthermore suppose that the vacuum expectation value of φ̂(y) is non-vanishing. Together
with the definition of the charge (3.16) and the commutator for φ̂(y) we obtain

〈0| φ̂(y) |0〉= 〈0| [Q̂, φ̂ ′(y)] |0〉=
∫

d3x〈0| [ ĵ0(x), φ̂ ′(y)] |0〉 6= 0. (3.18)

For convenience we will drop the operator notation via hats in the rest of the proof.

For later use we will now prove the time independence of this non-vanishing expectation
value. Therefore we make use of the equation (3.15), which leads to

∂
0[ j0(x),φ ′(y)] =−∂

i[ ji(x),φ ′(y)] =−∇[~j(x),φ ′(y)]. (3.19)

Now we integrate the vacuum expectation value of this commutator over the whole volume
and in a second step apply Gauss law in order to convert the volume integral into a surface
integral

∂

∂x0

∫
d3x〈0| [ j0(x),φ ′(y)] |0〉=−

∫
d3x〈0| [∇~j(x),φ ′(y)] |0〉

=−
∫

d~S 〈0| [~j(x),φ ′(y)] |0〉

= 0.

(3.20)

The last step follows from the fact, that ~j and φ ′ are local operators and the point x is on a
surface, whereas the point y is somewhere in the whole volume. We can make the distance
between x and y as large as we need by choosing a corresponding large volume. In this case
the commutator vanishes and the integral becomes zero. Thus the non-vanishing vacuum ex-
pectation values (3.18) are time independent.

In order to fully understand the following derivations we will at this point discuss the con-
sequences of a translation transformation of j0(x). From quantum mechanics we know that
the momentum operator p is responsible for a translation transformation. For clarity we will
shortly use the four-vector indication with µ again

j0(x) = e−ixµ pµ

j0(0)eixµ pµ

⇒ j0(0) = eixµ pµ

j0(x)e−ixµ pµ

(3.21)

= (1+ ixµ pµ + ...) j0(x)(1− ixµ pµ + ...) = j0(x)+ ixµ [pµ , j0(x)]+ ...
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3 Global Symmetry Breaking

The last step follows from Taylor expansion of the e-function. Remember that xµ is the space
time four-vector and pµ is the four-momentum operator. Furthermore we consider |0〉 and |n〉
to be eigenstates of pµ with eigenvalues 0 and pµ

n . The latter is a four-vector again with the
index n in order to indicate to which eigenstate it belongs and to show that it is not an operator.
By Taylor expansion of the j0(x) operator we obtain

j0(0) = j0(x)− xµ∂
µ j0(x)

∣∣∣
x=0

. (3.22)

Comparing the coefficients, we obtain the relation

[pµ , j0(x)] =−i∂ µ j0(x). (3.23)

Taking the matrix elements of this expression we get

〈0| pµ j0(x)− j0(x)pµ |n〉=−i∂ µ 〈0| j0(x) |n〉 , (3.24)

and since |0〉 and |n〉 are eigenstates to the operator pµ with eigenvalues 0 and pµ
n this expres-

sion reduces to a set of partial differential equations solvable by the separation of variables
Ansatz

− pµ
n 〈0| j0(x) |n〉=−i∂ µ 〈0| j0(x) |n〉 (3.25)

⇒ 〈0| j0(x) |n〉= 〈0| j0(0) |n〉e−ipµ
n xµ . (3.26)

Analogously this method leads to the following expression for the matrix elements on the
other side of the diagonal

pµ
n 〈n| j0(x) |0〉=−i∂ µ 〈n| j0(x) |0〉 (3.27)

⇒ 〈n| j0(x) |0〉= 〈n| j0(0) |0〉eipµ
n xµ . (3.28)

Now we are prepared to approach the relation (3.18) again. We start by inserting a total set
of states |n〉 in between j0 and φ ′ such that∫

d3x〈0| [ j0(x)φ ′(y)] |0〉=
∑

n

∫
d3x[〈0| j0(x) |n〉〈n|φ ′(y) |0〉−〈0|φ ′(y) |n〉〈n| j0(x) |0〉]

(3.29)
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3 Global Symmetry Breaking

Applying the translation transformations (3.26) and (3.28) as well as the definition of the δ -
function

δ (p− p′) =
1

2π

∫
∞

−∞

e−i(p−p′)qdq = δ (p′− p) (3.30)

and pµ
n xµ = p0

nx0−~pn~x we obtain∫
d3x 〈0| [ j0(x)φ ′(y)] |0〉

=
∑

n

∫
d3x
[
〈0| j0(0) |n〉〈n|φ ′(y) |0〉e−ipµ

n xµ −〈0|φ ′(y) |n〉〈n| j0(0) |0〉eipµ
n xµ

]
=

∑
n

[
〈0| j0(0) |n〉〈n|φ ′(y) |0〉e−ip0

nx0

∫
ei~pn~xd3x

−〈0|φ ′(y) |n〉〈n| j0(0) |0〉eip0
nx0

∫
e−i~pn~xd3x

]
= (2π)3

∑
n

δ
3(~pn)

[
〈0| j0(0) |n〉〈n|φ ′(y) |0〉e−iEnx0−〈0|φ ′(y) |n〉〈n| j0(0) |0〉eiEnx0

]
6= 0

where we have rewritten p0
n by En.

We can now obtain several conclusions out of this last equation. First we see, that the δ -
function limits the |n〉 states, giving them zero momentum. By the use of the relativistic
energy expression

En =
√

p2
n +m2

n, (3.31)

and remembering that c = 1, we conclude that En = mn. Since these states have an e-function
term that is time dependent (x0 refers to the time coordinate), but on the other hand equation
(3.20) tells us that the whole expression is time independent we conclude

〈0| j0(0) |n〉= 0 ∀mn 6= 0 (3.32)

Further from our considerations (3.18) we know that the expression cannot be zero, so there
must exist states that refer to massless particles

mn = 0 〈0| j0(0) |n〉〈n|φ ′(y) |0〉 6= 0. (3.33)

Then also 〈0| j0 |n〉 6= 0 holds which means, that the quantum numbers of |n〉 have to agree
with those of j0 |0〉, due to orthogonality. This means, that the massless particles carry the
quantum numbers of the generator. It can be also concluded, since jµ is either an axial or
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3 Global Symmetry Breaking

polar vector and therefore j0 carries no internal angular momentum that the massless particles
are scalar bosons.

3.4 Physical Consequences - The Goldstone Bosons

Now that we have proven the existence of massless particles as a consequence of global sym-
metry breaking, the question of the number of appearing Goldstone bosons arises. This will
be the essence of the next part, returning to a general potential and expanding it around its
vacuum state. By our general assumptions we will obtain certain conditions that can be inter-
preted with the help of the existing symmetry groups.

We consider the potential V to be invariant under transformations from the symmetry group
G, so that for g ∈ G we obtain

V (φ ′) = V (U(g)φ) = V (φ), φ
′ 6= φ in general. (3.34)

We will furthermore assume that the vacuum state is invariant under a subgroup H of G, so
with g ∈ H

φ
′
0 = U(g)φ0 = φ0. (3.35)

The idea is now to expand the potential around its vacuum state and to evaluate V (φ ′0) = V (φ0).
Since φ0 is the vacuum state, meaning that the potential is minimal, the first derivative of V

with respect to all vacuum state components vanishes,

∂V
∂φi

∣∣∣
φ=φ0

= 0. (3.36)

Then the Taylor expansion yields

V (φ) = V (φ0)+
1
2

∂ 2V
∂φi∂φ j

∣∣∣
φ=φ0

(φi−φ0i)(φ j−φ0 j)+ .... (3.37)

We know that V (φ0) is the minimum of the potential which leads to the following relation
where Mi j is called the mass matrix, since it is standing in front of the term of second order

Mi j =
(

∂ 2V
∂φi∂φ j

)∣∣∣
φ0
≥ 0. (3.38)

Now we use the condition that the vacuum state can be invariant under some transformation of
H. In general it is not invariant under a transformation belonging to G, whereas the potential
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3 Global Symmetry Breaking

is invariant under any transformation of φ belonging to G.

V (φ0) = V (U(g)φ0) =V (φ0)+
1
2

(
∂ 2V

∂φi∂φ j

)∣∣∣
φ0

([U(g)φ ]i−φ0i)([U(g)φ ] j−φ0 j)+ ...

⇒
(

∂ 2V
∂φi∂φ j

)∣∣∣
φ0

δφiδφ j = 0. (3.39)

In the last equation we denoted the variation of the field under some transformation from the
vacuum state as δφ . Now we have to distinguish between two cases depending on whether
g ∈ H or g ∈ G/H, where the G/H is a coset and not a subgroup since it does not contain the
identity transformation.

In the first case, if g ∈ H we know by the assumption of the invariant vacuum state

φ
′
0 = φ0 ⇒ δφi = 0 ∀i. (3.40)

So equation (3.39) is fulfilled. On the other hand, if g ∈ G/H, then U(g)φ0 6= φ0 in general.
We therefore consider the variation of φ j from the vacuum state by transformation given by

δφ j = [U ′(0)φ0] j =

[(
∂U
∂εi

)
εi=0

φ0

]
j

δεi 6= 0, (3.41)

where εi are the infinitesimal transformation directions. This follows from the assumption
that U = e−iTiei , Ti being a set of matrices obeying the Lie algebra of the transformation group.
When we apply a Taylor expansion of U(g) around the identity (ei = 0) we obtain for a first
order approximation that the first derivative is responsible for small changes. U(0) resembles
the identity.

We furthermore know that there a certain components δφl that will remain zero. This is due
to the fact, that φ0l are non-zero components of the vacuum state, other than the φ0 j in general
which are zero in order that the ground state is invariant under a transformation belonging to
H, if the specific component is not invariant. It then follows that the variation from a zero state
is much larger then from another state. We can consider δφl = 0 such that

Mi jδφ j = 0. (3.42)

The non-zero components of the field δφ have zero mass in order to fulfill equation (3.39).
These are the Goldstone bosons. We can see that the number of massless fields is a question
of group theory. In all cases we can expect as many Goldstone bosons as there are broken
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3 Global Symmetry Breaking

symmetries [10]. If we construct in the beginning as many fields as we have generators in G

we can furthermore state that the number of fields, whose mass is not required to be zero is
given by the number of generators of H, or the dimension of the Lie algebra of H. This does
not necessarily mean that the mass of those fields is not zero, though. Then the number of
massless fields can be given by the numbers of generators which are not in H, or the dimension
of the Lie algebra of G/H. This result does clearly not depend on the representation of G.

At the end, we can for generality consider the case of no spontaneously broken symmetry. In
this case the vacuum state is a singlet, which is unique and invariant under the transformation
of G. So H = G and there are no massless fields appearing. If on the other hand we break all
symmetries such that the vacuum is not invariant under any subgroup of G we will observe a
number of Goldstone bosons that is equal to the number of generators of G.

3.5 Examples

It is important to notice that the following examples will be discussed using the semi-classical
approach to spontaneous symmetry breaking. This means that we seek the minimum of the
potential energy, which resembles the minimum of the total energy. The vacuum state ex-
pressed by fields with physical meaning, i.e. that vanish at the vacuum, is reinserted. The
rewritten Lagrangian can then be analysed according to second order field terms, that reveal
the masses of the field quanta.

3.5.1 Breaking of a U(1) Symmetry

For a U(1) invariant system the φ 4 theory is chosen, which includes the Klein-Gordon Fields
and a self-interaction term λ , in order to obtain a symmetry in the Lagrangian:

L = (∂µφ)(∂ µ
φ
∗)−m2

φ
∗
φ −λ (φ∗φ)2 (3.43)

= (∂µφ)(∂ µ
φ
∗)−V (φ ,φ∗), (3.44)

where m, which is usually the mass, shall be in this case a parameter only and the components
of the contravariant four-gradient are given by

∂
µ = (

∂

∂ t
,−∇).
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3 Global Symmetry Breaking

L is invariant under the global U(1) transformation,

φ → φ
′ = eiΛ

φ (Λ = const.) (3.45)

since it only consists of φ∗φ terms.

L ′ = (∂µφ
′)(∂ µ

φ
∗′)−m2

φ
∗′

φ
′−λ (φ∗′φ ′)2

= (∂µeiΛ
φ)(∂ µe−iΛ

φ
∗)−m2

φ
∗
φ −λ (φ∗φ)2

= L

The ground state can now be obtained by minimizing the potential. We get

∂V
∂ |φ |

= 2m2|φ |+4λ |φ |3 = 0

∂ 2V
∂ |φ |2

= 2m2 +12λ |φ |2 = 0. (3.46)

By solving the equation for m2 > 0 a minimum at φ = φ∗ = 0 is obtained, which turns to a
maximum for m2 < 0. The minimum in the latter case is given by

φ
∗
φ = |φ |2 =−m2

2λ
= a2, (3.47)

In quantum theory φ becomes an operator such that the minimal condition refers to the vac-
uum expectation value | 〈0|φ |0〉 |2 = a2. If we consider instead of the complex φ its linear
combination out of real fields, such that φ = φ1 + iφ2, all the minima lie on a circle with radius
a. It is convenient to continue working in polar coordinates.

φ(x) = ρ(x)eiθ(x) (3.48)

For the further discussion we choose our vacuum, because all cases are equivalent, to be

〈0|φ |0〉= a; a ∈R (3.49)

⇒ 〈0|ρ |0〉= a; 〈0|θ |0〉= 0. (3.50)

We now see very clearly that the vacuum state is connected to all of the other degenerate vacua
by the U(1) symmety transformation and furthermore not invariant under the symmetry of the
potential. The U(1) symmetry is broken. The vacuum is given by a particular combination of
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3 Global Symmetry Breaking

values of the fields ρ and θ . Now considering physical fields, as introduced above we have to
modify our field into

φ(x) = (ρ ′(x)+a)eiθ(x) (3.51)

⇒ 〈0|ρ ′ |0〉= 〈0|θ |0〉= 0. (3.52)

If we now express the Lagrangian in terms of the new physical fields, we can draw conclusions
about them from the structure of individual contributions. Plugging into L the field φ gives
for the kinetic part from (3.43)

(∂µφ)(∂ µ
φ
∗) = (∂µρ

′eiθ +(ρ ′+a)ieiθ
∂µθ)(∂ µ

ρ
′e−iθ +(ρ ′+a)ie−iθ

∂
µ

θ)

= (∂µρ
′)(∂ µ

ρ
′)+(ρ ′+a)(∂µθ)(∂ µ

θ)+(ρ ′+a)i(∂µθ∂
µ

ρ
′−∂µρ

′
∂

µ
θ)

= (∂µρ
′)(∂ µ

ρ
′)+(ρ ′+a)(∂µθ)(∂ µ

θ)

since in the mixed terms we multiply two four-vectors resulting in the same scalars. For the
potential term from (3.43) we obtain under the use of (3.47)

V = m2
φ
∗
φ +λ (φ∗φ)2 = m2(ρ ′+a)2 +λ (ρ ′+a)4

= −2λa2(ρ ′2 +2ρ
′a+a2)+λ (ρ ′4 +4aρ

′3 +6a2
ρ
′2 +4a3

ρ
′+a4)

= λ (ρ ′4 +4aρ
′3 +4a2

ρ
′2−a4).

We notice a term in the potential quadratic in ρ ′, which indicates that ρ ′ has a mass

m2
ρ ′ = 4λa2, (3.53)

according to the definition of the potential. Furthermore, there is no such term in θ 2, so θ is a
massless field.
After spontaneous symmetry breaking we observe instead of two massive scalar fields φ1 and
φ2 being the real parts of φ , one massive field ρ ′ and one massless field θ . It can be reasoned
that one needs energy to displace ρ ′ against the restoring forces of the potential, whereas θ

does not experience restoring forces corresponding to displacement along the potential valley.

3.5.2 Non-Abelian Example

We are now prepared to approach a physically more relevant example. For this we will con-
sider a Lagrangian invariant under a global U(1)⊗SU(2) symmetry, which is part of the basis
for the electro-weak interaction theory. This is the case of two complex scalar boson fields φ1
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3 Global Symmetry Breaking

and φ2 forming a SU(2) doublet

φ =

(
φ1

φ2

)
=

(
ϕ1 + iϕ2

ϕ3 + iϕ4

)
(3.54)

The Lagrangian can be obtained from Klein-Gordon equation (∂µ∂ µ +m2)ϕ = 0. The La-
grangian for a complex field φ = (ϕ1 + iϕ2), where ϕi are two real scalar fields with the same
mass, is then given by

L = ((∂µϕ1)(∂ µ
ϕ1)−m2

ϕ
2
1 )+((∂µϕ2)(∂ µ

ϕ2)−m2
ϕ

2
2 )

= (∂µφ)∗(∂ µ
φ)−m2

φ
∗
φ

(3.55)

such that the Euler-Lagrange equation (2.16) results in the Klein-Gordon equation. Since we
have two of those fields φi that actually interact we can construct the following Lagrangian,
where λ 2 characterises the interaction term and is assumed to be positive in order that the
potential describes a stable system around the vacuum, so

L = (∂µφ1)∗(∂ µ
φ1)+(∂µφ2)∗(∂ µ

φ2)−m2
1φ
∗
1 φ1−m2

2φ
∗
2 φ2−

1
2

λ
2(|φ1|2 + |φ2|2)2. (3.56)

With m1 = m2 = µ√
2

we can rewrite this Lagrangian in terms of φ and φ †, where the latter one
is the adjoint of the field, meaning the complex conjugate transposed.

L = (∂µφ
†)(∂ µ

φ)− 1
2

µ
2
φ

†
φ − 1

2
λ

2(φ †
φ)2

= (∂µφ
†)(∂ µ

φ)−V (φ †
φ)

(3.57)

We notice that the Lagrangian is invariant under a global U(1) transformation, because we
have only pairs of φ∗i φi appearing. Furthermore the Lagrangian is also invariant under a SU(2)
transformation since the φi are indistinguishable and therefore can be interchanged.

Now µ is to be considered as a parameter only, so we can differentiate the potential with
respect to |φ | in order to obtain the extremal relations

∂V
∂ |φ |

= µ
2|φ |+2λ

2|φ |3 = 0 (3.58)

∂ 2V
∂ |φ |2

= µ
2 +6λ

2|φ |2 6= 0. (3.59)
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3 Global Symmetry Breaking

We immediately receive from these equations that for µ2 > 0, where the Lagrangian describes
two real particles of mass µ√

2
, the minimum of the potential will be at φ = 0. This will be

the state of lowest energy, the vacuum state and in this case the vacuum possesses all the
symmetries of the Lagrangian.

In the case µ2 < 0 however the state φ = 0 describes a local maximum point. The ground
state can then be obtained from equation (3.58) as a second real solution and is given by

|φ0|2 = (φ †
φ)0 =− µ2

2λ 2 = a2. (3.60)

Obviously there is now a set of degenerate vacuum states lying on a circle of radius a in the
φ1-φ2 plane. They are connected by a SU(2) transformation, which rotates the doublet space.
The full symmetry of the Lagrangian was given by U(1)⊗SU(2), which has four generators.
Notice that we have four real scalar fields in our Lagrangian. Now this original symmetry
is broken down to a U(1) symmetry of the vacuum state, since the vacuum state now gets
transformed by the SU(2) transformation into another vacuum state with the same energy.
Since the SU(2) group has three generators, three massless particles can be expected.

We can choose our vacuum state in any way, such that |φ |= a is fulfilled so we set

〈0|φ |0〉= φ0 =

(
0
a

)
. (3.61)

Since the fields of interest are physical fields, in order to obtain relevant informations out of
our equations, we vary our original field such that

φ = φ0 + χ, (3.62)

where

χ =

(
χ1 + iχ2

χ3 + iχ4

)
(3.63)

⇒ φ =

(
χ1 + iχ2

a+ χ3 + iχ4

)
(3.64)

such that 〈0|χ |0〉= 0.
We can now insert φ again into our Lagrangian and we will obtain some information about
the masses of our fields. The differential part will certainly not contribute to the identification
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3 Global Symmetry Breaking

of massless fields

(∂ µ
φ

†)(∂µφ) =
4∑

i=1

(∂ µ
χi)(∂µ χi), (3.65)

whereas the potential takes a new form, considering that λ =− µ2

2a2 in the third step

V =
1
2

µ
2
φ

†
φ +

1
2

λ
2(φ †

φ)2

=
1
2

µ
2(χ

2
1 + χ

2
2 + χ

2
4 +(a+ χ3)2)+

1
2

λ
2(χ

2
1 + χ

2
2 + χ

2
4 + χ

2
3 +a2 +2aχ3)2

=
1
2

µ
2

((∑
i

χ
2
i

)
+a2 +2aχ3

)
− µ2

4a2

(
2a2

(∑
i

χ
2
i

)
+4a3

χ3 +a4 +4a2
χ

2
3 + ...

)
.

(3.66)

We neglected terms of higher order than three, because they are irrelevant for the discussion
of the masses. We can see that many terms up to second order will cancel and we will obtain

V =
1
4

µ
2a2−µ

2
χ

2
3 + ... (3.67)

Since µ2 < 0 only the field χ3 is left in the potential with a term of second order and therefore
the only physical field that obtains a mass

mχ3 =
√
−2µ2. (3.68)

We considered two particles with the same mass |µ|/
√

2 and obtain only one field that car-
ries the mass of all. In addition we receive, as expected, three massless fields χ1, χ2, χ3, which
are identical to the original ϕi with the respective indices.

This is a nice end of the discussion of global symmetry breaking so far and we will consider
now local symmetries and the Higgs formalism, keeping in mind that the Goldstone theorem
leads to the existence of as many massless particles as there are broken symmetries.
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4 Local Gauge Symmetry Breaking

This chapter will deal with the local case of spontaneous symmetry breaking. The Higgs
mechanism is going to be explained on several examples and at the end we will provide a
comparison between the two cases of global and local symmetry breaking. As in the previous
chapter we start off with a brief introduction into local symmetries and in this context also the
appearance of local gauge fields and how they are implemented into the Lagrangian.

4.1 Local Gauge Symmetry

When we introduced global symmetries, they were defined by the invariance of a Lagrangian
under a global transformation belonging to some symmetry group. In the local case this is
a little bit different. Again we demand an invariance under a local symmetry transformation
U(α1, ...αN ;~r) depending on the position~r. In order to sattisfy this invariance, there will ap-
pear terms involving gauge fields W a

µ in the Lagrangian, in form of a covariant derivative Dµ

instead of ∂µ and a field Lagrange term LW . The gauge fields will similtaneously transform,
depending on U and are coupled to the field due to the covariant derivative.

4.1.1 General Considerations

In the general global case the transformation was expressed by an unitary operator U with the
generators Ma and Λa being constant parameters

U = e−iΛaMa
.

Consider that L0 is invariant under this global transformation. We obtain a local unitary
operator by making Λa space dependent.

U(x) = e−iΛa(x)Ma
(4.1)

where now a Lagrangian L = L0 +LW is invariant under this transformation if ∂µ → Dµ .
The appearance of a covariant derivative can be obtained from the geometry of gauge fields,
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for which we refer to [10]. In general it holds

Dµφ = ∂µφ + igMaW a
µ φ , (4.2)

where g is a constant to adjust the dimensions and W a
µ is an additional field or potential. This

defines the covariant derivative of an arbitrary field φ transforming under an arbitrary group
with generator Ma. It can already be seen, that for each generator of the local transformation
group one gauge term field term each is needed. It is most likely that in order to be locally
invariant a vector gauge field gets generated with as many components as generators of the
symmetry group, i.e the dimension of its Lie algebra.
In the case of U(1) we set M = 1 and g→ e, in order to obtain the known result

U(1) : Dµ = ∂µ + ieAµ ; Aµ = Wµ (4.3)

U(N) : Dµ = ∂µ + igMaW a
µ = ∂µ + igWµ . (4.4)

In general we set MaW a
µ = Wµ for convenience, keeping in mind that we treat a matrix Wµ .

We can create further conditions on the gauge fields in order to specify them. We demand
that a Lagrangian shall be invariant under a given local transformation U(x). In general this
Lagrangian will have some terms that will not involve any gauge fields. These have to be in-
variant under U(x) only. Furthermore there will appear contributions consisting only of gauge
fields in the Lagrangian which will be constructed to be invariant under the gauge field trans-
formation. Which leads us to the condition on this transformation, a similarity transformation
of the covariant derivative D′µ = UDµU−1, such that the kinetic term of the Lagrangian is
invariant under the local transformation, including the gauge field transformation. Recalling
the form invariance of ∂µ we obtain

D′µφ
′ = UDµφ

⇒ (∂µ + igW ′µ)Uφ = U(∂µ + igWµ)φ = U(∂µφ)+ ig(UWµ)φ

⇒ (∂µU)φ +U(∂µφ)+ igW ′µUφ = U(∂µφ)+ ig(UWµ)φ

⇒ (∂µU)U−1Uφ + igW ′µUφ = ig(UWµ)U−1Uφ

⇒W ′µ = UWµU−1 +
i
g
(∂µU)U−1.

(4.5)

With the use of U−1U = 1 and therefore its derivative being zero, we can conclude from the
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rule of product differentiation

W ′µ = UWµU−1− i
g
(∂µU−1)U. (4.6)

The Lagrange term of the gauge field depends on the symmetry group but we remain as general
as possible considering the U(N), SU(N) symmetry groups of primary interest in this thesis.
They have the following properties from commutation relation and normalization

[Ml,Mm] = i f lmnMn; f lmn− antisymmetric structure constant (4.7)

tr(MlMm) =
1
2

δ
lm. (4.8)

SU(N) has N2−1 generators, each of which requires a gauge field to compensate the arising
terms in local invariance. From this follows that Wµ is a vector field with N2− 1 internal
components. The following Ansatz for the gauge Lagrangian can be formulated, where Gµν

is yet unknown

LW =−1
4

GlµνGl
µν . (4.9)

which can be interpreted as a scalar product in the SU(N) space. From the normalization
condition we obtain

LW =−1
4

GlµνGl
µν =−1

2

N2−1∑
l,m=1

Glµνtr(MlMm)Gm
µν

=−1
2

N2−1∑
l,m=1

N∑
i, j=1

Glµν(Ml)i j(Mm) jiGm
µν =−1

2

N∑
i, j=1

(Gµν)i j(Gµν) ji

=−1
2

tr(GµνGµν),

(4.10)

where we used MaGa
µν = Gµν again. Since the trace is invariant under a unitary similarity

transformation we suppose that Gµν transforms like

G′µν = UGµνU−1. (4.11)

This is satisfied by the matrix Ansatz

Gµν = ∂µWν −∂νWµ + ig[Wµ ,Wν ], (4.12)
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or given in components

Gl
µν = ∂µW l

ν −∂νW l
µ − i f lmngW m

µ W n
ν . (4.13)

The proof of this Ansatz is straight forward. From the unitary condition U−1U = 1 it follows

(∂µU−1)U +U−1(∂µU) = 0.

Under extensive use of this relation, we obtain from (4.6)

∂µW ′ν = (∂µU)WµU−1 +U(∂µWν)U−1 +UWν(∂µU−1)

− i
g
(∂µU)(∂νU−1)− i

g
U(∂µ∂νU−1)

= UU−1(∂µU)WµU−1 +U(∂µWν)U−1 +UWνU−1U(∂µU−1)

− i
g
(∂µU)(∂νU−1)− i

g
U(∂µ∂νU−1)

=−U(∂µU−1)UWµU−1 +U(∂µWν)U−1 +UWνU−1U(∂µU−1)

− i
g
(∂µU)(∂νU−1)− i

g
U(∂µ∂νU−1)

= U(∂µWν)U−1− [U(∂µU−1),UWνU−1]− i
g
(∂µU)(∂νU−1)− i

g
U(∂µ∂νU−1).

Then Gµν transforms like

G′µν =∂µW ′ν −∂νW ′µ + ig[W ′µ ,W ′ν ]

=U(∂µWν)U−1−U(∂νWµ)U−1− [U(∂µU−1),UWνU−1]+ [U(∂νU−1),UWµU−1]

− i
g
((∂µU)(∂νU−1)− (∂νU)(∂µU−1))+ ig[UWµU−1

− i
g
(∂µU−1)Uv,UWνU−1− i

g
(∂νU−1)U ].

With − i
g [(∂µU−1)Uv,(∂νU−1)U ] = i

g((∂µU)(∂νU−1)− (∂νU)(∂µU−1)) and the other
mixed commutator terms vanishing as well we obtain

G′µν = U(∂µWν −∂νWµ)U−1 + igU [Wµ ,Wν ]U−1

= UGµνU−1.

This makes the constructed gauge field Lagrangian term invariant under the gauge field trans-
formation (4.6) and shows that in LW no mass term of the form 1

2m2W lµW l
µ appears.
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We obtain a Lagrangian L = L0 +LW , with covariant derivative (4.2) and the gauge La-
grangian term LW = −1

4GlµνGl
µν . This is invariant under a local gauge transformation ac-

cording to (4.1) and (4.6) with respect to the field and the gauge field respectively.

4.1.2 U(1) Example

In the well known case of a U(1) symmetry group of electromagnetic gauge fields we set g = e

and Ma = 1 to obtain from (4.1)

U(x) = e−iΛ(x) (4.14)

∂µ(U−1) = i(∂µΛ(x))eiΛ(x). (4.15)

We can immediately obtain the covariant derivative and the gauge field transformation from
(4.2) and (4.6) respectively, renaming Wµ = Aµ , with Aµ being the four vector of the potentials
of the electric and magnetic fields

Dµφ = (∂µ + ieAµ)φ (4.16)

A′µ = Aµ +
1
e

∂µΛ. (4.17)

In the case of U(1) we rename Gµν = Fµν and with f lmn = 0, we can construct the gauge field
from (4.12)

Fµν = ∂µAν −∂νAµ . (4.18)

These are well known results from electrodynamics. We will now consider a global exam-
ple, turn it into a local one and check the invariance under the gauge transformation. We know
from Chapter 3 that the the following Lagrangian has a U(1) symmetry

L = (∂µφ)(∂ µ
φ)∗− 1

2
µ

2(φ∗φ)− 1
2

λ (φ∗φ)2. (4.19)

As discussed above for the local case we need to replace the partial derivative with the covari-
ant derivative and add the gauge field term such that

L = (∂µ + ieAµ)φ(∂ µ − ieAµ)φ∗−V (φ∗φ)− 1
4

FµνFµν . (4.20)

To check the invariance under φ ′ = e−iΛ(x)φ we will proceed step by step. First, the potential
V (φ∗φ) is obviously invariant since the exponential terms cancel in the products of the field
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4 Local Gauge Symmetry Breaking

and its complex conjugate φ ′∗φ ′ = φ∗φ . The gauge field is also invariant under the gauge
transformation as we see by inserting (4.17) into (4.18)

F ′µν = ∂µAν +
1
e

∂µ∂νΛ−∂νAµ −
1
e

∂ν∂µΛ = Fµν . (4.21)

Now we only need to verify the term involving the derivative, where the gauge field and
the field couple. It is important to notice that the partial derivative now also acts on the
transformation, so we obtain

D′µφ
′D′µ∗φ ′µ = (∂µ + ieA′µ)e−iΛ(x)

φ(∂ µ − ieA′µ)eiΛ(x)
φ
∗

= e−iΛ(x)(∂µ + ieA′µ − i∂µΛ(x))φeiΛ(x)(∂ µ − ieA′µ + i∂ µ
Λ(x))φ∗

= (∂µ + ieAµ)φ(∂ µ − ieAµ)φ∗ = DµφDµ∗
φ

µ .

(4.22)

We have shown on a simple example that our general considerations hold. The SU(2) case
will be considered later, when it comes to an application of the Higgs mechanism.

4.2 The Higgs Mechanism

The Higgs mechanism is best introduced by demonstration on an example. For this we will
go back to the U(1) symmetry. In the previous section we just derived the corresponding
Lagrangian (see (4.20)). In short notation

L = (Dµ
φ)∗(Dµφ)−V (φ∗φ)− 1

4
FµνFµν , (4.23)

with the known potential V = 1
2 µ(φ∗φ)+ 1

2λ (φ∗φ)2. Global symmetry breaking revealed the
existence of one Goldstone boson. The local transformation now looks like (4.14). As already
shown in Chapter 3 the minimum of the potential for µ2 < 0 is obtained at φ 2

0 = a2 =− µ2

2λ 2 .
Expanding around the vacuum state in order to obtain physical fields we rewrite our La-
grangian in terms of

φ̃(x) = a+φ(x) = a+
1√
2
(ϕ1 + iϕ2) =

1√
2
(
√

2a+ϕ1 + iϕ2) (4.24)
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4 Local Gauge Symmetry Breaking

If we omit the terms of higher order in φi and Aµ (higher than 3) and under the use of
(∂µϕ2)Aµ = (∂ µϕ2)Aµ we can derive

L =−1
4

FµνFµν +[(∂ µ − ieAµ)φ̃ ][(∂µ + ieAµ)φ̃ ]−V (φ̃∗φ̃)

=−1
4

FµνFµν +
1
2
(∂ µ

ϕ1)(∂µϕ1)+
1
2
(∂ µ

ϕ2)(∂µϕ2)+
√

2e(∂µϕ2)Aµ

+ e2AµAµa2− 1
2

µ
2(a2 +

1
2
(ϕ2

1 +ϕ
2
2 )+
√

2aϕ1)

− λ 2

2
(a4 +a2(ϕ2

1 +ϕ
2
2 )+2

√
2a3

ϕ1 +2a2
ϕ

2
1 + ...).

(4.25)

With λ 2 =− µ2

2a2 we obtain

L =−1
4

FµνFµν +
1
2
(∂ µ

ϕ1)(∂µϕ1)+
1
2
(∂ µ

ϕ2)(∂µϕ2)+
√

2ea(∂µϕ2)Aµ

+ e2AµAµa2 +
1
2

µ
2
ϕ

2
1 −

1
4

µ
2a2 + ...

(4.26)

We obtain the known result that ϕ1 remains massive under the choice of our vacuum state to
be real. Its mass is mϕ1 =

√
−µ2. In addition, the gauge field obtained a mass term. The

second scalar field ϕ2 appears again massless but we notice a coupling term between it and the
gauge field. To receive a clearer physical statement of this potential we get rid of the coupling
term. This is done by a proper choice of gauge. From (4.14) we know for infinitesimal
transformations, considering the expansion only up to the linear term,

φ
′ =

1√
2

(1− iΛ(x))(
√

2a+ϕ1 + iϕ2) =
1√
2

(
(
√

2a+ϕ1 +Λϕ2)+ i(−Λϕ1−
√

2aΛ+ϕ2)
)

and by comparison of the real and imaginary parts of φ ′ we come to

⇒ ϕ
′
1 =

1√
2
(ϕ1 +Λϕ2) (4.27)

ϕ
′
2 =

1√
2
(ϕ2−Λϕ1−

√
2aΛ). (4.28)

We choose Λ in such a way that the transformed field takes the form φ ′ = 1√
2
(
√

2a + ϕ1).
Explicitly

Λ(x) =
ϕ2√

2a+ϕ1 + iϕ2
≈ ϕ2√

2a
, (4.29)
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where in the last step we assume that our physical field φ = ϕ1 + iϕ2 does only small changes
in magnitude around the vacuum state. By this choice of Λ we consequently transformed our
gauge field according to (4.17) into

A′µ = Aµ +
1
e

∂µΛ≈ Aµ +
1√
2ae

∂µϕ2. (4.30)

Inserting this new gauge field and the field φ ′ = 1√
2
(
√

2a+ϕ1) into our Lagrangian (4.23), we
end up with (rewriting A′→ A)

L =−1
4

FµνFµν +
1
2
(∂ µ

ϕ1)(∂µϕ1)+ e2AµAµa2 +
1
2

µ
2
ϕ

2
1 +O(T 2) (4.31)

where T stands for all fields. From this it is observable that ϕ2 completely vanished. We
obtained a Lagrangian that is describing two massive fields and their interactions, namely ϕ1

and Aµ with masses mentioned earlier. Again it is important to notice that we approached
this problem semi-classically as in the global case. The only difference in the local case ist,
that it was possible to transform our vacuum state by a proper choice of gauge to simplify the
problem at hand.

Compared to the global case, where we had one Goldstone boson for the one broken sym-
metry we now obtain exactly one massive gauge field for the one broken symmetry. It can
be correlated that these appearances are closely related. The quanta of the remaining massive
scalar field ϕ1 are then called the Higgs bosons.

The general case is in full analogy to the global case of symmetry breaking. We will assume
a Lagrangian that is satisfying the Goldstone theorem. So it has a certain global symmetry but
its vacuum state does not share it. If we demand invariance under a local symmetry, there will
appear gauge fields as a consequence, as shown in the previous section, in terms of covariant
derivatives and additional field terms.
Analogue to the global case we continue by expanding in terms of the the physical field χ

around the vacuum state φ0 setting the vacuum expectation value of the physical fields zero
such that

φ = φ0 + χ. (4.32)

Inserting this into the Lagrangian gives similar effects as in the Goldstone mode. The fields
describing the Goldstone bosons in the global case are still massless but now coupled to mas-
sive gauge fields. The massive fields from the global scenario remain massive. In order to rule
out any mass acquiring of the massless field through the coupling we can choose it to equal
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zero by an appropriate gauge. We can formulate a general rule for the local case.

Higgs mechanism: Consider a Lagrangian with global symmetries, not shared by the vac-
uum state. When we introduce a local symmetry invariance, then the spontaneous sym-
metry breaking no longer causes massless Goldstone bosons but massive gauge fields.
The number of massive gauge fields in local symmetry breaking corresponds to the
number of massless Goldstone bosons in the global case. One says that the massless
gauge fields "eats" the massless Goldstone boson in order to become massive.

The fact that some massless gauge fields acquire mass can be understood as follows. From
our symmetry section we know that the gauge fields appear in order to compensate terms
arising from the local transformations. That is why there appear as many gauge fields as we
have generators in the Lie algebra of the symmetry group for example in the SU(N) case
N2− 1. As a consequence of the spontaneous symmetry breaking this symmetry is reduced
and the number of generators decreases. Consequently, the number of massless gauge fields
has to decrease, but they cannot simply vanish. At the same time we know, there will appear as
many Goldstone bosons as symmetries are broken. So the massless gauge fields simply take
up the massless Goldstone bosons to acquire mass. That is why there are as many massive
gauge fields as symmetries are broken.
When we consider the case that we constructed as many fields as generators we can again
introduce a symmetry group G under which the Lagrangian is invariant and a subgroup H

which provides the only symmetry transformations for the ground state. Then the number of
massive gauge fields is given by the number of generators belonging to G/H. In other words,
the dimension of the Lie algebra of G/H. On the other side dimH gives the number of massive
scalar fields.

4.3 Non-Abelian Example

We will now turn to an example out of the Non-Abelian gauge theory, also called Yang-Mills
theory. The symmetry group under consideration will be the U(1)⊗SU(2) group. This exam-
ple is mainly the foundation of the Weinberg-Salam model for electroweak interaction, which
will be briefly described later.

Recalling the SU(2) example from 3.5.2 we start with some relevant properties of the sym-
metry group SU(2). The generators are given by

Ma =−1
2

σ
a, (4.33)
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where σa represent the Pauli matrices

σ
1 =

(
0 1
1 0

)
σ

2 =

(
0 −i

i 0

)
σ

3 =

(
1 0
0 −1

)
. (4.34)

The symmetry group brings some properties from normalization and its algebra, as mentioned
before

tr(σ lσm) = 2δ lm, (4.35)

[σ l,σm] = 2iεlmnσn, (4.36)

{σ l,σm}= 2δ lm1, (4.37)

where the latter bracket is the anticommutator, vanishing for l 6= m.
We obtain the transformation operator from (4.1)

U(x) = e
1
2 σaΛa(x). (4.38)

The covariant derivatives follow from (4.2) with Wµ = MaW a
µ as

Dµφ = ∂µφ + igWµφ and (Dφ)† = ∂µφ
†− igφ

†Wµ . (4.39)

Considering the Lagrangian term of the free gauge field 1
4GµνGµν , we obtain for the SU(2)

part

L = (Dµ
φ)†(Dµφ)− 1

2
µ

2
φ

†
φ − 1

2
λ

2(φ †
φ)2− 1

4
GlµνGl

µν (4.40)

with the gauge field tensor (see(4.12))

Gµν = ∂µWν −∂νWµ + ig[Wµ ,Wν ].

The scalar field φ has a non-vanishing vacuum expectation value and will later on take the role
of the Higgs field.
The U(1) symmetry group also contributes to the Lagrangian in the known way from the
previous chapter, such that the covariant derivative receives an extra term involving the U(1)
gauge field Aµ

Dµ = ∂µ + igWµ + i
g′

2
Aµ . (4.41)

Then also the Lagrange function of the free U(1) field has to be added to the total Lagrangian
involving Fµν = ∂µAν−∂νAµ . The total Lagrange function invariant under the U(1)⊗SU(2)
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symmetry is then (V is the known potential)

L = (Dµ
φ)†(Dµφ)−V (φ †

φ)− 1
4

GlµνGl
µν −

1
4

FµνFµν . (4.42)

As we know from Subsection 3.5.2 µ2 is merely a parameter. For µ2 > 0 this Lagrangian
describes the standard Yang-Mills theory, namely two massive scalar mesons of mass µ and
one massless gauge boson. If however µ2 < 0, we know from the global case that the potential
has its minimum, describing the vacuum state, at

|φ0|2 =− µ2

2λ 2 = a2. (4.43)

The vacuum states are degenerate and connected by a SU(2) transformation. Therefore we
can choose our particular vacuum state to be

〈0|φ0 |0〉= φ0 =

(
0
a

)
. (4.44)

Expanding our scalar field around this vacuum we introduce the physical Higgs fields χi such
that

φ =

(
χ1 + iχ2

(a+ χ3)+ iχ4

)
. (4.45)

From the global example we expect χ1,χ2,χ4 to be massless Goldstone bosons. We can then
use our gauge freedom to transform this field via a local SU(2) gauge transformation (4.38)
by elimination of χ1,χ2,χ4 into

φ(x) =

(
0

a+ χ3

)
. (4.46)

Inserting this into our Lagrangian we arrive at

L =
(

∂
µ

φ
†−φ

†(igW µ + i
g′

2
Aµ)
)(

(∂µ + igWµ + i
g′

2
Aµ)φ

)
−V (φ †

φ)

− 1
4

GlµνGl
µν −

1
4

FµνFµν

= (∂ µ
φ)†(∂µφ)− igφ

†W µ(igWµ)φ − igφ
†W µ(i

g′

2
Aµ)φ − i

g′

2
Aµ

φ
†igWµφ

+
g′2

4
φ

†AµAµφ − 1
2

µ
2
φ

†
φ − 1

2
λ

2(φ †
φ)2− 1

4
GlµνGl

µν −
1
4

FµνFµν + ...

(4.47)
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The scalar products between the terms involving the partial derivative of the field and a gauge
field cancel due to φ † = φ from (4.46) and the definition of the scalar product (2.9). We
neglected terms of higher order as usual and refer to (3.67) for the outcome of the potential
with the new field. Replacing Wµ = σ l

2 W l
µ and recallig φ †φ = (a+ χ3)2 we obtain

L = (∂ µ
χ3)(∂µ χ3)+ µ

2
χ

2
3 −

1
4

GlµνGl
µν −

1
4

FµνFµν

+
g2

4
W lµW l

µ(φ †
σ

l
σ

m
φ)+

gg′

4
W lµAµ(φ †

σ
l
φ)+

gg′

4
AµW l

µ(φ †
σ

l
φ)

+
g′2

4
AµAµ(a+ χ3)2 + ...

(4.48)

As mentioned earlier the anticommutator of σ l and σm vanishes for l 6= m so that the elements
of the sum (φ †σ lσmφ) for l 6= m vanish. Furthermore with the action of the pauli matrices
(4.34) and the structure of φ in mind (see (4.46)) it follows that

φ
†
σ

1,2
φ = 0 and (4.49)

φ
†
σ

3
φ =−(a+ χ3)2. (4.50)

The norm of pauli matrices is always one i.e. (σ i)2 = 1. The terms proportional to g2, g′2 and
gg′ then take the form, keeping in mind the four scalar product properties W 3µAµ = W 3

µ Aµ

and the commutation relation [Aµ ,W 3µ ] = 0

g2

4
W lµW l

µ(φ †
σ

l
σ

m
φ)+

gg′

4
W lµAµ(φ †

σ
l
φ)+

gg′

4
AµW l

µ(φ †
σ

l
φ)+

g′2

4
AµAµ(a+ χ3)2

=
g2

4
W lµW l

µ(a+ χ3)2− gg′

2
W 3µAµ(a+ χ3)2 +

g′2

4
AµAµ(a+ χ3)2

=
g2

4
(W 1µW 1

µ +W 2µW 2
µ )(a+ χ3)2 +

g2

4
W 3µW 3

µ (a+ χ3)2− gg′

2
W 3µAµ(a+ χ3)2

+
g′2

4
AµAµ(a+ χ3)2.

(4.51)

Neglecting terms of higher order again, starting at order three, we neglect the χ3TµT µ terms,
Tµ standing for all gauge fields. The Lagrangian then becomes

L = (∂ µ
χ3)(∂µ χ3)+ µ

2
χ

2
3 −

1
4

GlµνGl
µν −

1
4

FµνFµν

g2

4
(W 1µW 1

µ +W 2µW 2
µ )a2 +

a2

4
(gW 3µ −g′Aµ)(gW 3

µ −g′Aµ)+ ...

(4.52)
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In our total Lagrangian the fields W 3 and A are coupled. In order to obtain a more physical
Lagrangian we decouple it by introduction of the Weinberg angle θW

tanθW =
g′

g
. (4.53)

Consequently we write

(gW 3µ −g′Aµ) = g(W 3µ − g′

g
Aµ) = g(W 3µ − tan(θW )Aµ)

=
g

cosθW
(cosθWW 3µ − sinθW Aµ)

=
g

cosθW
Zµ ,

(4.54)

with the new field Zµ and its orthogonal field Bµ given by

Zµ = cosθWW 3µ − sinθW Aµ and (4.55)

Bµ = sinθWW 3µ + cosθW Aµ . (4.56)

These two fields decouple in the equation (4.52). It then follows from cos2(x)+ sin2(x) = 1
that

cos2(θW ) =
g2

g2 +g′2
(4.57)

and we obtain for the coupling part of the Lagrangian

(gW 3µ −g′Aµ)(gW 3
µ −g′Aµ) = (g2 +g′2)ZµZµ . (4.58)

The gauge field contribution terms from GµνGµν can be split by the trace properties of
the pauli matrices. We neglect the commutator term in (4.12) because after multiplication it
always results in terms of higher order than two

1
2

tr(GlµνGm
µν) =

1
2

tr
(

(∂µ

1
2

σ
lW l

µ −∂ν

1
2

σ
lW l

µ)(∂ µ 1
2

σ
mW mµ −∂

ν 1
2

σ
mW mµ)

)
=

1
8

tr(σ l
σ

m)(∂µW l
µ −∂νW l

µ)(∂ µW mµ −∂
νW mµ) (4.59)

=
1
4
(∂µW l

µ −∂νW l
µ)(∂ µW lµ −∂

νW lµ).
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with the help of (4.35). The Einstein sum convention applies. From (4.55) we obtain

W 3µ = cosθW Zµ + sinθW Bµ (4.60)

Aµ =−sinθW Zµ + cosθW Bµ (4.61)

When we insert the equations for fields W 3 and A into 1
4GlµνGl

µν and 1
4FµνFµν we can rewrite

the Lagrangian in terms of Z and B. With the help of a new notation we can demonstrate the
change of the gauge Lagrangian terms of interest

(∂µW 3
µ −∂νW 3

µ )(∂ µW 3µ −∂
νW 3µ)+(∂µAµ −∂νAµ)(∂ µAµ −∂

νAµ)

:= (∂Wµ)(∂W µ)+(∂Aµ)(∂Aµ)

= cos2
θW (∂Zµ)(∂Zµ)+ sin2

θW (∂Bµ)(∂Bµ)

+ sin2
θW (∂Zµ)(∂Zµ)+ cos2

θW (∂Bµ)(∂Bµ)

= (∂µZµ −∂νZµ)(∂ µZµ −∂
νZµ)+(∂µBµ −∂νBµ)(∂ µBµ −∂

νBµ).

(4.62)

Then the Lagrangian takes the decoupled form

L = (∂ µ
χ3)(∂µ χ3)+ µ

2
χ

2
3

− 1
4

2∑
l=1

(
(∂µW l

µ −∂νW l
µ)(∂ µW lµ −∂

νW lµ)−g2a2W lµW l
µ

)
− 1

4
(
(∂µZµ −∂νZµ)(∂ µZµ −∂

νZµ)− (g2 +g′2)a2ZµZµ

)
− 1

4
(∂µBµ −∂νBµ)(∂ µBµ −∂

νBµ)+ ...

(4.63)

In the higher terms that we omitted, there are still coupling terms of the fields included. But
now we have a unique answer to the question of which fields obtained what mass. We have
one scalar field χ3 and in addition three massive vector particles W 1, W 2 and Z with masses

W 1
µ : mW 1 = g

a√
2

(4.64)

W 2
µ : mW 2 = g

a√
2

= mW 1 (4.65)

Zµ : mZ =
√

g2 +g′2
a√
2

(4.66)

χ3 : mχ3 =
√
−2µ2 (4.67)

and we have one remaining massless vector particle Bµ . We check for the conservation of
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degrees of freedom. In the end there are 3 degrees of freedom per 3 massive vector particles, 2
per massless particle and 1 for the Higgs field. This equals the 12 degrees of freedom we had
in advance of the spontaneous symmetry breaking, 4 in the iso-doublet φ , 6 in the massless
gauge bosons W l

µ and 2 in the massless gauge boson Bµ .
We compare this to the global example from Subsection 3.5.2 where we observed 3 massless

Goldstone bosons after the spontaneous breaking of the SU(2) symmetry. Now there appear 3
massive vector bosons as predicted before by the correlation of globally appearing Goldstone
bosons and the locally appearing massive gauge bosons. One massive scalar boson remains as
in the global case and is again refered to as the Higgs boson. This will be further elaborated
in the next chapter.

Table 4.1: Comparison of the Global and Local Symmetry Breaking
Symmetry group Goldstone mode (global) Higgs mode(local)

2 massive scalar bosons 2 massive scalar bosons
+ 1 massless vector boson

U(1) ↓ ↓
1 massive scalar boson 1 massive scalar boson

+ 1 massless scalar boson + 1 massive vector boson
4 massive scalar bosons 4 massive scalar bosons

+ 3 massless vector bosons
U(1)⊗SU(2) ↓ ↓

1 massive scalar boson 1 massive scalar boson
+ 3 massless scalar bosons + 3 massive vector bosons
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5 Summary and Physical Importance

We summarize that the phenomenon of spontaneous symmetry breaking occurs, when a sys-
tem is invariant under a global or local symmetry group, whereas the vacuum does not share
the same full symmetry. In the case of a global symmetry this leads to the Goldstone theorem
and the existence of massless particles, the Goldstone bosons, as has been proven. If the La-
grangian is invariant under a symmetry group G and the vacuum state is invariant under H ⊂G,
as many Goldstone bosons appear as symmetries are broken. This is equal to dimG/H. If we
constructed as many fields as we have generators in G, the number of massive scalar bosons
is dimH. The concept was illustrated in a semiclassic approach with the examples of a U(1)
and SU(2)⊗U(1) symmetry.
In the case of a local symmetry massless gauge fields appear in the Lagrange function. During
spontaneous breakdown of the symmetry, some of the massless gauge fields take up the mass-
less Goldstone bosons in order to become massive themselves. The number of massive gauge
bosons then equals the number of Goldstone bosons, i.e. dimG/H.

The concept of spontaneous symmetry breaking of gauge symmetries has been a great con-
tribution to many fields of physics. Also the global case my appear in nature, such that the
Goldstone theorem finds application as well. It explains the fact that the pion is nearly mass-
less, because the spontaneous breakdown of the chiral symmetry predicts massless pions. Due
to an explicit symmetry breaking in the Lagrangian the symmetry becomes approximate. The
breaking terms are then a perturbation of the symmetric case and cause the pion to obtain a
small mass. For a detailed discussion see [8] page 121ff.

One of the major contributions of the local mechanism was in the field of solid state physics,
giving a reasonable explanation to the Meissner effect in superconductors. Superconductivity
describes the effect that many metals have no resistivity at very low temperatures. The pa-
rameter in this example is controlled by the temperature. Recalling any of our examples we
set the parameter µ = a(T −Tc) such that for T < Tc the parameter becomes negative and the
symmetry of the Lagrangian is broken for the ground state. It can be shown, that this causes
the resistivity to vanish. Due to the Higgs mechanism the photons gain mass at the same time.
Then the photons penetrate the solid only up to a certain depth remaining in a border region
of the solid. This is the essence of the Meissner effect, saying that in a superconductor the
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magnetic flux is effectively screened. It is not an effect caused by induction. Consider the
metal to be at T > Tc and apply an external electromagnetic radiation. It will penetrate deep
into the metal. Lowering the temperature below Tc will spontaneously break the symmetry
and immediately ban the magnetic field from the solid, except from a border shell. This shell
has the thickness of the allowed penetration depth of the massive photons.

In the fields of particle physics a major improvement in the model of unified weak and
electromagnetic interactions was accomplished by the concept of the Higgs mechanism. The
Weinberg-Salam [12] model incorporated the following ideas. The Lagrangian for the theory
involves terms for massless electrons, muons and neutrinos as well as massless gauge bosons
that are responsible for the weak interaction. This Lagrangian is invariant under the internal
symmetry group SU(2). In order to obtain massive gauge bosons at lower energies we intro-
duce a scalar field φ , called Higgs field with non-vanishing vacuum expectation value for low
energies. This causes a spontaneous breakdown of symmetry as in the non-abelian example
discussed in Section 4.3 giving mass to the electrons, the muons and some gauge fields but
not to the photons and neutrinos. The parameter for this model is the energy of the system.
For high energies the vacuum keeps the symmetry of the system. However, for lower energies
the spontaneous breakdown occurs. In the preceding example the field Bµ remained mass-
less (see (4.63)). This field can now again be identified as the electromagnetic field Aµ . The
spontaneous breakdown in the Weinberg-Salam model happens in this examples context in the
following way

SU(2)⊗U(1)→Uem(1). (5.1)

In simple words the highly symmetric system with many massless gauge bosons breaks down
at low energies to a system symmetric only under the U(1) group of quantum electrodynamic,
i.e. a system involving now only one massless particle: the photon.
At CERN in Genf it is the subject to experimentally find the predicted Higgs particle. This will
be done at the not yet finished Large Hadron Collider (LHC), the largest and highest energy
particle accelerator in the world. It will be possible to accelerate particles for high energy
collision experiments. Simulation predicts that the collision of high energy protons will result
in a Higgs boson, whose decay signature is unique and can therefore be detected. If however,
it is not found in those experiments, there already exist Higgsless mechanisms not involving
Higgs particles.
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