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1. Introduction

Understanding the mechanisms of particle condensation and polymer aggregation in finite
systems is of relevance for a wide range of research. Advances towards applications on the
nanoscale create both the need for a deeper understanding of transition mechanisms and pos-
sibilities for experimental tests of theoretical predictions on small scales and in confinement.
Moreover, the formation of polymer aggregates is a basic process in biophysical networks and
an underlying mechanism for protein aggregation. In general, these systems are very complex
with a large number of degrees of freedom.

A common approach in physics is the reduction of a problem to its essentials. This allows one
to study complex systems and to identify generic mechanisms, even when the tough reality is
not accessible. If the gained insights may be replaced by an effective description, the next level
of complexity comes into range. Besides, trying instead to study the full complex problem with
many unknowns may obscure otherwise obvious key processes. Furthermore, the consideration
of essentials allows one to find and study equivalences and symmetries in the description of
nature, ranging from elementary particle interactions to the equivalence between an Ising
magnet and a particle gas. The latter is a prominent example of universality in classical
statistical physics. Here, one is usually interested in the so-called thermodynamic limit, or in
other words the limit of infinite system size. However, numerical methods usually only allow
the treatment of finite systems, i.e., finite volume and number of particles. In that case, finite-
size scaling [1] is a useful tool to study these problems in the context of phase transitions and
critical phenomena.

In this spirit, particles and polymers may be described by coarse-grained models, simplifying
complex details and thereby reducing the degrees of freedoms. This includes the simplification
of structural details and the reduction of complex interactions to effective pair-potentials. In
general, polymers are large molecules made up of small units called monomers. In the simplest
form, they appear as linear chains of identical monomers (homopolymers) or different types
of monomers (heteropolymers). However, different geometries such as branched structures or
(closed) rings are also possible. A coarse-grained, abstract formulation of polymers allowed the
derivation of scaling relations for single flexible homopolymers and polymer solutions [2, 3],
which have been verified both numerically and in experiment. Examples of linear polymers are
synthetic polymers, like polyethylene, polyvinyl chloride (PVC), and polystyrene, commonly
known as plastics. These may be successfully described by standard models of flexible poly-
mers. In a completely different context, in living organisms, biopolymers assume important
functions. One example are proteins, which have a heterogeneous primary structure of amino
acids. This gives rise to secondary structures such as alpha helices and beta sheets, which
may provide a given functionality if folded correctly. On the other hand, the aggregation of
misfolded proteins is associated with several human diseases like Alzheimer’s, Parkinson’s, and
diabetes II [4]. In the context of protein aggregation, different motifs are possible, e.g., amor-
phous aggregates and twisted fibrils for amyloid aggregation. In some cases, proteins assemble
into homogeneous chains, where they become monomeric units. Examples are microtubules,
intermediate filaments, and actin filaments, which make up the scaffold of a cell and may be
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1. Introduction

described as rather stiff linear polymers in coarse-grained networks.
Recent advances in experimental and simulation techniques open the door to mesoscopic

length scales [5–7]. This enables tests of fundamental concepts of statistical physics, e.g.,
by predicting and verifying finite-size corrections for microscopic models and checking them
experimentally. Moreover, statistical and dynamic properties of mesoscopic systems may be
studied using a microscopic description to probe the models for consistency and to yield predic-
tions. Of common interest are structural properties, the effect of confinement, and finite-size
transitions in general, particularly due to an increasing experimental interest in the nanoscale
regime with regard to potential applications. One interesting aspect is the competition of
generic mechanisms, which may be numerically studied from small to mesoscopic system sizes.
This approach also allows the study of equivalences and relations, for example the similarities
of crystalline low-temperature structures of a single flexible polymer to nanoclusters.

The aim of this research is to investigate the aggregation transition of semiflexible polymers in
dilute solution, with a focus on structural phases and the analogy to condensation of a particle
gas. The conclusions are based on theoretical arguments and results from advanced Monte
Carlo simulation techniques. I follow a bottom-up approach, from particle condensation to
semiflexible polymer aggregation, in chapters 2-4. These chapters build on each other, starting
with the “simpler” case of the equilibrium condensation/evaporation transition of particles in
chapter 2, which is treated in detail. This includes a review and extension of the relevant
theory, supported by numerical results, as well as an introduction to finite-size scaling in the
microcanonical ensemble and scaling of the free-energy barrier. Chapter 3 is concerned with
the aggregation transition of flexible polymers in different scaling limits, in comparison to the
finite-size scaling of particle condensation. In addition, the dependence of the aggregation
transition on density is studied in spherical confinement, and the effects of unequal inter- and
intra-polymer interactions are discussed. The model is extended to semiflexible polymers in
chapter 4, where the role of stiffness on the resulting aggregate motifs and consequences for
finite-size scaling or in spherical confinement are discussed. The numerical methods used for
the generation of the supporting data are described in chapter 5. This includes the description
and discussion of a novel parallel implementation of the multicanonical method. Chapter 6
summarizes the main conclusions and includes a brief outlook.
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2. Condensation/evaporation transition in
liquid-vapor systems

The equilibrium condensation/evaporation transition separates a gas (or vapor) phase from
a mixed phase of a single macroscopic droplet in equilibrium with surrounding gas. This is
a good example of a first-order phase transition either maximizing entropy in the gas phase
or minimizing energy in the droplet phase. Early studies of equilibrium condensation include
the analytical work by Fisher [8]. Of course, considering the kinetic process of nucleation
initially leads to a distribution of droplet sizes in a metastable state that eventually reach
equilibrium after a (possibly very long) lag time (see e.g. Ref. [9]). The topic of equilibrium
droplets includes a long list of theoretical works among others on the leading-order scaling
behavior of equilibrium droplets [10–13] with origins already in the 80s [14]. The common
approach to this problem is to consider a fixed temperature, studying the transition density
above which a supersaturated gas forms a droplet (see Sec 2.2). Biskup et al. [10, 11] pro-
posed a general (idealized) theory claiming that intermediate-sized droplets have a vanishing
probability, with a rigorous analytical solution for the two-dimensional Ising spin model. Nu-
merous simulation studies have addressed the condensation/evaporation at fixed temperature,
including studies of the two- and three-dimensional Ising (lattice gas) model [12, 15–17] and
the three-dimensional Lennard-Jones gas model [18, 19]. Equivalently, one may approach the
condensation/evaporation transition by considering a fixed density, identifying a transition
temperature. In Sec 2.3, the corresponding finite-size scaling of the transition temperature
and rounding of the transition will be discussed. This has been demonstrated partially for the
two- and three-dimensional lattice gas [20] and is, in this thesis, reconfirmed including also
the Lennard-Jones gas [21]. In addition, I will present an effective intermediate scaling regime
which may be successfully described by including higher-order correction terms.

This chapter is organized in the following way. In Sec. 2.1, I will introduce the employed
particle gas models, discuss equivalences, and compare to exact results where possible. The
main theory and results will be presented in Sec. 2.2 and Sec. 2.3. The remaining part of this
chapter will be devoted to the discussion of the accompanying free-energy barrier (Sec. 2.4)
and a microcanonical analysis (Sec. 2.5) in the scheme of fixed density. Also, microcanonical
arguments in an ideal gas approximation are provided in order to describe the density depen-
dence of the infinite- and finite-system transition temperature (Sec. 2.5). This will serve as a
basis for the study of polymer aggregation on a more intuitive problem and will help to identify
similarities between polymer aggregation and particle condensation.

2.1. Discrete and continuous particle gas models

I considered two different, simplified particle models in order to draw general conclusions,
namely the discrete lattice gas (DLG) model and the Lennard-Jones gas (LJG) model. For a
sketch see Fig. 2.1. This allows to distinguish between model dependent artifacts and general
statements on universal aspects. The lattice gas model allows to bridge the gap to analytical

13



2. Condensation/evaporation transition in liquid-vapor systems
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Figure 2.1.: Sketch of two complementary particle gas models: the lattice gas model (left) and
the Lennard-Jones gas model with domain decomposition (right). The correspond-
ing particle-particle interactions are demonstrated in the center.

results [10, 13], being equivalent to the Ising model at fixed magnetization. This will be
exploited in two and three dimensions. In contrary to the lattice gas model, the Lennard-Jones
gas is not symmetric with respect to particle-hole exchange and will be considered in three
dimensions. The boundary conditions are periodic, such that interactions with boundaries are
avoided. Both models have short interaction ranges by construction.

2.1.1. Lattice gas

The discrete lattice gas model (DLG) describes particles as occupied sites on a square (2D),
cubic (3D) or higher-dimensional lattice. The hard-core repulsion of particles is included by
the condition that each site may be either occupied or empty: ni ∈ {0, 1}. The short-range
interaction is modeled by nearest-neighbor interaction 〈i, j〉, yielding the Hamiltonian

HDLG = −J
∑

〈i,j〉
ninj . (2.1)

The coupling constant J may be trivially included in a rescaled temperature and is thus set to
J = 1 for all simulations. A sketch of the model is shown in Fig. 2.1 with the corresponding
particle-particle interaction potential VDLG(r), where r is the distance between two parti-
cles, including self-avoidance at r = 0 (VDLG(0) =∞), nearest-neighbor attraction at r = 1
(VDLG(1) = −1), and no interaction else.

The natural (canonical) ensemble in this formulation is a fixed particle number N , system
volume V and temperature T : the NV T ensemble. In general, the inverse thermal energy or
otherwise known as inverse temperature β = 1/kBT sets the energy scale, see also Sec. 5.1.
However, I usually consider the temperature T in the common dimensionless units where
kB = 1. Since both total number of particles N =

∑
i ni and total number of sites V = Ld

are integers, the density ρ = N/V may only be adjusted approximately. The lattice gas model
may be treated with exact enumerations for very small system sizes and of course with Markov
chain Monte Carlo methods like the Metropolis and multicanonical method (for details see
Ch. 5). The Monte Carlo updates I considered include single particle shifts to a random nearest
neighbor and single particle jumps to a random new site, see also Sec. 5.7.1. In addition to
the energy E and its thermal derivative the specific heat 〈CV 〉 = d

dT 〈E〉/N , I consider another

14



2.1. Discrete and continuous particle gas models
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Figure 2.2.: Comparison of parallel multicanonical simulations of a two-dimensional lattice
gas with N = 8 particles on a 7 × 7 square lattice with exact enumerations:
the canonical total energy shows good qualitative agreement (left). A detailed
comparison of the jackknife error with the deviation of the estimated energy E
from the exact expectation value 〈E〉 shows that they are on the same order of
magnitude (right).

observable: the number of particles in the largest cluster ND. In general, this is measured
as the largest connected cluster of particles using a sequential cluster identification, merging
connected clusters. This directly measures the number of particles in the cluster (or the mass).
When comparing with literature, this may be extended by a flood-fill routine that measures
the volume of the cluster (up to surface corrections), for details see Ref. [16].

Exact enumerations allow to validate the implementation of the model, the simulation tech-
nique, and the analysis. The exact enumeration yields the canonical expectation value 〈O〉,
while an importance-sampling Markov chain only allows to calculate estimators O, see also
Sec. 5.1. The final data of a parallel multicanonical simulation may be reweighted to any
temperature whose canonical histogram is covered by the flat histogram, yielding estimators
of canonical expectation values. Then, the jackknife error εJ may be estimated as described
in Sec. 5.8. For the total energy, Fig. 2.2 shows the comparison of the expectation value from
exact enumerations and the estimator with jackknife errors from parallel multicanonical sim-
ulations using p = 20 cores and 2.56 million measurements. The left panel nicely shows the
qualitative agreement. In addition, the right panel shows that the estimated errors are of the
same order as the absolute deviations from the exact data. Since the reweighted estimators
are obtained from the same set of data, the individual estimators are correlated which can be
also seen in the deviation from the exact data. The test has been performed with the identical
implementation used in Sec. 2.3 and beyond. The same holds for the implementation of the
analysis, which was used to obtain most data in this thesis in a generalized version.

Figure 2.3 shows the specific heat normalized with the number of particles from exact enu-
merations together with the corresponding estimators from the above multicanonical simula-
tions. Again the qualitative and quantitative agreement validate the (independent) implemen-
tations of model, method, and analysis. The absolute errors of both the specific heat and the
energy seem to be of the same order, while comparing the scales of the expectation values
show that, in fact, the relative error of the specific heat in the vicinity of the peak (T = 0.4)
is larger by a factor of 5. This is a good illustration of the increase in uncertainty with every
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Figure 2.3.: Same as Fig. 2.2 for the specific heat estimator CV and exact expectation value
〈CV 〉.

derivative.

Equivalence to the Ising model: This formulation of a discretized particle gas is equivalent
to the Ising model (with spins si ∈ {±1}) at fixed magnetization M =

∑
i si [22]. Here, the

canonical ensemble is to consider a fixed number of spins V (volume) and temperature where
the magnetization becomes an observable. Thus, the canonical Ising model becomes a grand-
canonical approach in the particle picture. Fixing the magnetization on the other hand leads
to the desired equivalence, while loosing a natural meaning in the Ising picture. Identifying
si = 2ni− 1 and keeping

∑
i ni = N constant, one may rewrite the Ising Hamiltonian in terms

of Eq. (2.1)

HIs = −J
∑

〈i,j〉
sisj = 4HDLG − 2J(V − 4N). (2.2)

The temperature scales may be mapped onto each other by considering a rescaled temperature
T ′ = T Is/4. Actually, this factor becomes relevant for all energy-related observables and
constants (for example the surface free energy, see below). The magnetization per spin m =
M/V in the Ising model is then related to the density of the particle gas via

m = 1− 2ρ. (2.3)

Figure 2.4 shows the equivalence of the Ising gas and lattice gas model on the example of the
equilibrium number of particles in the largest droplet (cluster) ND.

In two dimension, this equivalence allows to draw on some quantities which are known
analytically and others which are known to arbitrary precision. This will become relevant when
comparing finite-size extrapolations or predictions from leading-order results. For the 2D Ising
model, a temperature-driven second-order phase transition occurs at the inverse temperature

βIs
c =

1

2
ln
(

1 +
√

2
)
. (2.4)

The spontaneous magnetization m0 is described by the Onsager-Yang equation [23, 24]:

m0(βIs) =
(
1− sinh−4(2βIs)

)1/8
(2.5)
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rescaled temperature T ′, demonstrating the equivalence of the lattice gas and the
Ising gas model for T ′ = T and T ′ = T Is/4, respectively.

The magnetic susceptibility χ may be evaluated from sufficiently long series expansions [25–30],
where

χ(βIs) = β

n∑

i=0

ciu
2i with u =

1

2 sinh(2βIs)
, (2.6)

and c = {0, 0, 4, 16, 104, 416, 2224, 8896, 43840, 175296, 825648, 3300480, 15101920, ...}1, which I
used up to the 300th term.
The volume of the Wulff plot or the Wulff shape (the equilibrium shape of a 2D Ising droplet)
is given by [31]

W =
4

(βIs)2

∫ βIsσ0

0
dx cosh−1

[
cosh2(2βIs)

sinh(2βIs)
− cosh(βIs)

]
, (2.7)

where σ0 = 2 + ln[tanh(βIs)]/βIs and cosh−1 is referring to the inverse hyperbolic cosine some-
times also denoted Arccosh. This will be relevant for the surface free energy of a (Wulff shaped)
droplet of unit volume τ Is

W = 2
√
W . Being energy-related, the interface tension gets converted

as τW = τ Is
W/4

In three dimensions, there exist suitable low-temperature series expansions which provide
estimates around and below the roughening transition T Is

R ≈ 2.4537 [32, 33]. For example, the
spontaneous magnetization (for zero field) may be computed from the series expansion [34, 35]

m0(βIs) = 1− 2

(∑

n

mn

(
e−2βIs

)n
)
, (2.8)

with coefficients available up to order n = 42.

1 The coefficients were obtained from http://www.ms.unimelb.edu.au/~iwan/ising/Ising_ser.html [29].
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R .

For the interface (surface) tension σ, there exists a low-temperature series expansions [36, 37]
(T ≤ T Is

R ) with a closed-form approximation. Introducing u =
√
y =

√
exp(−4J/kBT Is), the

low-temperature expansion may be written

σ(T Is)/2J = 1−
∑

n

an
un

ln(u)
, (2.9)

with a4 = −2,a6 = −2,a8 = −10, ... listed in Ref. [37]. On the other hand, Shaw and Fisher
introduced a closed-form [36]

σ(T Is) '
{

2J + kBT
Is

2 ln
(

1−0.387512y−12.2551y2+1.96894y3+23.4669y4

1−0.387512y−8.2551y2+4.41889y3+0.896454y4−3.99498y5

)
if y ≤ 0.195

8.1301Jt1.264/(1 + 1.6872t) else,

(2.10)
where t = (T Is

c − T Is)/T Is
c , and kBT

Is
c /J ≈ 4.5121 [38] the second-order temperature-driven

phase transition temperature in three dimensions. For a comparison of both expansions see
Fig. 2.5. Up to kBT

Is/J ≈ 2 the absolute difference between both expansions is below 10−6,
which provides a reasonable justification to apply the expansion in this temperature range.

2.1.2. Lennard-Jones gas

A continuous particle gas model is the Lennard-Jones gas (LJG), where in principle all particles
interact with each other via the potential

VLJ(rij) = 4ε

((
σ

rij

)12

−
(
σ

rij

)6
)

= ε

((
r0

rij

)12

− 2

(
r0

rij

)6
)
, (2.11)

where rij is the distance between particle i and j, and σ = 2−1/6r0. In order to be comparable to
the lattice gas model, I choose ε = 1 and the potential minimum at r0 = 1, which corresponds
to σ = 2−1/6. The computational demand may be reduced by introducing a cutoff radius
rc = 2.5σ above which particles do not interact anymore. The potential is then shifted by
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2.2. The “native” approach: crossing the phase boundary at fixed temperature

VLJ(rc) in order to be continuous, yielding

V ∗LJ(r) =

{
VLJ(r)− VLJ(rc) r < rc

0 else
. (2.12)

This is consistent with the existing literature and allows to apply a domain decomposition,
where the periodic box is decomposed into equally large (cubic) domains. These domains
have to be at least of the size rc. Then, the interaction of each particle may be obtained by
evaluating only its domain and the adjacent ones (in three dimensions this adds up to 33 = 27
domains). Especially in the gas phase the simulation benefits from this procedure, where the
particles are equally distributed in the full box. The Hamiltonian may then be written as

HLJG =
1

2

∑

i 6=j
V ∗LJ(rij). (2.13)

A sketch is shown in Fig. 2.1 together with the interaction potential.

As Monte Carlo update, I only consider the single-particle displacement with fixed update
range (see Sec. 5.7.1). As for the lattice gas, again I measure the energy E, the specific heat
CV and the number of particles in the largest droplet ND. For the latter observable, particles
are defined to be connected if their distance is smaller than 2σ. The clusters are then identified
by a loop over all particles, associating a cluster id to the particle and all connected neighbors.
If connected neighbors have the same id, the clusters are merged.

In fact, the lattice gas interaction may be interpreted as an oversimplification of the Lennard-
Jones potential including the main features: mutual avoidance and short-range attraction.
However, the microscopic details are different enough in order to be considered complementary.

2.2. The “native” approach: crossing the phase boundary at fixed
temperature

In the “native” approach to particle condensation/evaporation, the system temperature is
fixed considering a supersaturated gas with variable particle number. This requires a constant
temperature smaller than a critical temperature. In a grand-canonical ensemble (with fixed
chemical potential µ), this would correspond to an equilibrium particle number or background
contribution N0. Supersaturated then refers to a canonical ensemble (fixed NV T ) with even
more particles N > N0, i.e., with a particle excess δN = N −N0. Below the transition density,
the excess of particles goes into the gas phase, while for larger densities droplet formation
occurs. In equilibrium droplet formation, the probability for intermediate-sized droplets was
shown to vanish [10] and the scenario reduces to a homogeneous gas phase and an inhomoge-
neous phase of a droplet in equilibrium with surrounding vapor. A fixed temperature allows to
describe this effect based on fixed thermal fluctuations and relate to infinite-size temperature-
dependent quantities, like the isothermal compressibility and the surface free energy. In this
section, I will briefly recapture the arguments by Biskup et al. [10] yielding the leading-order
finite-size correction to the transition density at fixed temperature and relate to the results from
Binder [13]. I will compare this with numerical results, which have been partially published in
Ref. [17].

When the probability of intermediate-size droplets vanishes, the problem of condensation
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2. Condensation/evaporation transition in liquid-vapor systems

Figure 2.6.: Snapshots from Metropolis simulations of a three-dimensional Lennard-Jones gas
of 2 000 particles showing (left) fluctuations of particle excess and (right) a single
condensate surrounded by vapor.

may be reduced to the interplay of entropy maximization by fluctuations in the homogeneous
gas phase and energy minimization by forming a single macroscopic droplet in equilibrium
with surrounding bulk gas [10, 11], see also Fig. 2.6. For a supersaturated particle gas, the free
energy may then be approximated by a contribution from the fluctuation of particle excess δN

Ffluc =
(δN)2

2κ̂V
, (2.14)

with the isothermal compressibility κ̂ = βκ = β
〈

(N − 〈N〉)2
〉
/V and a contribution from the

single macroscopic droplet of size VD

Fdrop = τW(VD)
d−1
d , (2.15)

where τW is the surface free energy of a (Wulff shaped) droplet of unit volume. These contri-
butions are idealized with possible sources of corrections in both the Gaussian approximation
and the (non-ideal) droplet shape for finite systems.

The particle excess was introduced as the difference between the actual particle number N
and the background contribution N0, which is the particle number expectation value in a grand-
canonical ensemble at fixed temperature T and chemical potential µ (the explicit value of µ is
not necessary in the following arguments). For the infinite lattice gas, the background density
ρ0 = N0/V of the gas phase may be identified with the canonical spontaneous magnetization
m0(T ) of the equivalent Ising model via Eq. (2.3). According to Biskup et al. [10], the particle
excess may be decomposed into the particle excess inside the droplet δND and the particle
excess in the fluctuating phase δNF, i.e.,

δN = N −N0 = δND + δNF. (2.16)
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2.2. The “native” approach: crossing the phase boundary at fixed temperature

Linking the droplet size to the particle excess inside the droplet, one expects the excess
δND = (ρL − ρ0)VD, where ρL and ρ0 are the background liquid and gas density, respectively.
For the lattice gas it holds ρ0 = 1−ρL due to symmetry under particle-hole exchange. Now, the
two particle excesses may be further related by introducing a scalar fraction of particle excess
inside the droplet λ = δND/δN , such that δND = λδN and δNF = (1−λ)δN . In simple words,
λ may be understood as a normalized droplet size. The total free energy F = Fdrop + Ffluc

then becomes

F =

(
τW

(
λδN

ρL − ρ0

) d−1
d

+
(1− λ)2(δN)2

2κ̂V

)
. (2.17)

This may be rewritten as

F = τW

(
δN

ρL − ρ0

) d−1
d (

λ
d−1
d + ∆(1− λ)2

)
, (2.18)

with a dimensionless “density” parameter

∆ =
(ρL − ρ0)

d−1
d

2κ̂τW

(δN)
d+1
d

V
. (2.19)

At fixed temperature ρL, ρ0, κ̂, τW are constants and ∆ may be interpreted as an unusual
density. For a lattice gas equivalent to the Ising model, χ = κ̂ and τ Is

W = 4τW .

This (idealized) formulation allows to identify the fraction of particles inside the (single)
largest droplet λ as a function of ∆ in the limit of large systems, by minimizing Eq. (2.18)
with respect to λ. In fact, considering only the λ-depending part reduces the consideration to

Φ∆(λ) = λ
d−1
d + ∆(1− λ)2. (2.20)

This may be minimized both analytically or numerically, yielding λ(∆). It turns out (for
details see Ref. [10, 11]) that there exists a constant

∆c =
1

d

(
d+ 1

2

) d+1
d

, (2.21)

below which no condensate forms (λ = 0) and above which a single macroscopic condensate
exists with non-trivial λ > λc, see also Fig. 2.7. Directly at ∆c one gets

λc =
2

d+ 1
. (2.22)

For the relevant dimensions considered in this thesis, this leads to ∆2D
c ≈ 0.9186 or ∆3D

c ≈ 0.8399
and λ2D

c = 2/3 or λ3D
c = 1/2, respectively.

The result λ(∆) describes the expectation value of the equilibrium droplet size in the limit of
large systems without any free parameter. As mentioned before, this includes the leading-order
finite-size corrections with idealized assumptions. In principle, all constants may be known – in
the case of the two dimensional Ising model even exactly or with very high precision. Moreover,
the condensation/evaporation transition at ∆ = ∆c already includes the leading-order finite-
size corrections to the transition density. In fact, Eq. (2.19) may be written directly in terms
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Figure 2.7.: The reduced free-energy function Φ∆(λ) in three dimensions for several values of
∆ around the transition “density” ∆c. The minimum is either at λ = 0, namely
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of the (factual) particle density ρ = N/V

∆ =
(ρL − ρ0)

d−1
d

2κ̂τW
(ρ− ρ0)

d+1
d V

1
d . (2.23)

Consequently, at each finite-size transition density ρc it holds ∆(ρc) = ∆c, which yields to
leading order

ρc = ρ0 +

(
2κ̂τW∆c

(ρL − ρ0)
d−1
d

) d
d+1

V −
1
d+1 . (2.24)

In terms of the Ising model (see Sec. 2.1.1 for equivalence), this translates to a condensation
magnetization

mc = m0 + 2m0

(
χτ Is

W∆c

2m2
0

) d
d+1

V −
1
d+1 . (2.25)

This result in the notation of Biskup et al. [10, 11] is in quantitative agreement with the (inde-
pendent) result of Neuhaus and Hager [12]. For the 2D Ising model, they find the same leading
scaling behavior ∆m(L) = AcondL

−2/3, with the amplitude Acond = 0.23697... for β = 0.7. Us-
ing the constants from Sec. 2.1.1 for the same temperature yields A = 0.236965... in Eq. (2.25).
It is also in qualitative agreement with the results of Binder and coworkers [13, 18].

The latter works also provide an explicit leading-order scaling correction to the rounding
of the transition (in this case the width ∆ρ of the finite-system transition region around
ρc). To this end, a two-state approximation is considered where the system may be either in
the condensed or evaporated phase with probability Pcond ∝ e−βFcond and Pevap ∝ e−βFevap ,
respectively. Then, the probability to change from the homogenous state to the inhomogeneous
state is related to the free-energy difference ∆F = Fcond − Fevap and the expectation value of
an observable may be expressed as

〈O〉 =
Oevap +Ocond e

−β∆F

1 + e−β∆F
. (2.26)
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2.2. The “native” approach: crossing the phase boundary at fixed temperature

The rounding of a transition may be related to the width defined by the condition that |β∆F |
is of order unity [13], which means that both phases significantly contribute to the expecta-
tion value. This is the range in which the weights of both phases differ at most by a factor
e−1 in the expectation value. Consider the free-energy expression in Eq. (2.17). Identifying

α1 = βτW/(ρL − ρ0)
d−1
d and α2 = β/2κ̂, the free-energy difference between the mixed phase

(λ 6= 0) and the gas phase (λ = 0) may be written in terms of the density

β∆F (ρ)|T = α1λ
d−1
d (ρ− ρ0)

d−1
d V

d−1
d + α2((1− λ)2 − 1)(ρ− ρ0)2V

= α1(ρ− ρ0)
d−1
d V

d−1
d

[
λ
d−1
d +

α2

α1
(ρ− ρ0)

d+1
d V

1
d
(
(1− λ)2 − 1

)]

︸ ︷︷ ︸
∆Φ

. (2.27)

Expanding this around the finite-size transition density ρc, keeping in mind that at the tran-
sition β∆F (ρc) = 0 and consequently ∆Φ(ρc) = 0 leads in leading order to

β∆F (ρ)|T = α2

(
(1− λ)2 − 1

) d+ 1

d
(ρc − ρ0)V (ρ− ρc) (2.28)

∝ V d
d+1 ∆ρ, (2.29)

where in the last line I inserted the result for ρc from Eq. (2.24). This was analogously derived
in Refs. [13, 18] and leads for a free-energy difference of order unity to the finite-size rounding

∆ρ ∝ V − d
d+1 . (2.30)

With increasing system size, the transition width thus becomes smaller. For first-order phase
transitions between homogeneous phases, this usually goes as the inverse volume V −1 [39].

Numerical results in two dimensions: In two dimensions, the leading-order analytical results
were numerically verified in Ref. [15, 16] showing that the micromagnetic averages yield a
vanishing droplet for ∆ < ∆c and a single macroscopic droplet for ∆ > ∆c. Of course,
finite-size effects are present and thus the functional dependence deviates slightly for finite
systems. Considering for the droplet volume the largest connected cluster plus the enclosed
holes, i.e., using a flood-fill routine, reduced the deviations slightly. I verified these results
at T = 1.5/4 = 0.375 fixing the total number of particles and varying the lattice size, also
considering the flood-fill definition of the droplet size Nflood

D , see Fig. 2.8. The largest cluster
was measured by using a sequential cluster identification, merging connected clusters. For the
rescaled plot, the following conversions are considered

vL =
N − ρ0L

2

1− 2ρ0

λ = Nflood
D /vL (2.31)

∆ =
(1− 2ρ0)2

2χτW

v
3/2
L

L2

The overall picture is, in any case, qualitatively satisfying. The displayed analytical solution
is the algebraic form from Ref. [16], using the (exact) parameters listed in Sec. 2.1.1 and is to
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Figure 2.8.: Condensation of a lattice gas in two dimensions at T = 0.375: raw (left) and
rescaled (right) data using multicanonical simulations.

leading-order exact. Each data point corresponds to a parallel multicanonical simulation with
up to 24 cores, reweighted to the desired temperature. For lattice gas condensation, the parallel
multicanonical method scales perfectly with the number of cores, as presented in Sec. 5.5.2.
That way, a successful simulation was ensured not to get stuck in a local minimum but to yield
a canonical estimate. At low density (or large system size) the fraction of excess in the largest
droplet is small, vanishing with increasing system size, resembling the gas phase. Around
the predicted transition point ∆c, see Fig. 2.8 (right), the fraction of excess in the largest
droplet increases and one may talk about a macroscopic droplet. With increasing system
size, the functional form of the numerical data seems to approach the analytical or numerical
minimization of Eq. 2.20, or λ(∆). For the scope of this thesis, the two-dimensional case serves
as a proof of principle. A detailed discussion of the evaporation/condensation transition and
the universality with respect to the underlying lattice structure may be found in Ref. [15, 16].

Numerical results in three dimensions: In three dimensions, the comfortable situation of
having exact or very precise parameters changes. In order to compare numerical data of a
(Ising) lattice gas model to the leading-order analytical solution, we need m0,χ and τ Is

W, see
Table 2.1 for two considered temperatures. The first two parameters may be obtained from
Metropolis simulations of the three dimensional Ising model at fixed temperature, measuring

the average magnetization m = M/V and the fluctuations χ = β
(
M2 −M2

)
/V . Here, finite

size corrections are small and m0 and χ may be estimated from a constant fit to the estimates
for several system sizes. Figure 2.9 shows this procedure for the example of T Is = 3.2, which
corresponds to the lattice gas temperature T = 0.8. For the spontaneous magnetization, the
low-temperature series expansion Eq. (2.8) yields mlow

0 (T Is = 2.0) ≈ 0.994521 which is in good
agreement with the Metropolis data. For the large temperature the expansions naturally fail
with mlow

0 (T Is = 3.2) ≈ 0.919− 0.927 depending on the expansion used.

In the case of the surface free energy τW, this becomes even worse. At low temperatures,
below the roughening temperature T < TR, one may use the low-temperature series expansion
Eq. (2.9). For T = 2.0 this yields an interface tension σ ≈ 1.9072. Assuming a cubic droplet
shape below the roughening transition yields τ Is

W ≈ 6σ. This still has to be converted to the
lattice gas scale τW = τ Is

W/4. Moreover, τW can be obtained analogous to Ref. [16] directly from
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Figure 2.9.: Spontaneous magnetization (left) and magnetic susceptibility (right) from
Metropolis simulations of the three-dimensional Ising model at T I = 3.2.

a multimagnetic simulation. This takes advantage of the idea that close to the droplet-strip
transition, the complete particle excess is in the largest droplet, i.e., VD ≈ δN

1−2ρ0
for a lattice

gas with particle-hole symmetry ρL = 1 − ρ0. Inserting the definition of the particle excess
and taking into account the equivalence to the Ising model, m = 1 − 2ρ, this may be written
as VD ≈ 1

2(1−m/m0)V . In this case, only the droplet is contributing to the free energy, which
leads to the following probability distribution

Pd(m) ∝ exp
{
−βτW(VD)2/3

}

≈ exp

{
−βτW

(
1

2
(1−m/m0)V

)2/3
}
. (2.32)

For T = 3.2, a multimagnetic simulation in the regime m ∈ [0.63, 0.75] suffices to com-
pute the probability distribution in the corresponding range from the final histogram H(m)

and the weight function W (m) as Pd(m) = H(m)
W (m)

(∑ H(m)
W (m)

)−1
. Then, plotting lnPd versus

−β
(

1
2 (1−m/m0)V

)2/3
yields τW from a linear fit. For convenience, I plot the size-independent

variable −β
(

1
2 (1−m/m0)

)2/3
and obtained τ Is

WL
2 instead, using a size-independent fit range.

In order to estimate the error, I performed 16 different parallel multimagnetic simulations for
each system size and always did the fit within the same size-independent range. Assuming a
finite-size scaling dependence

τW(L) = τW + aL−4/3, (2.33)

allows to extrapolate the infinite-system value for τ Is
W, see Fig. 2.10. The result of the finite-size

scaling is
τ Is

W = 5.555(1) for T Is = 3.2, (2.34)

listed with the other parameters in Table 2.1
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Figure 2.10.: Finite-size scaling of the surface free-energy per unit volume for a temperature
T Is = 3.2.

This ansatz may be compared to the surface free-energy per unit volume under the as-
sumption of a spherical shape. The interface tension may be naively considered as the sim-
ple arithmetic mean of the anisotropic planar interface tensions in the 3D Ising model for
βIs

ref = 0.31 [40]:
σ100 = 1.106; σ110 = 1.127; σ111 = 1.1324. (2.35)

The surface free-energy is then obtained by multiplying the surface of a sphere with volume 1,

i.e., R1 =
(

3
4π

)1/3
, by the average surface interface tension σ = 1

3 (σ100 + σ110 + σ111) = 1.1218,
yielding:

τ Is
W = 4πR2

1σ = (36π)1/3σ ≈ 5.425. (2.36)

Despite the simplified assumptions, there is a reasonably small difference of only 2% which
may be even partially attributed by the small difference in temperature, T Is = 3.2 versus
T Is

ref ≈ 3.23.

Having collected all necessary parameters for two selected temperatures allows to compare
numerical data in the desired ∆-representation of a lattice gas and to compare to the leading-
order analytical solution. In Fig. 2.11, the analytical solution λ(∆) is obtained by numerical
minimization of Eq. (2.20) and each data point is again obtained from a multicanonical simula-
tion for either T1 = 0.5 (left) or T2 = 0.8 (right) using the following conversion with parameters

Table 2.1.: Parameters for the Ising model on a cubic lattice at fixed temperature. m0 and χ
are obtained from Metropolis simulations of various lattice sizes (see Fig. 2.9). τW

is obtained from low-temperature series expansion (T < TR) or from a fit to the
probability distribution P (m).

T Is m0 χ τ Is
W

2.0 0.994521(1) 0.00608(1) ≈ 11.443
3.2 0.924687(1) 0.0829(1) 5.555(1)
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Figure 2.11.: Condensation of a lattice gas in three dimensions at two temperatures around the
roughening temperature TR: T = 0.5 < TR (left) and T = 0.8 > TR (right). The
numerical data from multicanonical simulations show strong finite-size corrections
compared to the analytical solution (dashed line).

from Table 2.1, of course translated to the formulation of a lattice gas,

vL =
N − ρ0L

3

1− 2ρ0

λ = Nflood
D /vL (2.37)

∆ =
(1− 2ρ0)2

2χτW

v
4/3
L

L3

For consistency with the two-dimensional case, I again consider the largest droplet as the
largest connected cluster plus the enclosed holes (determined by a flood-fill algorithm). For
the three-dimensional case, this shows only very small deviations in the estimators of both
ND and λ. The consideration of these types of geometric clusters is a safe choice for dilute
systems. Note that for rather dense lattice systems also the stochastic Swendsen-Wang cluster
definition has been considered [41].

With increasing temperature, the density increases drastically so that the largest simulations
for T = 0.8 includes N ≤ 17183 particles in V = 603, compared to N ≤ 5753 in V = 803 for
T = 0.5. The analytical curve depicted is the numerical solution of the analytical result
Eq. 2.20 with the parameters from Table 2.1. Both plots show that the qualitative behavior
is recaptured as expected. For small ∆ only small clusters form, while for large ∆, above the
predicted ∆c, a macroscopic fraction of excess is found in a single largest droplet. In contrast to
the rather symmetric 2D case, the finite-size transition “density”, or the onset of a macroscopic
droplet, is shifted to larger ∆c(L) well above ∆3D

c for both temperatures considered. However,
it may be argued that the finite-size transition points shift towards the predicted leading-order
value ∆c.

To study this behavior in more detail, consider a horizontal line at λc = 1/2. For each system
size, I performed additional simulations in this vicinity, estimating the crossing of the finite-
size estimator λL(N) with that horizontal line. I define Nc as the total number of particles
at fixed volume and temperature for which λL(Nc) ≈ 1/2. In three dimensions, the proposed
leading-order correction for ρc = Nc/V is given in Eq. (2.24). Further, I assume empirical
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Figure 2.12.: Finite-size scaling test in three dimensions including empirical higher order cor-
rections to the predicted leading-order one.

higher order corrections as polynomial powers of the leading order. Figure 2.12 shows this
finite-size scaling ansatz with ρc = a + bV −1/4 + cV −2/4 for the two temperatures T1 = 0.5
and T2 = 0.8. Both fits have appropriate χ2(0.5) ≈ 0.3 and χ2(0.8) ≈ 0.4. The finite-size
extrapolation yields a(0.5) = 0.00269(3) and a(0.8) = 0.0387(3). This should be compared
to the low-temperature series expansion and Metropolis Ising simulations listed in Table 2.1,
namely ρ0(0.5) = 0.002739(1) and ρ0(0.8) = 0.03765(1). The result is astonishingly similar
given rather rough fit errors and the fact that this is only an empirical higher-order correction
neglecting additional sources of corrections. In addition, the fit parameters yield an estimate
of the rescaled condensation density ∆c from Eq. (2.24), namely in 3D

∆3D
c ≈ (1− 2ρ0)2/3

2κ̂τW
b4/3. (2.38)

With the fit parameters b(0.5) = 0.066(1) and b(0.8) = 0.263(9) and the self-consistent use of
the fit parameter a for ρ0 this yields ∆c(0.5) ≈ 0.76(2) and ∆c(0.8) ≈ 0.69(3). This is below the
predicted value ∆3D

c = 0.8399... with multiple sources of errors and systematic uncertainties.
The error given is obtained from error propagation of the corresponding fit errors from all
contributing parameters. Together with Fig. 2.11, however, it may be conjectured that also in
three dimensions the analytical prediction from Biskup et al. [10] should remain valid for large
system sizes.

Of course, the transition density is only a rough estimate with a lot of computational over-
head from the multicanonical simulation, as this was not the focus of my attention. In order
to measure the finite-size corrections precisely, it would be beneficial to consider the deriva-
tive of ND(ρ), which could be obtained by either grand-canonical simulations or a suitable
set of fixed-density Metropolis simulations (or micromagnetic Ising simulations [15–17]). This,
however, has the systematic disadvantage that for finite lattice systems ρ is not continuous.
The following section shows a different (orthogonal) approach with the continuous variable T ,
where the multicanonical method is naturally applicable.
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2.3. Thinking orthogonal: crossing the phase boundary at fixed density
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Figure 2.13.: Sketch of the infinite system-size transition (solid line) together with the finite-
size scaling directions in either the density (T fixed) or temperature (ρ fixed). The
transition line may be understood as T0(ρ) or similarly ρ0(T ). At the crossing
point of both schemes a finite system of size V may be constructed for which
(ρ, T ) = (ρc, Tc)V corresponds to the finite-size condensation transition. Adapted
from Ref. [21].

2.3. Thinking orthogonal: crossing the phase boundary at fixed
density

In the previous discussion, the liquid-vapor system was considered at fixed temperature. In
this way, free energies may be approximated by density fluctuations and surface contributions
using infinite-size canonical parameters (at constant temperature) which do not change with
system size. This finite-size scaling scheme is depicted in Fig. 2.13 by the horizontal dashed
line, on which for finite systems the transition density may be found. For the infinite system
(or the thermodynamic limit) the transition point is recovered as the intersection of the solid
and the dashed line.

Alternatively, one may consider the “orthogonal” scheme: keeping the density fixed leads
to a shift in the transition temperature as shown by the vertical dashed line in Fig. 2.13.
More explicitly, consider a sufficiently dilute liquid-vapor system of N particles in a (periodic)
box of volume V , where the condensation/evaporation transition temperature Tc separates a
homogeneous supersaturated gas phase from a mixed phase of a droplet in equilibrium with
surrounding bulk gas. It needs to be mentioned that both schemes are working in the canonical
ensemble for each point (ρ, T ). So in fact, any finite-size transition point (ρc, Tc)V belongs
to one fixed-T and one fixed-ρ scheme, simultaneously. The same holds for any canonical
function f(ρ, T ). Thus, the orthogonal crossing schemes are equivalent and we may translate
a functional dependence such as f(ρ, T )V α = 1 from one scheme to another by a Taylor series
expansion. Then, expanding around some T ∗ yields

V −α = f(ρ, T ∗) + f ′(ρ, T ∗)(T − T ∗) + ..., (2.39)

which may be solved for T . The remaining task is to identify and evaluate suitable functional
dependencies. This section is in large parts content of Ref. [21].

Using this procedure, I will discuss for a fixed density ρ = N/V the finite-size correction to
the transition temperature Tc − T0 ∝ N−1/(d+1) and the scaling of the finite-size rounding (the
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2. Condensation/evaporation transition in liquid-vapor systems

temperature width of the finite-system transition region) ∆T = T − Tc ∝ N−d/(d+1). I will
identify that these leading-order corrections are related to the linear extension of the droplet
at coexistence R ∝ N1/(d+1), which thus seems to become the relevant length scale for large
system sizes.

In the following, I will consider partially rigorous results in order to discuss the scaling for
intermediate sized systems and in the limit of large systems. Each discussion of finite-size
scaling corrections is directly accompanied by numerical results from parallel multicanonical
simulations (see Sec. 5.4). Working in the fixed-ρ scheme unleashes the full power of the multi-
canonical simulation, recovering the observables as full (precise) functions of the temperature.
All simulations in this section are performed at constant density ρ = 10−2. If not stated
differently, the numerical results are obtained from parallel multicanonical simulations with
p = 64 − 128 cores and 2.56 million measurements in total. Initial simulations of small sys-
tems with parallel tempering pre-runs were used to estimate the multicanonical energy range,
which was adjusted for larger system sizes such that the condensation transition was sampled.
Relevant data presented in the plots are listed in Tables in the appendix.

2.3.1. Finite-size scaling of the condensation/evaporation transition temperature

Recalling Sec. 2.2, Biskup et al. [10] showed a vanishing probability of intermediated-sized
droplets for a d-dimensional liquid-vapor system at fixed temperature. Moreover, they cal-
culated the fraction of particle excess in the largest droplet λ as a “universal” function of
a rescaled density ∆ (see Eq. (2.19)). The resulting leading-order transition density for fi-
nite systems Eq. (2.24) is in good agreement with additional results in the literature [12, 13].
Considering now a fixed density ρ the involved infinite-size constants become functions of the
temperature, namely the background densities ρi(T ), the reduced isothermal compressibility
κ̂(T ), the surface free energy of a (Wulff shaped) droplet of unit volume τW(T ) and the par-
ticle excess δN = (ρ− ρ0(T ))V . In the spirit of the aforementioned Taylor expansion, the
leading-order result in Eq. (2.19) may be written as

∆
d
d+1V −

1
d+1 = f(ρ, T ) =

ρ− ρ0(T )

ρL(T )− ρ0(T )

(
(ρL(T )− ρ0(T ))2

2κ̂(T )τW(T )

) d
d+1

. (2.40)

At the condensation transition ∆ = ∆c is constant and the left hand side of Eq. (2.40) is
depending only on the system size V . Then, for a fixed finite system size, a suitable combination
of T and ρ solves Eq. (2.40) yielding the finite-size condensation transition point at (ρ, T ) =
(ρc, Tc)V in Fig. 2.13. This transition point may be obtained either numerically exact or by a
Taylor expansion. In the latter case, keeping ρ = N/V constant, one proceeds by expanding
Eq. (2.40) around the infinite-system transition temperature T0. Then f(ρ, T ) = f(ρ, T0) +
f ′(ρ, T0)(T − T0) + . . . , where the first term vanishes due to ρ0(T0) = ρ. Solving this for the
finite-size condensation transition temperature T = Tc yields

Tc = T0 +
∆

d
d+1
c

f ′(ρ, T0)
V −

1
d+1 +O

(
V −

2
d+1

)
. (2.41)

In terms of the number of particles this means to first order

Tc − T0 ∝ N−1/(d+1). (2.42)
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Figure 2.14.: The canonical average energy (left) and the specific heat (right) of a Lennard-
Jones particles system at constant density ρ = 10−2.

As mentioned before, already Eq. (2.40) is a leading-order result. For more details see the
discussion and numerical results for empirical higher order corrections in Sec. 2.2.

The equivalence of the lattice gas and the Ising model allow to explicitly calculate the finite-
size corrections. Recalling Eq.(2.25) this yields

f(m,T Is) =
1

2

(
1− m

m0(T Is)

)(
2m0(T Is)2

χ(T Is)τ Is
W(T Is)

) d
d+1

. (2.43)

In two dimensions, the involved quantities are known analytically or up to arbitrary precision,
see Sec. 2.1.1. This allows to numerically evaluate Eq. (2.43) in Eq. (2.40), fixing the density
as well as the volume and solving with a bisection algorithm for the corresponding transition
temperature Tc = T Is

c /4. When comparing to the simulation results later, I will refer to this
as the full solution of Eq. (2.40). The infinite-size transition temperature T̃0 that belongs to
a given fixed density is obtained by inversion of the Onsager solution and, thus, is exact for
the two-dimensional lattice gas. In three dimensions, I make use of low-temperature series
expansions of the spontaneous magnetization (see Sec. 2.1.1). Solving ρ− ρ0(T̃0) = 0 allows to
estimate the infinite-system transition temperature T̃0. In the following this will be referred
to as the solution from low-temperature series expansion.

Numerical results: In order to identify the transition temperature at fixed density, I consider
two (related) observables and their thermal derivatives for various system sizes: the average
energy and the fraction η of particles in the largest droplet. For the 3D Lennard-Jones gas see
Fig. 2.14 and Fig. 2.15, respectively. The canonical data points are obtained from time-series
reweighting and the connected lines from histogram reweighting of parallel multicanonical sim-
ulations. The condensation transition temperature is now identified as the temperature where
the change in observable is maximal, i.e., where the thermal derivative shows an extremum.
Numerically, this was achieved by finding the zero-crossings of the successive thermal deriva-
tive, again applying the jackknife error analysis.

Figure 2.14 clearly shows the first-order nature of the transition, where an entropy-dominated
phase at high temperature (with almost equal average energy) and an energy dominated
phase at low temperature are connected by a jump in the energy. The specific heat CV =
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Figure 2.15.: The fraction of particles in the largest droplet η (left) and it’s thermal derivative
(right) of a Lennard-Jones particles system at constant density ρ = 10−2.

β2
(
〈E2〉 − 〈E〉2

)
/N shows a pronounced peak that increases in height and decreases in width

with increasing system size. The latter will be discussed in more detail in Sec. 2.3.2. At the
condensation transition, a single macroscopic droplet forms in equilibrium, which can be seen
in Fig. 2.15 by a sudden increase in the fraction η of particles in the largest droplet. For small
systems a large finite-size effect is evident in the high-temperature range, where always at least
one particle is in the largest droplet by definition and thus η is non-zero. Below the condensa-
tion transition, the droplet grows with decreasing temperature in a similar qualitative way as
with increasing supersaturation in Sec. 2.2. Again, the condensation transition is accompanied
by a sharp peak in the thermal derivative.

Numerical results for the scaling of the estimated transition temperature are shown in
Fig. 2.16 for the 2D lattice gas and in Fig. 2.17 for the 3D lattice and Lennard-Jones gas.
As described above, the transition temperatures are estimated from the largest peak of the
specific heat (red pluses) and the smallest minimum of the thermal derivative of the fraction
of particles in the largest cluster dη

dT (green crosses). Both estimates are remarkably similar
as expected for first-order phase transitions, and hence the plot only shows local fits to the
estimated transition temperature derived from the specific heat. All three cases show for large
system sizes the proposed finite-size scaling behavior from Eq. (2.42), shown by a good fit qual-
ity (a reduced χ2 per degree of freedom of about 1). The leading-order fit (dashed dark blue
fit) requires rather large system sizes in accordance with the literature. Including empirical
higher-order corrections of the form

Tc = T0 + aN−1/(d+1) + bN−2/(d+1) (2.44)

allows to extend the fit range to cover also the intermediate-sized systems (dotted light blue fit).
Considering only the intermediate system sizes allows to identify a different effective scaling
behavior. In this case, the transition temperature may be locally described by a N−1/d behavior
(dashed-dotted orange fit), which may be justified by a sufficiently good χ2. The scaling of
the intermediate regime is consistent with observations for flexible polymer aggregation (see
Sec. 3.4 and Ref. [42]), where a large fraction of monomers is involved in the formation of the
aggregate. This may be justified in terms of the above mentioned dependence on the linear
extension of the condensate. If the condensate includes almost all constituents, then the linear
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Figure 2.16.: Finite-size scaling of the droplet evaporation/condensation transition tempera-
ture in a 2D lattice gas: compared to exact results (T̃0) and the full solution of
Eq. (2.40).

extension of the homogenous, isotropic condensate is just N1/d. For details of the individual
fits see Table 2.2 and the following discussion.

The finite-size scaling of the 2D lattice gas, shown in Fig. 2.16, may be compared directly
to the exact analytical solution of the equivalent Ising model for an infinite system and to
the full solution of Eq. (2.40) using Eq. (2.43) for a finite system. As expected, the full
solution shows large deviations for small system sizes but starts to describe the finite-size scaling
approximately with increasing system size. The exact analytical result is obtained by inverting
Onsager’s solution of the magnetization m0(T̃0) = 0.98 (see Eq. (2.5)) with T = T Is/4. This
yields T̃0 = 0.39882 and is shown in Fig. 2.16 by the arrow. The leading-order fit for the largest
system sizes N ≥ 2500 yields the infinite-size transition temperature T0 = 0.39884(3) with χ2 ≈
0.4. This is in good agreement with the analytical result. Including the empirical next order
and fitting N ≥ 400 yields T0 = 0.3982(1) with χ2 ≈ 1.8, which deviates slightly from the exact
result. This may be taken as a hint that the empirical higher-order term is merely an effective
correction and additional corrections of the same order are apparent. Having the full solution
of Eq. (2.40) allows in addition to compare the amplitude of the leading-order correction
aN−1/3. To this end, consider the power-series expansion of the full solution Eq. (2.41). Then,
Eq. (2.43) may be numerically differentiated making use of the analytical solution for m0, the
series expansion for χ up to 300th order and the integral solution of τW described in Sec. 2.1.1.

Converted back to lattice gas units this gives a = ∆
2/3
c ρ1/3/4f ′(m,T Is

0 ) ≈ −0.239. On the
other hand, the leading-order and higher-order fits yield a = −0.234(1) and a = −0.214(2)
respectively. Again, the leading-order fit for large N is in good agreement with the analytical
(approximate) result, while the higher-order fit covers a wider range of numerical data.

For the two-dimensional lattice gas the intermediate scaling regime is not very prominent.
A least-square fit to N−1/2 in the (already small) range N = [324, 900] still yields a χ2 ≈ 8.0.
Moreover, the infinite-size extrapolation is clearly wrong. However, the intermediate scaling
regime in polymer aggregation [42] was observed in three dimensions which suggests that the
prominence of this regime may depend on the dimension.

The finite-size transition temperatures for the three-dimensional lattice gas and Lennard-
Jones gas are shown in Fig. 2.17. The infinite-size transition temperature for the 3D lattice gas
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Figure 2.17.: Finite-size scaling of the droplet evaporation/condensation transition tempera-
ture for the 3D lattice (left) and Lennard-Jones gas (right). The infinite-system
extrapolation of the lattice gas is compared to low-temperature series expansions
yielding T̃0.

may be compared to the inversion of low-temperature series expansions, see Eq. (2.8), which
leads to T̃0 ≈ 0.622 shown in the figure by the arrow. The leading-order fit for the 3D lattice
gas with N ≥ 2160 yields T0 = 0.62341(4) with χ2 ≈ 0.6 which is in the vicinity of the (not
exact) low-temperature expansion result. Including the empirical higher-order term N−2/4 still
shows a similar fit with a very small contribution from the higher order term. Considering,
however, only an intermediate regime allows to fit the N−1/3 behavior with qualitatively good
local agreement.

In the case of the Lennard-Jones gas one may best see the arising peculiarities. The leading-
order fit for N ≥ 160 yields T0 = 0.7106(4) with χ2 ≈ 0.8 but shows clear deviations for
small system sizes. Including the empirical next order for N ≥ 10 yields T0 = 0.7011(4) with
χ2 ≈ 1.1 in rough agreement with the leading-order result, and recaptures the deviation of
the small system sizes. This is consistent with results for the same Lennard-Jones model [43,
44]. However, considering an intermediate regime with the Ansatz N−1/3 yields a good fit
with T0 = 0.6597(4) and χ2 ≈ 1.0, which deviates strongly from the N−1/4 fit. Another
interesting observation is the relatively small maximal system size of N = 512 in a box of
length L ≈ 37.1 ≈ 41.7σ necessary to qualitatively recover the predicted scaling behavior.
Other studies [19], following the fixed-T scheme, considered system sizes up to L = 100σ at
T ≈ 0.68 (for their parameterization) with typical particle numbers N ≈ 15 800. Their data
for the critical density versus linear system size L still showed a strong curvature with effective
exponents smaller than −0.89, while extrapolation of these effective exponents recovered the
theoretical predication L−0.75. A direct fit of the leading-order power-law exponent to the
present data yields N−0.28(1) ∝ L−0.84(2) already for remarkably smaller system sizes. This
implies that an orthogonal phase boundary crossing may lead in certain situations to reduced
finite-size corrections and serves as a useful, complementary approach.

If the largest system sizes were not present, the intermediate regime could be, at least in three
dimensions, easily interpreted as the leading-order finite-size scaling corrections, especially if
no reference temperature is available. Including larger system sizes, it locally appears to be an
effective intermediate scaling regime. It is, however, covered by the theoretically predicated
scaling behavior including empirical higher-order corrections.

34



2.3. Thinking orthogonal: crossing the phase boundary at fixed density

Table 2.2.: Results of different fit functions to the condensation/evaporation transition tem-
perature including fit errors [21]. If no upper range is provided, it refers to
Nmax = 10 000 for the lattice gas cases (2D and 3D) and Nmax = 512 for the
Lennard-Jones gas. For the lattice systems, reference values for the infinite-size
condensation temperature T̃0 are obtained from the Onsager solution (2D) [23, 24]
and from low-temperature series expansions (3D) [34, 35].

Fit 2D DLG 3D DLG 3D LJG

Range [2500: ] [2160: ] [ 160: ]

T0 + aN−1/(d+1) T0 0.39884(3) 0.62341(4) 0.7106(4)

χ2 0.4 0.6 0.8

Range [ 400: ] [1663: ] [ 10: ]

T0 + aN−1/(d+1) + bN−2/(d+1) T0 0.3982(1) 0.6229(4) 0.7011(4)

χ2 1.8 1.9 1.1

Range [ 324: 900] [ 68: 243] [ 12: 48]

T0 + aN−1/d T0 0.3903(2) 0.5840(3) 0.6597(4)

χ2 8.0 1.6 1.0

Reference T̃0 0.39882 . . . ≈ 0.622

2.3.2. Finite-size rounding of the condensation/evaporation transition

Analogue to the transition temperature, one may argue that the rounding of the transition
at fixed density should scale with the system size in the same way as the rounding of the
transition density/magnetization at fixed temperature. Comparing to Eq. (2.30) in Sec. 2.2,
one would expect a finite-size rounding proportional to V −d/(d+1).

In a two-state approximation [13], let us reduce the consideration to a condensate and a gas
phase with free-energy Fcond and Fgas, respectively. The partition function becomes

Z = e−βFgas + e−βFcond = e−βFgas

(
1 + e−β∆F

)
, (2.45)

with ∆F = Fcond − Fgas. From this partition function, the canonical free-energy becomes
βF = − lnZ = βFgas + ln

(
1 + e−β∆F

)
and the canonical expectation value of the energy is

then

〈E〉 = −∂ lnZ

∂β
=
Egas + e−β∆FEcond

1 + e−β∆F
. (2.46)

The free-energy difference between both phases β∆F thus weights the contribution of the
phases to the expectation value. At T = Tc both states are equally probable which is reflected
in β∆F = 0. Otherwise, the condensate phase is either suppressed or enhanced.

The rounding of the transition may be related to the region where thermal fluctuations are
of the order kBT [13, 18], i.e., ∆F ∼ kBT or β∆F ∼ 1. In order to estimate this, consider the
expansion of f(T ) = (βF )(T ) around Tc – the temperature at which the probability distribution
of this simplified model shows two peaks. With F = E − TS and ∂/∂T (βF ) = − 1

kBT 2E this
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0

2

4

6

8

10

12

14

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

C
V
/N

3
/
4

(T − Tc)N3/4

N = 64

N = 128

N = 256

N = 384

N = 512

Figure 2.18.: Example of the transition rounding on the rescaled specific heat peak for the 3D
Lennard-Jones gas in Fig. 2.14 (right). The axes are rescaled according to the
leading-order scaling behavior.

yields for the free-energy difference between the coexisting phases

β∆F = (β∆F )|Tc −
(

1

kBT 2
∆E

)∣∣∣∣
Tc

(T − Tc) + ... . (2.47)

The free-energy difference vanishes at Tc in the limit of large system sizes, considering that
both phases contribute with equal probability. In the two-state approximation this holds by
definition and the first term vanishes. Moreover, the energy difference ∆E = Econd − Egas

may be estimated in terms of the individual phases. For the gas phase, the energy is negligible
small because the particles may be considered non-interacting. Thus, the energy difference is
dominated by the condensate phase, which is a mixed phase of droplet and gas and thus depends
on the droplet volume ∝ Rd. The volume of the droplet, however, does not grow linearly with
system size but in leading order R ∝ N1/(d+1) (see below) such that ∆E ∼ Nd/(d+1). The
finite-size corrections from the condensation temperature appear merely as corrections to the
energy difference, such that Eq. (2.47) simplifies to β∆F ∼ (Nd/(d+1)/kBT

2
0 ) ∆T in the limit

of large system sizes. The condition |β∆F | ∼ 1 yields to leading order the rounding width

∆T ∝ N−d/(d+1), (2.48)

see also Sec. 2.2 for the d-dimensional result of ∆ρ. Notice that the radius of the droplet R
was used as relevant length scale such that the rounding may be identified, for large system
sizes, as ∆T = T − Tc ∝ R−d.

Numerical results: For the discussion of the finite-size rounding I focus on the specific heat
only. Figure 2.18 shows the rescaled specific heat from Fig. 2.14 for the 3D Lennard-Jones gas.
The axes are rescaled according to the theoretical leading-order scaling behavior, where the
peak of the specific heat should scale inverse proportional to the rounding in the temperature
for large system sizes [39]. This may be observed qualitatively in the figure, as well as the
almost constant width of the peak. However, small deviations already indicate that additional
corrections are apparent.

The rounding of the transition is estimated as the half-width of the specific heat peak, defined
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Figure 2.19.: Finite-size rounding of the droplet evaporation/condensation transition for the
2D lattice gas (top), 3D lattice gas (bottom, left) and Lennard-Jones gas (bottom,
right).

as the width where CV ≥ 1
2C

max
V . Errors are obtained by jackknife error analysis. Figure 2.19

shows the finite-size rounding of the condensation/evaporation transition for all three consid-
ered systems. Two different scaling regimes may be clearly identified: for intermediate system
sizes the data show a ∆T ∝ N−1 behavior (dashed line) and for large system sizes one may
observe the predicted ∆T ∝ N−d/(d+1) behavior (solid line). Again, having only data available
in the intermediate regime would support a wrong finite-size scaling behavior consistent with
the intermediate regime for the transition temperature. As for the transition temperature,
the intermediate regime may be covered by the theoretically predicted scaling if empirical
higher-order corrections are included (light blue fit), i.e., ∆T = a′N−d/(d+1) + b′N−2d/(d+1).

For the 2D lattice gas, Fig. 2.19 (top), the smallest systems show no systematic behav-
ior which accounts for the strong deviations in the case of the transition temperature, recall
Fig. 2.16. However, for the rounding there is also in two dimensions a clear intermediate scaling
regime observable, where one can see a direct particle or volume dependence (ρ fixed). The
onset of the large-system regime is in good agreement with the fit range in the transition tem-
perature necessary to recapture the leading-order scaling behavior. Considering the empirical
higher-order corrections yields a χ2 ≈ 0.7 including already system sizes N ≥ 324 and thus
including the intermediate regime.

In the case of the 3D lattice and Lennard-Jones gas, Fig. 2.19 (bottom, left and right), the
intermediate regime is already apparent for quite small system sizes. The N -dependence up to
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2. Condensation/evaporation transition in liquid-vapor systems

the crossover to the large-system regime is clearly visible. Also, the location of the crossover is
again consistent with good choices of leading-order finite-size scaling fit ranges for the transition
temperature. A fit to the transition rounding including the empirical higher-order corrections
allows in both cases to partially cover the intermediate regime. For the lattice gas the fit yields
χ2 ≈ 2.3 with N ≥ 175; and for the Lennard-Jones gas, the fit yields χ2 ≈ 0.9 with N ≥ 16.
In all cases, the exponents were kept fixed.

The present results clearly confirm the “large”-system scaling behavior. This should be com-
pared to previous studies of the lattice gas in two and three dimensions at fixed density, which
showed significant deviations from the predicted exponents for the transition rounding [20],
using average densities of states from Wang-Landau simulations. In 3D they find an effective
scaling of the transition rounding with L−2.45(2) ∝ N0.82(1). A direct fit of a power-law behav-
ior to the present 3D lattice gas data yields the effective exponents N−0.78(1), N−0.77(1) and
N−0.76(1) for N ≥ 1663, N ≥ 3430 and N ≥ 5120 respectively. This is close to the predicted
scaling N−0.75 and seems to systematically approach it. Thus, the present data support the
predicted scaling of the transition rounding in the condensation/evaporation transition both
qualitatively and quantitatively.

The finite-size rounding seems to be a good observable to identify the (effective) intermediate
scaling regime. Theoretical reasoning relates the width of the transition to the fluctuations in
the system [39], which should depend on the inverse volume of the relevant system size. One
may argue now, that the relevant system size for the condensation/evaporation transition is
the transition droplet itself, which will be discussed in the following subsection.

2.3.3. Finite-size scaling of the droplet size at condensation/evaporation

The size of the droplet in equilibrium with surrounding vapor directly at the condensa-
tion/evaporation transition, was shown to have a non-trivial dependence on the system size,
R ∼ Ld/(d+1), already in the 80s [14]. The leading-order analytical results may be used in order
to recapture this scaling at the condensation transition where the fraction λc of particle excess
will be in the largest droplet. It follows for the droplet volume VD = (ρL − ρ0)−1λcδNc [10].
The volume of an ideal droplet may be expressed in general by VD = SdR

d, where Sd is a geo-
metric shape factor that allows to describe both spherical and cubic droplets, where the latter
may occur in lattice systems below the roughening transition [17]. Comparing both equations
for the droplet volume, inserting δNc from Eq. (2.19), and solving for the radius yields

R =
(
S−1
d VD

)1/d ∼ V 1
d+1 . (2.49)

Again, for a fixed density this leads to R ∼ N1/(d+1). Moreover, the leading finite-size scaling
corrections in Eq. (2.42) and Eq. (2.48) may be expressed in powers of R−1, i.e., Tc−T0 ∝ R−1

and ∆T ∝ R−d, respectively.

In practice, the radius – or more generally the shape – of an object is difficult to measure.
However, the scaling of the droplet radius is equivalent to the scaling of the droplet size
VD ∼ Nd/(d+1). For uniform particles, this is again equivalent to the droplet “mass” or number
of particles in the droplet ND ∼ Nd/(d+1). Then, the fraction ηD = ND/N of particles in the
transition droplet should scale as ηD ∼ N−1/(d+1).

Numerical results: At the condensation transition, the reweighted multicanonical expecta-
tion values yield the canonical average from equal contributions of both the droplet and the gas
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Figure 2.20.: Probability distribution of the fraction η of particles in the largest droplet for the
Lennard-Jones gas with N = 512 total particles.

phase. Due to the strong finite-size effects in the gas phase (η > 1/N always) this average does
not allow to estimate the size of the droplet at coexistence. However, time-series reweighting
of the multicanonical data allows to calculate the full droplet-size distribution P (η) at the
condensation transition Tc. This is achieved by going through the time series and adding the
reweighting factor to the corresponding bin of the distribution P (ND) of particles in the largest
cluster, which is discrete by definition. The desired distribution is then obtained by normal-
izing the x-axis with the number of particles N . An example is shown in Fig. 2.20 where one
may clearly see two double peaks: one at small fractions corresponding to separated particles
and one with larger fractions connected to a single macroscopic droplet plus surrounding, dis-
connected particles. Now, from this distribution one may estimate the expectation value of the
fraction η of particles in the largest droplet inside the droplet phase, i.e. in the right peak of the
figure. The distribution is properly normalized, such that

∫ 1
0 P (η)dη = 1. Assuming that, at

coexistence, both phases are at equal weight, I identify ηmin such that Z̃ =
∫
ηmin

P (η)dη = 0.5.
Then

〈η̃〉Tc =
1

Z̃

∫

ηmin

ηP (η)|Tc dη (2.50)

is a robust estimator of the average transition droplet size at coexistence for sufficiently large
systems. Moreover, dealing with discrete ND the integrals become discrete sums. Errors are
again estimated using the jackknife error analysis.

I additionally apply standard Metropolis simulations for large system sizes directly at an
estimated transition temperature, making use of the finite-size scaling result for the transi-
tion temperature in Sec. 2.3.1. In this case, the system gets prepared in the droplet phase,
preferably already in an equilibrium droplet with surrounding vapor. Due to the first-order
nature of the transition and the resulting barrier, the Metropolis simulation should sample
only within the droplet phase for a sufficiently long time. The average transition droplet size
is in this case obtained by the statistical average including also an integrated autocorrelation
time analysis for the error. This needs a lot less computing time than the parallel multicanon-
ical simulation, however, requires an accurate estimate of the transition temperature. Here, I
consider only the leading-order behavior Tc(N) = T0 + aN−1/(d+1) of the largest system sizes.
More explicitly, I consider the estimates (T0, a) = (0.623,−0.537) for the 3D lattice gas and
(T0, a) = (0.710,−0.611) for the 3D Lennard-Jones gas.
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Figure 2.21.: Scaling of the particle fraction η in the largest droplet at the evapora-
tion/condensation transition for the 2D lattice gas (top), 3D lattice gas (bottom,
left) and Lennard-Jones gas (bottom, right).

Figure 2.21 shows the result for all three considered models. The fraction 〈η̃〉Tc of particles
in the transition droplet is obtained as described above from the multicanonical data (red
pluses) and from Metropolis simulations (green crosses). The expected scaling behavior is
qualitatively recaptured for large system sizes, shown by the (shifted) solid line. For the 2D
lattice gas, the expected scaling behavior starts quite early, already for roughly 100 particles.
In the 3D cases, however, the expected scaling only starts for quite large system sizes, of the
order of 2000 particles for the 3D lattice gas, or may only be anticipated for the 3D Lennard-
Jones gas. Including the Metropolis data for the Lennard-Jones gas shows that the leading-
order extrapolation of the available data is not precise enough and seems to overestimate the
transition temperature for larger systems, consistent with the observations in Sec. 2.3.1.

The dashed line in Fig. 2.21 at η = 1 corresponds to the case of all particles in the droplet.
All three cases show for small systems a majority of particles inside the transition droplet. It
needs to be mentioned that for small system sizes, the estimate of the transition droplet via
the probability distribution is not very precise, since the distributions are very narrow in [1, N ]
and sometimes do not even show a clear double peak. However, a reasonable qualitative result
is that most constituents of the system end up in the transition droplet. This on the other
hand would explain an intermediate scaling regime, where the relevant length scale (the linear
extension of the droplet) is now proportional to the linear system size, as argued for flexible
polymer aggregation (see Sec. 3.4 and Ref. [42]).
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2.3. Thinking orthogonal: crossing the phase boundary at fixed density

Figure 2.22.: Sketch of a “virtual” subsystem around the idealized transition droplet above
(left) and below (right) the condensation/evaporation transition temperature.
Within this subsystem, the condensation transition would correspond to a phase
transition between homogeneous phases with open boundary conditions.

2.3.4. Relation to non-periodic first-order phase transitions between
homogeneous phases

The presented “orthogonal” formulation and subsequent discussion of numerical results show
that the predicted scaling behavior for equilibrium droplets at coexistence is valid also in
the fixed-ρ approach for large system sizes. In three dimensions it seems that this approach
comes even with smaller finite-size corrections, compared to the fixed-T literature and Sec. 2.2.
Comparing similarly the two-dimensional lattice gas shows the opposite picture with small
finite-size corrections in the fixed-T but large finite-size corrections in the fixed-ρ approach.
Thus, it seems that the orthogonal crossing of the phase boundary may lead in certain situations
to reduced finite-size corrections and serves as a useful, complementary approach.

The leading-order finite-size scaling corrections may be identified as powers of the linear
extension of the transition droplet, which is consistent with the numerical results. Moreover,
the involved power-series expansion in the formulation of the finite-size corrections for the
temperature and rounding allow to consider effective, empirical next higher-order corrections.
The presented data confirm this approach numerically, while deviations from available exact
results give a hint that there might be additional corrections of the same order.

In addition, the fixed-ρ approach revealed an intermediate regime, consistent with observa-
tions for flexible polymer aggregation (see Sec. 3.4 and Ref. [42]). The presented data allow to
argue that this is due to the majority of particles involved in the transition droplet formation.
Thus, the droplet size becomes proportional to the system volume and the relevant length scale
is the linear system size. This leads to an effective different local scaling behavior. However,
including the empirical higher-order term allows to cover the intermediate regime. It may be
argued that this will be also the case for the flexible polymer aggregation, if larger system sizes
are considered.

An intuitive approach to this may be the competition of finite-size contributions from volume
(V d) and surface (V d−1). This would give rise to a finite-size correction of the order L−1, where
L is the relevant length scale of the system [42, 45–47]. It seems natural that the linear exten-
sion of the droplet R at coexistence plays this dominant role. The condensation/evaporation
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2. Condensation/evaporation transition in liquid-vapor systems

transition clearly connects a homogeneous and a mixed phase in the canonical ensemble. How-
ever, within the canonical approach, we may construct a (virtual) subsystem with the volume
of the transition droplet [21], see Fig. 2.22. By translational invariance, this subsystem can
be always constructed around the largest droplet. Above the transition temperature, this sub-
system includes a homogenous gas phase while at and below the condensation transition it is
filled by the largest droplet and hence shows a homogenous liquid phase. Thus, this may be
interpreted as a grand-canonical transition between homogeneous phases in the virtual sys-
tem spanned by the volume of the transition droplet. By construction, this virtual volume
would have open boundary conditions yielding for the transition between homogeneous phases
a finite-size shift of order R−1 and a finite-size rounding of order R−d, consistent with rigorous
results for non-periodic first-order phase transitions [47]. However, the finite-size scaling of R
is already non-trivial, as mentioned above.

2.4. Free-energy barriers at the droplet condensation/evaporation
transition

In this section, I briefly discuss the involved free-energy barriers at the droplet condensa-
tion/evaporation transition. This shall also serve as an example for the following chapters on
polymer aggregation. For an order-of-magnitude comparison, I start with the leading-order
analytical results for the fixed-T approach, followed by a phenomenological reasoning for the
fixed-ρ scheme with corresponding results for ρ = 10−2.

Reconsider the free-energy function Eq. (2.18) at fixed temperature. The free-energy barrier
is then related to the difference between the local maximum and the local minimum of Φ∆(λ) =
λ(d−1)/d + ∆(1− λ)2, at λmax and λmin respectively:

∆F = τW

(
δN

ρL − ρ0

) d−1
d

(Φ∆(λmax)− Φ∆(λmin))

= τW

(
ρ− ρ0

ρL − ρ0

) d−1
d

V
d−1
d ∆Φ, (2.51)

where ∆Φ = Φ∆(λmax) − Φ∆(λmin) is the height of the barrier in Fig. 2.7 and is size-
independent. Using the definition of ∆, Eq. (2.19), the free-energy barrier at the condensation
transition (at ∆c) is then

∆F = τ
2d
d+1

W

(
2κ̂∆c

(ρL − ρ0)2

) d−1
d+1

∆Φ V
d−1
d+1 . (2.52)

In principle, ∆Φ is a constant depending only on the dimension d, and for a fixed temperature
all other parameters are constant as well.

At the condensation transition, the value of Φ∆c at the local minimum is simply ∆c, i.e.
Φ∆c(λmin) = ∆c [11]. The local maximum of Φ∆c(λ) may be obtained from the zeroes of the
derivative with respect to λ. Setting the derivative of Eq. (2.20) zero yields

2d

d− 1
∆cλ

1/d (1− λ) = 1. (2.53)
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The algebraic solution (using for example mathematica or wolframalpha.com) corresponding
to the local maximum is

2D λmax =
2

3
− 1√

3
≈ 0.089316 (2.54)

3D λmax =
1

6

(
5− 4

(
19− 3

√
33
)1/3 −

(
19− 3

√
33
)1/3

)
≈ 0.080357, (2.55)

where I already inserted ∆2D
c = (1/2)(3/2)3/2 and ∆3D

c = (1/3)24/3 from Eq. (2.21). The
result for the barrier is

2D ∆Φ ≈ 0.1421 (2.56)

3D ∆Φ ≈ 0.05665, (2.57)

see also Ref. [48]. Using the equivalence to the Ising model, the free-energy barrier may be
computed for the lattice gas reference cases:

2D DLG T = 0.375 β∆F ≈ 0.09592 L2/3 (2.58)

3D DLG T = 0.500 β∆F ≈ 0.02785 L3/2 (2.59)

This is in perfect agreement with the result in Ref. [48], remembering that τW = τ Is
W/4.

The situation changes, when considering a fixed density. Then, the pre-factor in Eq. (2.52)
changes with system size, because it is temperature dependent. However, ∆Φ is dimensionless
and moreover constant when considering the free-energy barrier. This allows to expand the free-
energy difference about the infinite-size condensation transition temperature T0. Starting from
Eq. (2.51), expanding the temperature-dependent part inside the root and recalling ρ0(T0) = ρ,
yields to leading order

∆F =

(
τ

d
d−1

W

ρ− ρ0

ρL − ρ0

) d−1
d

V
d−1
d ∆Φ

≈
(
d

dT

(
τ

d
d−1

W

ρ− ρ0

ρL − ρ0

)∣∣∣∣
T0

) d−1
d

(T − T0)
d−1
d V

d−1
d ∆Φ. (2.60)

At the condensation transition Tc, the free-energy barrier may be then obtained by inserting
the leading-order scaling of the transition temperature from Eq. (2.41), Tc = T0 + aV −1/(d+1).
This results in the leading-order scaling of the free-energy barrier

∆F |Tc ∝ V (d−1)/(d+1). (2.61)

On the other hand, analogue to usual free-energy barrier and interface tension discussions
(see e.g. Ref. [40] and references therein), one may argue that the barrier should scale as the
surface of the relevant interface. As shown in Sec. 2.3, the volume of the transition droplet
scales with VD ∝ Nd/(d+1). Consequently, the surface of the transition droplet should scale to
leading-order with

SD ∝ V (d−1)/d
D ∝ N (d−1)/(d+1), (2.62)
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in accordance with the above results. Thus, I will consider the following scaling ansatz for the
free-energy barrier:

β∆F = c0 + c1N
(d−1)/(d+1) (2.63)

The multicanonical simulation allows to easily measure the free-energy barrier using the
reweighted energy probability distribution Peqh(E) at equal-height temperature Teqh. Since
P (E) ∝ Ω(E)e−βE and S(E) = ln Ω(E) (up to a constant), one may define the microcanonical
free energy F (E) = E − TS(E) = −kBT lnP (E) up to a constant. The free-energy barrier is
then obtained by the difference in free-energy of probable states (maximum in the distribution,
minimum in free-energy) and suppressed states (minimum in distribution, local maximum in
free-energy), i.e.,

∆F = kBT (lnPmax − lnPmin) . (2.64)

In order to compare to the fixed-T results, the present Ansatz in Eq. (2.63) has to be rewritten
in L, namely β∆F = c0 + c1ρ

(d−1)/(d+1)Ld(d−1)/(d+1). For ρ = 10−2, this leads to the factors
ρ1/3 ≈ 0.215 and ρ1/2 = 0.1 in two and three dimensions, respectively.

Figure 2.23 shows the reweighted energy probability distributions from the multicanonical
results of Sec. 2.3 together with the leading-order scaling of the free-energy barrier. The x-axis
of the energy probability distribution is shifted to the energy of the gas phase and rescaled in
order to account for the leading-order correction of the latent heat ∆e = ∆E/N where possible
(see e.g. Ref. [20] for the lattice gas case). The free-energy barrier is fitted with the Ansatz in
Eq. (2.63) and the lower fit range is indicated by the vertical dashed line.

All three cases show a double-peak energy distribution at the condensation transition with
a suppressed region in between - a local minimum. This is a characteristic of first-order phase
transitions. This suppression increases with system size, corresponding to an increase in the
free-energy barrier. Also, in all cases the scaling of the free-energy barrier is in good agreement
with the predicted behavior, shown by a good reduced chi-square normalized with the degrees
of freedom (χ2 ≈ 1). A fit to the 2D lattice gas for L ≥ 400 yields c1 = 0.54(1) with χ2 ≈ 1.9.
Remember, that for this system, the infinite-size transition temperature is T̃0 = 0.39882..., see
Sec 2.3.1. Using the above mentioned conversion, this corresponds to a scaling with linear
system size β∆F ≈ 0.116L2/3 which is of the same order as the scaling of the free-energy
barrier for T = 0.375 in Eq. (2.58). For the 3D lattice gas a fit to L ≥ 40 yields c1 = 0.566(2)
with χ2 ≈ 2.3. Again, this may be rewritten as β∆F ≈ 0.0567L3/2, which is quite larger than
the fixed-T scaling in Eq. (2.59) for T = 0.5. As a final result, a fit to the 3D Lennard-Jones
gas for N ≥ 22 yields c1 = 1.016(2) with χ2 ≈ 0.7. This is even larger than for the 3D lattice
gas, while the achievable system sizes are a lot smaller.

From the present results, it may be argued that the finite-size corrections to the first-order
transition decrease with increasing suppression of intermediate states and consequently with an
increasing free-energy barrier. The free-energy barrier is a measure of the first-order signature
for the finite system. A larger slope in the scaling of the free-energy barrier thus means that
the system shows the leading-order behavior already for smaller system sizes, approaching the
thermodynamic limit “faster”. This would explain why the 3D lattice gas shows smaller finite-
size corrections for fixed-ρ (Sec. 2.3) than in the corresponding fixed-T case (Sec. 2.2). The
relatively larger barrier for the Lennard-Jones gas also explains why – despite much smaller
system sizes – the finite-size scaling analysis in Sec. 2.3 shows the qualitative leading-order
scaling behavior already for comparably smaller system sizes as in the 3D lattice gas.
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2D lattice gas

10−4

10−3

10−2

10−1

100

-5 -4 -3 -2 -1 0 1

P
(E

)

(E −EG)/N2/3

10002

3002

2002

-1

0

1

2

3

4

5

6

7

8

9

1000 10000

β
∆
F

N

data

c0 + c1N1/3

3D lattice gas

10−25

10−20

10−15

10−10

10−5

100

-7 -6 -5 -4 -3 -2 -1 0 1

P
(E

)

(E −EG)/N3/4

1003

603

253

0

10

20

30

40

50

60

100 1000 10000

β
∆
F

N

data

c0 + c1N2/4

3D Lennard-Jones gas

10−10

10−8

10−6

10−4

10−2

100

-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5

P
(E

)

(E − EG)/N

512

64

0

5

10

15

20

25

10 100 1000

β
∆
F

N

data

c0 + c1N2/4

Figure 2.23.: Reweighted energy probability distribution (left) at equal height for several sys-
tem sizes in steps of ∆L = 50, 100 (2D lattice gas), ∆L = 5, 10 (3D lattice gas)
and N = 2(n/2) (Lennard-Jones gas). Scaling of the free-energy barrier (right) as
defined in the text. The vertical dashed line indicates the lower fit range.
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2. Condensation/evaporation transition in liquid-vapor systems

2.5. Finite-size scaling in the microcanonical ensemble

The microcanonical analysis [49, 50] has been shown to be a powerful complementary tool to
the standard canonical analysis, see for example Refs. [51–55]. In the thermodynamic limit, the
canonical and microcanonical ensemble are expected to coincide. However, for finite systems
both ensembles provide different perspectives on the same problem. Certain aspects will be
more clear in one or the other ensemble, depending on the question at hand. In this section,
I will present a short introduction to the microcanonical ensemble and the corresponding
definitions relevant for a microcanonical analysis. Using particle condensation as an intuitive
example for a first-order phase transition, I will present characteristic signatures and systematic
finite-size scaling in the microcanonical ensemble. This shall again serve as a preparation for
the less-well understood case of polymer aggregation.

In the microcanonical (NVE) ensemble, the energy E is fixed and the temperature T becomes
an observable. In general, the NVE ensemble is defined for a fixed total energy Et, i.e., the
sum of kinetic and potential energy. Of course, one may perform corresponding microcanonical
Monte Carlo simulations [56–59]. However, one may also consider the microcanonical ensemble
formulated for a fixed potential energy, if the (isotropic) kinetic part may be formally integrated
out, see also Sec. 5.1. Then, the observables become functions of the potential (conformational)
energy E = Ep. Estimates of the corresponding (conformational) microcanonical entropy
and inverse temperature may be obtained directly from canonical energy distributions [50].
The connecting function is the density of states. On the other hand, the multicanonical
method and other generalized ensemble simulations yield a direct estimate of the density of
states as natural output (see Sec. 5.4). Thus, an analysis in the microcanonical ensemble
comes with little additional effort, if the estimate of the density of states is sufficiently precise.
Considering a multicanonical simulation as defined in Sec. 5.4, the weight function W (E) may
be directly related to the density of states Ω(E) as Ω(E) ≈ W−1(E). Taking into account
the final production run with histogram H(E), one may increase the accuracy of the density
of states with increasing the number of measurements, where Ω(E) = H(E)W−1(E) (up to
a multiplicative constant). For technical details see Sec. 5.4.1. This will serve as the starting
point for the more general microcanonical analysis based on the density of states.

The microcanonical entropy is defined as S(E) = kB ln Ω(E), where kB = 1 in the following.
It is a fundamental property of each physical system and a strictly concave function in the
thermodynamic limit. For finite systems showing transitions with phase separation it may
show convex regions, or convex intruders [49]. Figure 2.24 (left) shows the microcanonical
entropy with convex intruder using the example of a finite (N = 32) particle Lennard-Jones
gas, where for larger system sizes the convex intruder becomes less prominent. This is an
intuitive example for a transition with phase separation, where a homogeneous (gas) phase
and an inhomogeneous (condensate plus gas) phase coexist at the transition temperature. The
vertical dashed lines show the maxima of the canonical energy distribution at the condensa-
tion transition, here defined with two peaks of equal height determined in Sec. 2.4, with the
corresponding energy of the condensate phase Econd and of the gas phase Egas. The concave
hull HS(E) = S(Econd) + E/Tcond is the tangent connecting S(Econd) and S(Egas) and cor-
responds to the Gibbs construction [51]. In fact, this condensation transition temperature
corresponds to the temperature Teqh for the canonical equal-height energy distribution, be-
cause then P (Econd) = P (Egas) [50]. In general, the derivative of S(E) at fixed volume V and
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Figure 2.24.: Example of a microcanonical entropy S(E) (left) and inverse temperature β(E)
(right) for a finite N = 32 particle Lennard-Jones (ρ = 10−2) system with a
phase-separation transition. S(E) shows the characteristic convex intruder and
β(E) the corresponding backbending effect. The dashed lines show the results
from the equal-height histogram in Sec. 2.4.

particle number N is the microcanonical inverse temperature

β(E) =

(
∂S(E)

∂E

)

N,V

. (2.65)

As long as the microcanonical entropy is a concave function, this inverse temperature is a
monotonically decreasing function in E (however it may become negative if defined in terms
of the potential energy). The convex intruder, on the other hand, causes a non-monotonic
inverse temperature curve with a locally increasing region, also referred to as the backbending
effect in the microcanonical inverse temperature. This is shown for the considered example
Fig. 2.24 (right). The inverse condensation transition temperature from the convex hull or the
canonical equal-height energy distribution intersects the microcanonical inverse temperature
curve at two characteristic points: the condensate energy and the gas energy. It thus allows
to estimate the latent heat ∆Q = Egas − Econd which is the energetic width of the transition
region. By construction, both enclosed areas have the same size.

Following Refs. [49, 55], the occurring (structural) transitions in finite systems may be
classified by considering the derivative of the microcanonical inverse temperature:

γ(E) =

(
∂β(E)

∂E

)

N,V

=

(
∂2S(E)

∂E2

)

N,V

(2.66)

Transitions are defined first order for a local maximum γ(Etr) > 0, which corresponds to
a positive slope of β(E) at the corresponding inflection point, necessary for the backbending
effect. Then, there exists a latent heat and physical phase coexistence. Analogously, transitions
are defined second order for a local maximum with γ(Etr) < 0, i.e., a negative slope of β(E)
with no latent heat and no coexistence. In a finite-size scaling towards the thermodynamic
limit, both local maxima should approach zero: for a first-order transition from above and for
a second-order transition from below. In this case, the notion of a phase transition in the usual
sense is recovered.
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Figure 2.25.: Microcanonical analysis for all considered particle gas models (ρ = 10−2) using
the first (left) and second (right) derivative of the microcanonical entropy. For
a first-order phase transition, the positive peak in γ(E) approaches zero from
above in the thermodynamic limit.
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2.6. Combining temperature and density

Examples for first- and second-order structural transition signatures in finite systems are
shown in Ref. [55]. In order to illustrate the finite-size behavior for a first-order phase transition,
I reconsider the particle condensation examples at ρ = 10−2 from the previous section, shown in
Fig. 2.25. The microcanonical inverse temperature β(E) shows the characteristic backbending
effect, resulting in a positive slope at the inflection point and consequently a positive peak
in γ(E). In order to display various system sizes with up to 10 000 lattice particles and 512
Lennard-Jones particles, the average energy per particle is plotted. This may lead to the
(false) perception that the local slope in β(E) increases with system size, while in fact the
derivative with respect to the energy decreases with system size, shown by the black arrows in
the corresponding figures of γ(E). Thus, the maxima seem to fulfill γN (Etr)→ +0 from above
for N → ∞ and the notion of a first-order phase transition for particle condensation remains
valid in the thermodynamic limit.

2.6. Combining temperature and density

So far in the discussion, I considered only a single density ρ = 10−2 with the assumption that
the arguments hold for any density small enough to show a clear condensation/evaporation
transition. The density will, however, strongly influence the finite-size scaling limit. This may
be demonstrated using the equivalence of the density ρ to the spontaneous magnetization m0

in the Ising model, see also Sec. 2.1.1 and Fig. 2.13. For an illustration consider the low-
temperature series expansion of the three-dimensional Ising model. For low temperatures (and
small densities) the spontaneous magnetization is given to first order as the series expansion

m0 = 1 − 2e−12βIs
+ ..., where β = 4βIs. This may be read as a relation between the infinite-

volume transition temperature and the fixed system density ρ = 1
2(m0(T0) − 1). For T0 =

1/β0 → 0 or ρ → 0, this yields ρ = e−3β0 (1 + ...), and to first order for the inverse transition
temperature of the infinite system

β0 ' −
1

3
ln ρ. (2.67)

This result may be similarly deduced from microcanonical arguments in continuous systems
(see Ref. [42]). To this end, recall the discussion of the microcanonical inverse temperature in
Sec. 2.5. The inverse (finite) condensation temperature may be estimated as the slope of the
hull that is tangent to the microcanonical entropy at both the condensate and the gas phase:

βcond =
S(Egas)− S(Econd)

∆E
(2.68)

Now, consider a variation in density ρ shown on the example of N = 30 Lennard-Jones
particles in Fig. 2.26. The microcanonical entropy (left), estimated from the multicanonical
simulation as in Sec. 2.5, is almost unaffected in the droplet regime at low energies but strongly
density-dependent in the gas regime at high energies. Of course, this is a very small system
explaining the nucleation effects at high energies, which become more pronounced for smaller
densities. Also, this small system includes a large fraction of particles in the largest droplet,
even increasing with decreasing density, see Fig. 2.26 (right). The finite-size scaling of the
droplet size should additionally lead to a density dependence of the condensate regime with
increasing system sizes and decreasing density. However, the entropy change in the gas phase
should clearly dominate any entropy change in the droplet phase. The microcanonical entropy
is proportional to the logarithm of the number of states with a given energy, S(E) = kB ln Ω(E)
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Figure 2.26.: Example of the microcanonical entropy up to an additive constant (left) and
the number of particles ND in the largest droplet (right) for the N = 30 3D
Lennard-Jones gas.

where kB = 1 here. Assuming ideal-gas like behavior in the gas regime, the number of states
may be approximated as V N which leads to

S(Egas) ∼ ln
[
V N
]
∝ −N ln ρ, (2.69)

for a constant number of particles with ρ = N/V . This will be much larger than S(Econd),
where a fraction of particles is in the droplet and the remaining fraction still in the gas phase.
For a fixed number of particles ∆E may be considered constant and the inverse condensation
temperature thus becomes a function of the density

βcond ∼
S(Egas)

∆E
∼ −c1 ln ρ+ c2, (2.70)

see also similar arguments for lattice proteins [60] and polymer adsorption [54]. These argu-
ments apply also for finite systems, where {c1, c2} should of course be system-size dependent.

At this point, I want to reconsider the finite-size scaling analysis from Sec. 2.3.1 for several
fixed densities. Figure 2.27 (left) shows the finite-size transition temperatures for the 3D
Lennard-Jones gas with the corresponding higher-order fits. Due to the model with cutoff,
however, the explicit values of T0 deviate from real examples [43]. In general, the Lennard-
Jones gas may be reasonably applied to non-polar gases, like Argon. In this case, molecular
dynamics simulations date back to the 60s [61]. Corresponding parameters are σ ≈ 3.4Å and
ε/kB ≈ 120K and serve well for an order-of-magnitude comparison. Then, Treal = T × 120K
and ρreal ≈ ρ × 1.226 × 103g/l, see also Ref. [21]. Thus, the Argon boiling point Tboiling ≈
87.3K [62] with a gas density ρboiling ≈ 5.772g/l at atmospheric pressure. This corresponds
to T ′0 ≈ 0.728 and ρ′ ≈ 0.005 in the current dimensionless units. The finite-size scaling
extrapolation with higher-order corrections for the corresponding density ρ = 5× 10−3 yields
T0 = 0.645(3) which differs from the experimental result by ∼ 10%, as expected for the
truncated model. The extrapolated infinite-size condensation transitions T0 are shown as a
function of ρ in Fig. 2.27 (right). In fact, this is well described by the inverse of Eq. (2.70),
namely T0(ρ) = 1/(c2 − c1 ln ρ) with a reduced χ2 ≈ 1.2 for ρ < 0.03. The corresponding fit
result is c1 ≈ 0.173 and c2 ≈ 0.634
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Figure 2.27.: Finite-size scaling of the condensation transition temperature (left) for the 3D
Lennard-Jones particle gas at several densities ρ = N/V . The extrapolation to
the infinite-sized system is shown on the right with a fit according to the inverse
of Eq. (2.70).

Focusing on the finite-size corrections, Fig. 2.28 (left) shows the transition temperature
rescaled with the density dependence of T0. With decreasing density, the rescaled temperature
curves seem to collapse and follow a joint straight line. However, for a wide range of densities,
the finite-size scaling corrections are density dependent. Considering the ansatz Tc = T0 +
aN−1/4 + bN−2/4 from Sec. 2.3, the finite-size corrections may be expressed in terms of the
infinite-system transition temperature, namely a/T0 and b/T0 shown in Fig. 2.28 (right). With
decreasing density the leading-order correction amplitude seems to saturate to a finite value and
the effective higher-order correction amplitude seems to vanish. This observation justifies to
consider only an effective leading-order correction for sufficiently small densities. The leading-
order correction amplitude is shown in the figure as aleading/T0 and is always a little smaller
as when including higher-order corrections. A rough estimate for the effective leading-order
correction for sufficiently small densities is aleading/T0 ≈ 0.94
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Figure 2.28.: Finite-size scaling of the rescaled condensation transition temperature (left) to-
gether with the finite-size correction terms a/T0, b/T0 and aleading/T0 for the
leading-order fit as a function of density (right).
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same data with rescaled temperature shows a data collapse (right), considering
an effective leading-order finite-size scaling for sufficiently small densities.

The logarithmic dependence of the (finite) inverse condensation transition is shown in
Fig. 2.29 for a fixed particle number and varying system volume. Starting with N = 4 for
the upper curve, the system size gradually increases up to N = 320 for the lower curve in the
left panel. All system sizes show the predicted density dependence, shown by the fits to the
data. However, the fit constants show to be slightly system dependent, especially for small
number of particles. Considering in addition the effective leading-order finite-size scaling of the
transition temperature yields a data collapse for the density dependence for a broad range of
density and particle number in Fig. 2.29 (right). Of course, there are deviations for both large
densities and small particle number, but the overall behavior seems to be nicely explained by
considering both leading-order entropic and energetic arguments.
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3. Aggregation transition in dilute systems
with flexible homopolymers

Homogeneous aggregation of dilute polymers describes the transition between separated, indi-
vidual polymers and a macroscopic aggregate. For an aggregate in a finite system there may
or may not remain unattached polymers, depending on the specific system setup (system size,
density, solvent, ...). In the limit of increasing polymer number, this is expected to be analogue
to particle condensation, where the aggregation transition of dilute polymer systems separates
a homogeneous phase of “isolated” polymers from a mixed phase with a single macroscopic
aggregate and surrounding unattached polymers. Moreover, one may explore the similarity
between simple liquids, polymer solutions and single polymers in appropriate limits, see e.g.
Refs. [2, 3, 63]. For the limit of increasing polymer number at fixed polymer length, this
will be discussed in detail in Sec. 3.4, building on the results for particle condensation and
discussing a qualitative crossover and arising similarities. However, most system sizes remain
within a mesoscopic regime, which may be related to the intermediate scaling regime in particle
condensation.

In addition, it is of fundamental interest to understand the underlying mechanisms of poly-
mer aggregation, which calls for detailed studies of small system sizes including merely a few
polymers [7]. In this context, it was shown that aggregation of peptides (heteropolymers)
and homopolymers may be considered as a phase-separation process [51–53]. Similarly, for
2-4 rigid-bond (bead-stick) polymers it was shown that aggregation is accompanied by size-
dependent hierarchical sub-transitions [53, 64]. For homopolymer systems, the ratio of intra-
and inter-polymer interaction strength is often considered to be 1. Deviations from this choice
lead to a shift in aggregation temperature and may pronounce or suppress the single-polymer
collapsed “phases” (see Sec. 3.2). The interplay between the general case of polymer collapse
and aggregation at equal interaction strength shows that aggregation dominates (and may
even revert) the continuous collapse transition [42, 65]. Also, using entropic and energetic
arguments, it is possible to describe the aggregation temperature in terms of the density and
polymer number (see also Sec. 3.5). For a specific sequence of lattice heteropolymers, the
interplay between folding and structural assembly was studied in Ref. [60], observing a similar
relation between the transition temperature and density. This supports that the underlying
mechanism is quite generic.

This chapter is organized as follows: in Sec. 3.1, I will introduce the considered polymer
models – the interacting self-avoiding walk and a bead-spring polymer – and compare with
exact results and Metropolis simulations. In Sec. 3.2, I discuss the effect of intra- and inter-
polymer interaction using exact results. For the remaining part I am restricting myself to the
case of equal interaction strengths. Possible finite-size scaling limits are discussed in Sec. 3.3.
Here, I revisit the collapse transition of a single polymer in Sec. 3.3.1, demonstrating the
equivalence to polymer models in the literature followed by an example of the N → ∞ limit
for polymer aggregation in Sec. 3.3.2. The main finite-size scaling results are analyzed in
the M → ∞ limit in Sec. 3.4, including the canonical aggregation temperature, transition
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3. Aggregation transition in dilute systems with flexible homopolymers

rounding and size of the transition aggregate; a microcanonical analysis and the discussion
of a qualitative crossover from particle condensation to (short) polymer aggregation. In the
last part, Sec. 3.5, I discuss the dependence of polymer aggregation on density, identifying the
crossover from semi-dilute to dilute solutions and a relation between the transition temperature
and polymer density. Considering in addition finite-size-scaling results leads to a data collapse.

3.1. Coarse-grained polymer models

In this chapter, I mainly consider two simple coarse-grained homopolymer models. As a natural
generalization from the study of particle condensation, these include the discrete interacting
self-avoiding walk (iSAW) and the bead-spring polymer model. Both models share a self-
and mutual-avoidance plus short-range attraction. The first model is a lattice realization
with nearest-neighbor interaction, similar to the lattice gas example. The second case is one
of the popular generic polymer models with non-bonded Lennard-Jones (LJ) interaction and
harmonic bonds, thus for certain aspects comparable to the Lennard-Jones gas. For a sketch
of the models and interaction potentials see Fig. 3.1.

Again, the canonical ensemble is the natural choice, i.e., a fixed temperature T , polymer
number M , and system volume V = L3 with linear system size L. However, polymers are
now extended objects, here linear chains with N connected monomers. Note the change of
notation from particle condensation, where Ngas refers to the number of particles. While this
is a little inconvenient, it is chosen in order to be consistent with the literature on both particle
condensation and polymer aggregation. I consider uniform polymer systems, i.e., M polymers
of the same length N , instead of polydisperse systems. This is because I am interested in
general features of aggregation and the emerging parameter space will show to be sufficiently
large already for uniform systems.

In general, the observables that I consider include as usual the total (potential) energy E
and its derivative, the specific heat per monomer

CV = kBβ
2
(
〈E2〉 − 〈E〉2

)
/NM, (3.1)

with the inverse temperature β = (kBT )−1. The Boltzmann constant is set to unity in general
kB = 1, which sets the temperature scale. In order to bridge the gap to particle condensation, I
consider the number of particles in the largest aggregate (droplet) ND. Following Refs. [52, 53],
I consider also a “phase” separation parameter defined as radius of gyration of the center of
masses ricm of individual polymers,

Γ2 =
1

2M2

∑

i,j

(
ricm − rjcm

)2
. (3.2)

3.1.1. Lattice polymer

The lattice polymer model that I consider is sometimes also referred to as the interacting self-
avoiding walk (iSAW). Each monomer is described by an occupied site on a lattice (here the
3D cubic lattice), where each site may be occupied only once. This accounts for the hard-core
repulsion, or self- and mutual-avoidance. For each polymer, the monomers are connected by
stiff bonds along the edges of the lattice, such that the bond length is the lattice spacing a.
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Figure 3.1.: Sketch of two complementary polymer models: the discrete lattice polymer model
(left) and the continuous bead-spring polymer model (right). The corresponding
non-bonded (iSAW,LJ) and bonded (FENE) interaction potentials are plotted in
the center.

A short-range attraction is acting only between non-bonded nearest-neighbors. For a = 1, the
corresponding interaction potential ViSAW(r) assumes the values ViSAW(0) =∞, ViSAW(1) = −ε
and zero else. This is identical to VDLG in the lattice gas case. Of course, ε may depend on the
specific sort of interaction, for example εintra and εinter for intra- and inter-polymer interaction,
respectively. Expressed in terms of number of intra-polymer contacts nintra and inter-polymer
contacts ninter the Hamiltonian then reads

H = − (εintranintra + εinterninter) . (3.3)

For most purposes I consider εintra = εinter. However, Sec. 3.2 includes a qualitative discussion
of the effect of the ratio of interaction strengths on the structural transitions of a very small
system using exact enumerations. For a single iSAW, a thorough study of the collapse and
freezing transitions may be found in Ref. [66]. The majority of my results are obtained from
parallel multicanonical simulations (see Sec. 5.4). The Monte Carlo updates include pivot,
translation, slithering snake, corner flip and double-bridge moves (for details see Sec. 5.7).

A major feature of lattice models is that one may compare numerical results for small
system sizes to exact results, where the density of states is fully enumerated. The outline
of the exact enumeration for a single iSAW and 2 iSAWs is presented in Sec. 5.2 together
with the reweighting scheme. This allows to compare, in general, most observables of interest.
For a quantitative order-of-magnitude comparison of the applied update moves, I performed
parallel multicanonical simulations (with 4 cores) of a 2-polymer system with N = 8 monomers
each (cubic box of linear size L = 31). The iterative part uses the full set of updates (fixed
sequence), followed by several production runs for different subsets of updates. Considered
are the specific heat and the temperature derivative of the phase separation parameter (not
normalized in the same way). The canonical estimates O and expectation values 〈O〉 are a
function of the temperature, in this case for discrete values in the range T ∈ [0.1, 3] with
∆T = 0.1. In order to obtain a scalar representative for a comparison of the full temperature
range, I consider the following (temperature) sums: the sum of deviations of the estimates from
the expectation values

∑
T |〈O〉(T ) − O(T )| and the sum of (binning) errors of the estimates∑

T εB
(
O(T )

)
. The exemplary results for single simulations in Table 3.1 show that in almost

all cases the total deviation from the exact result is smaller than the statistical error of the
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3. Aggregation transition in dilute systems with flexible homopolymers

Table 3.1.: Comparison of exemplary multicanonical simulations with exact enumeration using
different sets of updates for 2 iSAWs (N = 8). Examples for N = 9 are shown in
Fig. 3.2 and Fig. 3.3. The table shows the temperature-sums of the absolute devi-
ation and statistical error. Considered updates are the pivot (P), translation (T),
slithering snake (S), corner flip (F) and the double-bridge (B) move. All cases show
that the total deviation and the total error are of the same order of magnitude.

updates
∑

T |〈CV 〉 − CV |
∑

T εB(CV )
∑

T |〈 ddT Γ2〉 − d
dT Γ2| ∑

T εB( d
dT Γ2)

P 0.52 0.57 4.96 5.30
P,T 1.07 0.53 5.45 3.63
P,S 0.44 0.75 3.05 5.90
P,F 0.60 0.58 3.16 5.87
P,B 0.33 0.59 3.43 6.06
P,T,S,F,B 0.26 0.64 3.31 5.59

estimates. All update sets include the pivot move because it ensures ergodicity [67]. Only
the case of combining the pivot with the polymer translation update, shows a stronger total
deviation than total error. Inspecting the full temperature range one can see that this is due
to bad sampling in the aggregate, while the high-temperature regime shows smaller deviations.
This is explained by the enhanced sampling of translational entropy, a benefit of the translation
update. The overall picture, however, indicates that all considered sets of update moves sample
the phase space ergodically and do not violate detailed balance.

In order to provide a feeling for the involved (finite) transitions and estimated errors, I con-
tinue with a qualitative comparison for 2 polymers of length N = 9 (L = 35). The temperature
estimates are obtained by time-series reweighting of 2.56 million measurements with 50 sweeps
per measurement from parallel multicanonical simulations (with 4 cores). A sweep is in general
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Figure 3.2.: Comparison of a parallel multicanonical simulation with exact enumeration for a
system of 2 lattice polymers of length N = 9. The reweighted energy (left) and its
derivative the specific heat (right) show good agreement with the exact data. The
insets show the absolute deviation from the exact expectation values compared to
the calculated jackknife error.
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Figure 3.3.: Same as Fig. 3.2 but for the intra- and inter-polymer contacts (left) and the phase
separation parameter Γ2 with its thermal derivative (right). The insets are omitted
for clarity but show the same qualitative picture as for the energy.

defined as N ×M updates, randomly chosen from a set of update moves. Figure 3.2 shows
the estimated energy and specific heat compared to the exact expectation value. As expected,
the energy decreases when lowering the temperature, with a maximal slope at the aggregation
temperature indicated by a peak in the specific heat. The insets each show the absolute devia-
tions of observables (crosses) compared with the estimated error from jackknife error analysis
(dashed line), which was considered above in the quantitative comparison. It is important to
keep in mind that the multicanonical simulation yields correlated canonical estimates, because
all estimates are computed from the same set of data. Thus, one may not expect a scattering
of data points around the estimated error as one would expect for Metropolis simulations.
However, it may be seen that for most parts the absolute deviation from the exact solution is
small and below the estimated jackknife error. Also, the error and deviation both increase in
the vicinity of the transition.

Moving the focus to a qualitative understanding of the typical temperature-dependence of
observables, Fig. 3.3 shows the number of intra- and inter-polymer contacts (left) as well as the
previously mentioned phase separation parameter (right). It can be nicely observed that with
decreasing temperature, the number of contacts increase, corresponding to a decrease in energy.
For larger temperatures, the increase in intra-polymer contacts dominates, signaling the onset
of a single-polymer collapse. However, in the vicinity of the aggregation transition, the inter-
polymer contacts quickly increase and at the same time the intra-polymer contacts slightly
decrease before increasing again in order to form the size-specific low-energy conformation.
This will be also subject of discussion in Sec. 3.5. The phase separation parameter shows to
be a good order-parameter for the aggregation transition. For small temperatures, where the
polymers have maximal number of inter-polymer contacts, the phase separation parameter is
small. This indicates the aggregated “phase” or regime. With increasing temperature, the
polymers separate and the phase separation parameter becomes large until saturation. This is
due to a large average distance of independent polymers at high temperature, where entropy
dominates energy. The temperature derivative of the phase separation parameter shows a
strong peak at the aggregation temperature.
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3. Aggregation transition in dilute systems with flexible homopolymers

3.1.2. Bead-spring polymer

The bead-spring polymer model is a commonly applied coarse-grained homopolymer model in
continuous space. While the involved potentials may vary in detail and parameterization, the
essential features are self- and mutual- avoiding monomers (beads) with short range attraction,
which are bonded by a (locally) harmonic potential along a single polymer. For the here
presented studies, I considered the finitely extensible nonlinear elastic (FENE) potential for
bonded monomers with a local effective harmonic behavior but with a maximal and minimal
bond length:

VFENE(r) = −K
2
R2 ln

(
1− [(r − r0)/R]2

)
, (3.4)

see also Fig. 3.1. Following Refs. [68, 69], I set r0 = 0.7, R = 0.3, and K = 40 such that
the maximal bond length is the unit length. All non-bonded monomers interact via the 12-6
Lennard-Jones (LJ) potential

VLJ(r) = 4ε
[
(σ/r)12 − (σ/r)6

]
, (3.5)

with ε = 1 and σ = r0/2
1/6. The latter is chosen such that the potential minimum coincides

with the minimum of the FENE potential. In addition, the Lennard-Jones potential is cutoff
above a cutoff-radius rc which allows to employ a domain decomposition. In this case, the
periodic box is divided in equally sized domains of minimal linear length rc. This allows to
reduce the computation of (partially negligible) contributions to the (relevant) monomers in the
same or neighboring domains only, of course taking periodic boundary condition into account.
In order to be consistent with the aforementioned literature, the Lennard-Jones potential is
cutoff at rc = 2.5σ (compare also Sec. 2.1.2) such that

V ∗LJ(r) =

{
VLJ(r)− VLJ(rc) r < rc

0 else
. (3.6)

This self interaction leads to a collapse transition of a single polymer. These polymer models
are also referred to as Θ-polymers. Adding polymers to the system, the mutual attraction
eventually leads to aggregation.

Most results are obtained again using parallel multicanonical simulations. The usual praxis
includes parallel-tempering pre-runs only for the smallest system sizes. This allows to extrap-
olate the lower and upper energy-ranges for the multicanonical simulation of larger system
sizes. In general, I perform between 1.28 and 2.56 million measurements with 1− 100 sweeps
in between. The sweeps are of the order of N × M updates, drawn randomly from a set
of update moves including single-monomer displacement, bond-rotation, polymer translation,
and the more sophisticated double-bridging move. The latter move proved to be important
especially in the low-temperature aggregated phase, where the flexible polymers form a spher-
ical, entangled object. Making use of the generalized ensemble approach, I employed adapted
variable update ranges with bias correction [70] to optimize the acceptance rates in every part
of the energy landscape. For details to the implementation of updates and a test of proper sets
of update moves see Sec. 5.7.

In order to validate the implemented model and multicanonical method, I consider an addi-
tional, independent implementation of the model. There, I use straight-forward, non-optimized
functions for the energy calculation, consider only single monomer displacements and employ
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Figure 3.4.: Qualitative comparison of the canonical energy from parallel multicanonical sim-
ulations and independent Metropolis simulations. (left) Single flexible polymer
with N = 30 and (right) aggregation of a 2× 13 flexible polymer system.

the standard Metropolis algorithm. The simulation started at high temperature and after a
thermalization period, 20 000 measurements with 52 000 sweeps were performed for each tem-
perature. Figure 3.4 shows both approaches for a single polymer of length N = 30 (left)
undergoing a collapse transition and for 2 polymers of length N = 13 (right) with the corre-
sponding aggregation transition. The errors for the multicanonical data are obtained by jack-
knife error analysis and Metropolis error bars are the statistical errors including the integrated
autocorrelation time, for details see e.g. Refs [6, 71]. Both examples show that the Metropolis
averages scatter around the estimates from the multicanonical data, consistent within the error
bars. In the vicinity of the transition the integrated autocorrelation time increases, in case
of the first-order like aggregation transition this effect is very prominent. The corresponding
fewer independent contributions to the Metropolis estimates explain the larger deviations near
T = 0.9. In addition, the employed domain decomposition was tested on exemplary cases of
M × 20 polymers in a 603 box with periodic boundary conditions. Therefore, I use Metropolis
simulations at T = 1 with 1 million sweeps in order to directly compare the time of energy
calculation. Starting at M ≈ 4 polymers, the domain decomposition showed a speedup while
the time series remained identical.

3.2. Effect of inter- and intra-polymer interaction

In order to discuss the interplay of inter- and intra-polymer interaction, I will focus on the
example of two lattice polymers of length N = 9. As shown above, this case is still treatable
by exact enumerations, here on a cubic lattice of size 353 yielding a monomer density ρm ≈
4 × 10−4. The Hamiltonian in Eq. (3.3) may be rewritten in terms of the coupling ratio
ε′ = εinter/εintra between inter- and intra-polymer interaction:

H = −εintra

(
nintra + ε′ninter

)
. (3.7)

Setting εintra = 1 in practice coincides to a rescaled temperature T ′ = T/εintra and allows to
only adjust a single parameter ε′. Moreover, I perform exact enumerations measuring both
the number of intra- and inter-polymer contacts, see Sec. 5.2. This yields a two-dimensional
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Figure 3.5.: Canonical expectation values (solid lines) of the energy and phase separation pa-
rameter (left) and their thermal derivatives (right) from exact enumerations of a
2× 9 polymer system for selected coupling ratios ε′. Data symbols with error bars
in the corresponding color are obtained from parallel multicanonical simulations.

density of states and allows to reweight to canonical expectation values for any ε′. This includes
the case ε′ = 1 commonly considered in this thesis. In addition, multicanonical simulations
of these reference systems allow to compare the application of non-integer coupling ratios
in multicanonical simulations and yield exemplary conformations in the occurring structural
phases. The canonical expectation values in the following are always combined with estimates
from multicanonical simulations.

Figure 3.5 (top) shows the canonical expectation value of the system energy and its derivative
the specific heat for two polymers of length N = 9 with selected coupling ratios ε′. The case
ε′ = 0 is comparable to the energy curve of a single polymer, showing only a collapse signature in
the specific heat. In this case, the polymers do not interact energetically and behave as isolated
polymers, if the system is sufficiently dilute. Increasing the inter-polymer interaction strength
slightly leads to an energy decrease at small temperatures. The large peak in the specific heat

60



3.2. Effect of inter- and intra-polymer interaction

shows that the associated aggregation transition temperature is below the collapse transition
temperature (broad peak). For comparable interaction strengths (ε′ ≈ 1) the collapse and
aggregation transition are almost indistinguishable. However, for inter-polymer interactions
sufficiently larger than intra-polymer interactions (ε′ > 1) it is clearly visible in both energy
and specific heat that there are again two separate transitions occurring. By the height of the
peaks it may be argued that for ε′ > 1 at large temperatures the aggregation occurs, while the
peak at lower temperatures needs further insight.

The phase separation parameter Γ2 was introduced to describe the aggregation transition
and is shown in Fig. 3.5 (bottom) together with its thermal derivative. For ε′ = 0, the phase
separation parameter remains large, confirming that no aggregation occurs. With increasing ε′

a clear aggregation transition is observable: for small temperatures, the polymers are close to
each other resulting in a small Γ2; and for large temperatures, independent separated polymers
result in a large Γ2. The transition is accompanied by a peak in the thermal derivative of the
phase separation parameter. Interesting to notice is that Γ2 is smaller for larger ε′. This
indicates that the resulting structures for large ε′ are more compact in the sense that the
centers of mass are closer together. Similar observations have been made for stiff polymer
bundles before [65].

In order to describe the involved collapse transition in more detail, the number of intra-
polymer contacts nintra = ni is a good observable. The expectation value of the number of
intra-polymer contacts is shown with its thermal derivative in Fig. 3.6 (top). The case of
isolated polymers, ε′ = 0, is again a good reference for the single-polymer collapse. With
decreasing temperature, the number of intra-polymer contacts increases. This is a continuous
transition and the corresponding transition temperature may be identified by the negative
peak in the thermal derivative of the number of contacts. With increasing ε′, the number of
intra-polymer contacts in the low-temperature state decrease. For small ε′ this again signals
an aggregation transition (positive peak in the derivative) at a lower temperature than the
collapse transition. With increasing ε′ the negative collapse peak in the derivative becomes
weaker up to a point, where a peak is technically there, but meaningless with respect to
structural transitions. This is due to the continuous nature of the single-polymer collapse
transition. As long as the polymers are isolated in the high-temperature regime, the number
of intra-polymer contacts will gradually increase with decreasing temperature. For sufficiently
large ε′ & 1 the aggregation occurs at temperatures at or above the single-polymer collapse
temperature. It seems that the aggregation dominates over the (initiated) collapse, decreasing
the intra-polymer contacts again and what remains is a small negative peak in the derivative
without significance. For ε′ ≈ 1, the initial decrease in nintra is followed by an increase when
lowering the temperature. This changes for larger ε′, where the initial decrease is followed by
a second, stronger decrease down to 0 contacts at low temperature, seen by two positive peaks
in the derivative.

The expectation value for the number of inter-polymer contacts ninter = no is shown in
Fig. 3.6 (bottom) together with its thermal derivative. As for the phase separation param-
eter, the case ε′ = 0 shows constant behavior. With increasing ε′, polymer contacts in the
low-temperature conformations increase, consistent with the decrease in the number of intra-
polymer contacts. For large temperatures, the separated polymers are practically not in con-
tact, i.e., ninter = 0. At the aggregation transition, ninter increases, also shown by a large
negative peak in the derivative. For ε′ ≈ 1, ninter assumes a plateau, or even slightly decreases
at lower temperatures. For large ε′, there is a second peak visible, showing that the loss of
intra-polymer contacts was in favor of an additional gain of inter-polymer contacts.
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Figure 3.6.: Same as Fig. 3.5 for the intra- and inter-polymer contacts (left) and their thermal
derivatives (right).

A complete overview for the finite 2× 9 system is provided in Fig. 3.7. The structural phase
diagram is obtained from a surface plot of the specific heat and the transition points obtained
from local positive maxima and negative minima, as discussed above. This includes the ar-
tificial “transition” signatures mentioned before. Therefore, a sketch of the structural phase
diagram is given in Fig. 3.7 (right). Combined with the previous discussion, four different
regions may be identified already for this small system. For large temperatures, the two poly-
mers are separated and each polymer is in the extended state (SE). Reducing the temperature
for small ε′, the individual polymers undergo a collapse transition and thus become separated
globules (SG). The aggregation transition spans the diagram as a diagonal, below which both
polymers are close to each other. Directly below the aggregation transition, the inter- and
intra-polymer interactions are competing and one finds the two polymers attached to each
other, with a remaining self-interaction (A). However, with increasing ε′, the inter-polymer
interactions dominate at low temperatures and an additional structure occurs, where inter-
polymer contacts dominate in an “entangled” conformation (A′). Exemplary conformations
from multicanonical simulations are provided below the structural phase diagrams. The dif-
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Figure 3.7.: Structural phase diagram of two flexible lattice polymers (N = 9,L = 35) with
varying coupling ratio ε′ from exact enumerations. (left) The surface plot shows
the specific heat and the symbols mark local positive maxima and negative minima
in the thermal derivatives of the corresponding observables. (right) A simplified
sketch with the identifiable structural phases. S and A refer to separated and ag-
gregated conformations; E and G stand for extended and globular single-polymers;
and A′ conformations are entangled with maximizing inter-polymer contacts. Ex-
amples from multicanonical simulations are provided below the figures.

ference between conformations from A and A′ are subtle, but present in terms of self-contacts.
Conformations in A may be considered as globules that stick together. In some cases, this
reminds of jigsaw pieces, where the individual polymers rearranged in such a way to fit to each
other. In contrary, conformations in A′ have a decreasing number of self-interactions, trying to
maximize inter-polymer contacts. This leads to entangled conformations, where the polymers
mutually “wrap” around each other. On close sight, this may be identified in the presented
examples.

An interesting observation is the similarity to homopolymer adsorption on flat, flexible and
patterned surfaces showing very similar phase diagrams [54, 72–75]. This is not unexpected
but an artifact of considering only two polymers. The equivalence between bundling of two
semiflexible polymers and adsorption of a semiflexible polymer to a surface has been exploited
before, e.g., in Ref. [76]. In this case, the transition A→ A′ may be identified with the transi-
tion into single layers on a flexible surface [73] or the recognition transition onto a patterned
surface [75]. The latter case could serve as an intuitive picture, if both polymers are consid-
ered to “recognize” the patterned one-dimensional surface of the respective partner, which is
energetically favored.

The presented results show a qualitative picture of the effect of inter- and intra-polymer
coupling on the structures of homopolymer aggregates using a finite lattice polymer model
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3. Aggregation transition in dilute systems with flexible homopolymers

Figure 3.8.: Sketch of different approaches to the thermodynamic limit for polymer aggregation:
fixing the polymer number and increasing polymer length in terms of monomers
(left) or fixing the polymer length and increasing the polymer number (right).

which, however, may be treated with exact enumerations. This serves as a starting point for
a more detailed investigation of occurring structures both in the limit of two longer chains
(M = 2, N → ∞) and many short chains (M → ∞, N fixed) for selected coupling ratios ε′.
This is currently investigated by a Master student in our group, Benjamin Schott [77]. The
example ε′ = 1 is discussed for both limits in Sec. 3.3.2 and Sec. 3.4 respectively.

3.3. Finite-size scaling limits in polymer aggregation

For polymer solutions, the thermodynamic limit may be reached in two ways: either increasing
the number of polymers or increasing the length of a single polymer (see e.g. Ref. [63]). The
usual description of universal properties for generic polymer models is in the limit of infinitely
long (isolated) polymer chains N → ∞. It is this limit, in which for example discrete and
continuous self-avoiding walks show the same predicted scaling behavior. Here, a mapping
to ordinary finite-size scaling of spin systems is possible, considering the O(n) model with
n → 0 [3]. For a single (isolated) polymer, translational entropy may be neglected, if a
homogeneous solution is assumed. Thus, single polymers may be considered in open systems
or periodic boundaries with L � Nr0 and the monomer density does not play a role. For
the current bead-spring model with self-interaction (Θ-polymer), the scaling of the resulting
collapse transition is revisited in Sec. 3.3.1.

Adding already a second Θ-polymer leads to additional length-scales which introduce diffi-
culties in the definition of a suitable finite-size scaling limit. Now density becomes important
because separate polymers need to find each other. A detailed discussion of the effect of den-
sity is given in Sec. 3.5. Sticking to the limit N → ∞, a fixed monomer density seems to be
an unsuitable choice for a proper finite-size scaling of polymer aggregation. This is because
in this limit the polymers grow linearly, while the linear system size L only grows with N1/3.
This eventually leads to the point N � L, where the polymer interacts with itself across
periodic boundaries or is influenced by steric boundaries. Another possibility is to define a
fixed “renormalized” polymer density ρ = M/L′3, where L′ = L/N sets the length scale. In
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3.3. Finite-size scaling limits in polymer aggregation

this limit, the polymers may be considered to become more resolved going to the continuum
limit. An example is shown as a sketch in Fig. 3.8 (left) where L′ is fixed and the polymer
length is increased by adding additional beads. However, considering Θ-polymers, the interplay
with short-range Lennard-Jones interaction becomes non-trivial. This is because the polymer-
polymer interaction length scale remains on the order of the intra-polymer interaction length
set by the bond length. Compared to the system size or polymer length, the polymer-polymer
interaction length scale thus decreases. In the limit of infinitely long (or infinitely resolved)
chains, the inter-polymer interaction range would approach zero. This is exemplary discussed
in Sec. 3.3.2.

Another possibility to reach the thermodynamic limit is to consider the limit of infinitely
many polymers M →∞ of fixed length N . Increasing the number of polymers linear with the
volume fixes the polymer density ρ = M/V . See for an example Fig. 3.8 (right), where for each
volume element the same number of polymers are added. This is a proper finite-size scaling
limit, where the length scale of polymer-polymer interaction compared to the single-polymer
length remains the same for all system sizes. Also, at least in the homogeneous phase, the
volume fraction is locally conserved with increasing system size. In this limit, the length of
the polymer N may be considered as a chemical property that is fixed in the finite-size scaling.
This is content of Sec. 3.4 and is analogue to the definition of finite-size scaling for particle
gas, considering polymers as “extended” particles.

3.3.1. The collapse transition revisited

In the past 10 years, there has been an interesting discussion in the literature about the scaling
of the collapse transition temperature of a single flexible homopolymer. Among others, this
problem has been discussed using lattice models [63, 66] as well as continuous bead-spring
models [78–80]. One usually expects a scaling motivated from polymer solutions in the Flory-
Huggins mean-field theory [2]. This leads to the fit ansatz

TΘ(N)− TΘ = − a1√
N

+
a2

N
, (3.8)

where TΘ = limN→∞ TΘ(N). This has shown to correctly describe the finite-size corrections to
the collapse transition temperature for interacting self-avoiding walks [66], the bond-fluctuation
model [63] and continuous bead-spring polymers [80]. However, in Ref. [78, 79] the authors
claim to observe mean-field predicted logarithmic corrections leading to

TΘ(N)− TΘ =
A√

N(lnN)7/11
. (3.9)

The aforementioned contributions [63, 66, 80] have shown that this is rather unlikely. One inter-
esting observation is that the numerical verification of Eq. (3.9) relied on numerical derivatives
of sampled densities of states including smoothening. This indicates that here some caution is
necessary.

I will focus on the first ansatz Eq. (3.8) in order to characterize and compare two slightly
different models of a bead-spring polymer: a bead-spring polymer with non-bonded Lennard-
Jones (LJ) interaction (described in Sec. 3.1.2) and a bead-spring polymer with additional
bonded Lennard-Jones interaction, e.g., applied in Ref. [69, 78, 79] with the same parameter-
ization. Attempted fits to the second ansatz did not show satisfying results. For large tem-
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bead-spring polymer with non-bonded LJ-interaction. (right) Finite-size scaling
of the collapse transition temperature. The data is nicely described by Eq. (3.8)
(solid lines).

peratures, the polymer is entropy dominated and the radius of gyration scales as self-avoiding
walk with increasing chain length. However, with decreasing temperature the short-range at-
traction becomes more relevant and the polymer undergoes a continuous collapse transition,
forming a more compact globule. This is reflected in a decrease of the radius of gyration and
the maximal slope may be associated to the collapse transition temperature. A similar defi-
nition via the change in energy or the maximum/shoulder of the specific heat is possible and
will yield a slightly different finite-size temperature. However, in the thermodynamic limit all
proper definitions should yield the same estimate. Here, TΘ(N) is obtained from the peak of
the squared radius of gyration R2

gyr. The canonical curves for the non-bonded LJ case is shown
in Fig. 3.9 (left). For larger system sizes, the collapse transition shifts to larger temperatures
and the peak height increases.

The shift in the collapse transition temperature for finite systems is shown in Fig. 3.9 (right)
for the two considered models. The errors are obtained by jackknife error analysis and the data
points are plotted against the expected N−1/2 scaling behavior. In both cases, the additional
higher-order corrections are clearly visible by a non-linear behavior in the plot variables. How-
ever, the fit of Eq. (3.8) describes the data points well. For details of the fits and a comparison
to a differently parameterized bead-spring polymer [80] see Table 3.2. The differences for both
thermodynamic limit TΘ and finite-size corrections are due to (slightly) different energy (and
corresponding temperature) scales from the microscopic details of the models. Consider, for
example, the non-bonded LJ interaction and the additional bonded LJ interaction. In the

Table 3.2.: Fit results to the scaling Ansatz [Eq. (3.8)] of the single-polymer collapse transition
temperature for three bead-spring models.

Model TΘ a1 a2 χ2

non-bonded LJ 2.645(4) 8.10(6) 7.1(2) ≈ 1.98
bonded LJ 2.481(8) 7.5(1) 6.4(4) ≈ 1.22

Ref. [80] 3.176(4) 11.56 12.77
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Figure 3.10.: Exemplary canonical estimates of the energy (left) and the specific heat (right)
for a fixed number of polymers M = 8 with variable length N at fixed density
ρ′ = M/L′3 = 0.1. The ratio L′ = L/N is kept fixed.

latter case, bonded monomers yield an energy contribution even at large temperatures because
the FENE potential keeps bonded monomers at close distance. This is, however, no constant
energy term and results in a lower transition temperature. The model in Ref. [80] also includes
bonded LJ interaction but uses different parameters which explains a different TΘ. However,
the important result is that all models follow the same finite-size behavior and are thus ex-
pected to describe the same generic properties. For the influence of interaction range on the
interplay of collapse and freezing transition see also Ref. [81], where the present model is clearly
in the second-order like regime.

3.3.2. Aggregation of flexible polymers in the limit N →∞
As mentioned in the beginning of this section, one possible approach to the thermodynamic
limit could be a fixed polymer number M with increasing polymer length N (in number of
monomers). Then, it seems unavoidable to couple the polymer length to the linear system size,
thus considering the limit of a continuous polymer string. This limit is known from a worm-
like chain perspective on single semiflexible polymers or polymer bundles with cross-linkers.
The considered bead-spring model, with equal intra- and inter-polymer interaction (ε′ = 1 in
Sec. 3.2), seems to be inadequate for this limit. This is because the interaction length scale
of both intra- and inter-polymer Lennard-Jones interaction is coupled to the bond length. In
the limit of infinitely resolved single polymers, the bond length tends to zero. For the intra-
polymer interaction, and the accompanying collapse transition in Sec. 3.3.1, this is effectively
renormalized by the diverging number of monomers. Considering, however, a fixed L′ = L/N
for several polymers in the limit N →∞ means that the polymers become infinitely thin and
the inter-polymer interaction length vanishes compared to the system size. As a consequence,
the polymers do not “see” each other very well compared to the huge entropy of the solution
but once they find each other the energy gain is enormous.

Exemplary canonical estimates for fixed M = 8 and increasing N are shown in Fig. 3.10:
the average energy (left) and the specific heat (right), normalized to the number of monomers,
i.e., CV = kBβ

2
(
〈E2〉 − 〈E〉2

)
/N . The transition temperature is obtained from the largest

peak in the specific heat. At the aggregation transition, the energy shows a sharp jump for
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all system sizes between a high-energy regime at high temperatures and low-energy regime at
low temperatures. Below the aggregation temperature, the specific heat curves coincide for all
polymer sizes while qualitative deviations at high temperatures are noticeable. Interesting to
notice is that in this limit the normalized energy difference at the transition seems to decrease
and the peak in the specific heat does not increase with the linear size of the polymers. The
first observation may be understood considering that the polymers start to collapse around the
same temperature range, compare also Sec. 3.3.1. Therefore, the increase in N also increases
the possible number of intra-polymer contacts, which already reduces the average energy above
the aggregation transition in the fragmented regime.

In this limit, the canonical observables do not show the expected first-order like character-
istics of a decreasing width and increasing height of the specific heat peak, or an increasing
sharpness of the energy jump. What can be said is that the aggregation transition tempera-
ture increases with polymer length. This suggests that the energetic gain from the increase in
possible inter-polymer contacts dominates over the increase in entropy due to the rescaled in-
teraction length scale. A heuristic functional dependence on the polymer length T = a+b lnN
is shown in Fig. 3.11. For both exemplary cases M = 2 and M = 8, corresponding fits to
the data with M & 20 yield slopes b ≈ 1/3 with decent quality of fits (reduced χ2), namely
χ2 ≈ 0.1 and χ2 ≈ 2.7, respectively. Alternatively, also power-law fits yield adequate results.
This suggests that for a fixed number of coarse-grained Θ-polymers, the limit N →∞ does not
describe a proper phase transition in the usual sense. On the contrary, in the limit of infinitely
long polymers, the aggregation temperature diverges. For the considered model, it may be
thus argued that polymers need to have a finite length as well as finite interaction strength
and length scale. Noteworthy, this is consistent with reality where polymers and proteins are
always finite. The two considered cases are, however, special in the sense that M is very small.
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Figure 3.12.: Snapshots of a separated (left) and aggregated (right) conformation for M = 48
bead-spring polymers of length N = 13.

3.4. Finite-size effects and scaling regimes in the limit M →∞

As mentioned before, equilibrium aggregation describes the transition between a separated
phase of individual polymers and a homogeneous aggregated phase in which a fraction of
polymers are condensed in a single macroscopic object. Figure 3.12 shows two corresponding
snapshots from a multicanonical simulation with M = 48 bead-spring polymers of length
N = 13. The equilibrium description of this problem results in homogeneous aggregation,
where in non-equilibrium considerations also heterogeneous aggregation (several aggregates)
occurs due to increasing relaxation times. The common notion of phases in the thermodynamic
limit is recovered when considering the limit of increasing polymer number M → ∞ at fixed
polymer length N and polymer density ρ = M/V . Then, the polymer length may be considered
as a system property. In fact, for a fixed N one may equivalently consider the monomer
density ρm = ρN . This limit is quite similar to the description of particle gas condensation
at fixed density, where the polymers may be considered to be extended “particle-like” objects.
Consequently, one would expect the same qualitative finite-size scaling behavior as in Sec. 2.3:
above the aggregation transition the polymers are independent of each other, individually
exploring the available space, and below the aggregation transition there exists a mixed phase
of the single macroscopic aggregate in equilibrium with a surrounding polymer solution. I
will present results for N = 13 lattice and bead-spring polymers at fixed monomer density
ρm = 0.01 with a focus on the lattice polymers due to numeric reasons. In case of lattice
polymers, the density is adjusted approximately. For a description of the models see Sec. 3.1.
All main results are obtained with parallel multicanonical simulations using up to 256 cores
(see Sec. 5.4), recording in total 1.28-2.56 million measurements. Relevant data presented in
the plots are listed in tables in the appendix. The update moves for the lattice case include
pivot, corner flip, slithering snake, translation, and double bridge moves. In the case of bead-
spring polymers, I considered single-monomer displacement, bond rotation, translation, and
double bridge moves. For details see Sec. 5.7.
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Figure 3.13.: Canonical estimates of the average energy (left) and the specific heat (right) per
polymer for a lattice polymer system with N = 13 and ρm = 0.01.

The aim of this section is to compare flexible homopolymer aggregation to particle gas
condensation using finite-size scaling, however mostly in an appearing intermediate scaling
regime. I will consider observables analogue to the particle condensation discussion in Chap. 2,
namely the aggregation temperature, the rounding of the transition and the cluster size at
aggregation. Additionally, I will discuss the finite-size scaling in the microcanonical ensemble.

The general concept of finite-size scaling is to use small system sizes in order to make predic-
tions about the thermodynamic limit, or systems of infinite size, and to describe how certain
physical properties change under variation of system size. For second-order phase transitions,
this allows to study critical phenomena including critical exponents and universality, see also
the discussion of the collapse transition in Sec. 3.3.1. The aggregation transition is usually iden-
tified as a first-order like transition, or pseudo phase transition, since the usual system sizes
and constituents are finite by nature. Considering the formal similarity to particle condensa-
tion and the competition between entropy maximization in the separated phase and energy
minimization in the aggregate, it seems justified to reapply the notion of a first-order phase
transition in the limit of infinite polymer number. In order to get an impression, Fig. 3.13
shows the average polymer energy and specific heat, normalized to the number of polymers,
i.e., CV = kBβ

2
(
〈E2〉 − 〈E〉2

)
/M , for lattice polymers. Compared to the case N →∞ at fixed

M 6= 1 in Sec. 3.3.2, here the specific heat peak grows in height and shrinks in width. This
already gives a hint that the limit M →∞ allows for a proper definition of a thermodynamic
limit for dilute polymer aggregation, analogue to particle condensation.

Before comparing the scaling of relevant observables, I briefly discuss the finite-size scaling
expectations. Building on Sec. 2.3, and considering the similarity of dilute particle condensation
to dilute Θ-polymer aggregation, one may expect that the aggregation transition separates
a homogenous and inhomogeneous (or mixed) phase. Considering that the mixed phase is
supposed to thus consist of a single macroscopic aggregate with surrounding “gaseous”/solute
polymers allows to identify the radius R of the aggregate as the relevant linear length scale [42,
45, 46]. Then the surface

(
R(d−1)/d

)
and volume

(
Rd
)

contributions to finite-size corrections
compete, which would give rise to a finite-size scaling correction of the order R−1.

For flexible polymers it may be assumed that the aggregate shape is spherical, just like a
droplet of monomers. Thus, from the experience with particle condensation in Sec. 2.3, one
may expect two regimes: a large-system scaling behavior, where R ∼M1/4, and an intermedi-
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Figure 3.14.: Canonical estimates of the fraction η of monomers in the largest cluster (left)
and its thermal derivative (right) for a lattice polymer system with N = 13 and
ρm = 0.01.

ate effective regime, where R ∼M1/3. The large-system condensation-like expectation is based
on the observation that in the gaseous (separated) phase the individual polymers maximize
entropy by homogeneously distributing in space, while in the aggregated phase the flexible
polymers minimize energy forming a single aggregate in equilibrium with unattached poly-
mers. Following the arguments from condensation, comparing free-energy contributions from
fluctuations and surface, leads to a macroscopic aggregate including only a fraction η ∼M1/4

of polymers. With increasing system size, the aggregate would grow slower than the total
number of polymers, reflected in a linear extension R ∼M1/4. In fact, the aggregate of several
polymers is similar to the collapsed state of a single, long polymer as well as the condensate
of non-bonded monomers (gas) [69]. A non-trivial difference is, however, the internal energy
and entropy of the individual polymers in the separated phase.

In addition, an effective intermediate scaling regime may occur similar to particle conden-
sation. It may be argued that for a mesoscopic, or intermediate, number of polymers a large
fraction of polymers will contribute to the aggregate. This is a reasonable assumption as can
be seen in Fig. 3.14: the fraction η of lattice polymers (N = 13) in the largest cluster shows
a jump from close to zero at high temperatures to a non-zero fraction at the transition tem-
perature. Lowering the temperature further, the fraction of polymers in the cluster/aggregate
increases. For most system sizes, η & 0.5 in the aggregate below the transition temperature.
This would justify an extended intermediate regime. Assuming a spherically shaped aggregate,
the relevant length scale is the corresponding radius. For a large fraction of uniform polymers
(fixed N) in the aggregate this would lead to R ∼M1/3. In order to investigate the occurring
scaling regimes, I start by recapturing the expected scaling form of each observable generalized
from the arguments and results of particle condensation (see Chap. 2).

3.4.1. Transition temperature and rounding

For the aggregation temperature one expects a finite-size shift of the order of the inverse
relevant linear system size. This means

Tagg = T0 + aM−p, (3.10)
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Figure 3.15.: Finite-size scaling of the aggregation temperature for N = 13 flexible lattice (red)
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heat (x) and thermal derivative of η (box). The solid lines represent the best fits
according to the expected scaling.

where p =
{

1
3 ,

1
4

}
is the expected exponent for the effective intermediate or large-system regime.

Figure 3.15 shows the aggregation temperature plotted against M−1/3 (left) comparing to the
predicted intermediate behavior and against M−1/4 (right) comparing to the expected large-
system behavior. Both plots show results for lattice (red) and bead-spring (green) polymers.
Indeed, the numerical data show that the change in aggregation temperature decreases with
increasing system size, justifying the ansatz in Eq. 3.10. It can be seen that for a large range of
M values, the M−1/3 rescaling shows a linear behavior. This indicates an effective intermediate
scaling regime. However, for larger system sizes also the M−1/4 rescaling indicates a linear
behavior. In both cases, reasonable fits with goodness of fit parameter Q & 0.5 are achievable,
shown by the solid lines in the figure and listed in Table 3.3. A possible implementation of the
goodness of fit parameter Q for gnuplot is given in Ref. [82]. The achievable data for the lattice
gas exceeds the bead-spring case about an order of magnitude. However, it may be expected
that the large-system limit for beads-spring polymers starts for comparably smaller system
sizes. Still, both cases show that a definite answer is not possible: both fit attempts yield
qualitatively good but contradicting results. This is expected from the discussion of particle
condensation in Sec. 2.3.1 and suggests that the available data is still within an intermediate
regime. If the expected large-system limit is recovered for flexible polymer aggregation, a clear

Table 3.3.: Fit results for the finite-size scaling of N = 13 lattice and bead-spring polymer
aggregation with monomer density ρm = 0.01.

Model T0 + aM−1/3 T0 + aM−1/4

Range T0 Q Range T0 Q

Lattice [ 135: 524] 1.8655(5) 0.98 [ 242: 524] 1.920(2) 0.66

Bead-Spring [ 14: 64] 1.606(2) 0.67 [ 48: 64] 1.63(2) 0.38
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Figure 3.16.: Finite-size rounding of the specific heat peak around the aggregation temperature
for N = 13 flexible lattice (left) and bead-spring (right) polymers with ρm = 0.01.
The accessible data in both cases shows a M−1 scaling behavior.

signal would require larger system sizes than those currently available.
Similarly, the finite-size rounding of the transition should show different scaling regimes.

As rounding of the transition, I consider the half-width of the specific heat peak analogue to
Sec. 2.3.2. Since the peak width is supposed to tend towards zero for infinitely large system
sizes, one may express the rounding directly proportional to a power-law

∆T ∼M−3p, (3.11)

where again p =
{

1
3 ,

1
4

}
for the effective intermediate and large-system regime, respectively.

This may be plotted in a double-logarithmic scale showing the power-law exponents as slopes
of linear lines. For the considered lattice and bead-spring examples this is shown in Fig. 3.16.
In principle, one would expect an intermediate scaling as M−1 (dashed line) and a large-system
scaling as M−3/4 (solid line). In accordance with the discussion of the transition temperature,
only an intermediate regime is visible. This regime was also apparent for particle condensation,
see Sec. 2.3.2, and was identified as an effective scaling regime with a crossover to the expected
large-system scaling regime. Again, larger system sizes are necessary to confirm a condensation-
like large-system scaling behavior. If polymers may be considered as extended objects, this
would suggest that at least the same number of objects is necessary to reach the large-system
limit as for “point-like” objects. Even worse, one would expect that the number of necessary
polymers grows with N . The similarities to the case of mesoscopic particle condensation,
however, suggest that one may expect the same qualitative behavior for sufficiently large
system sizes.

3.4.2. Aggregate size at transition

One remaining canonical observable considered for particle condensation is the scaling of the
droplet, or cluster, size in the mixed phase at coexistence. A suitable representation allowed
to see (or anticipate) the expected large-system scaling for comparably small system sizes.
The cluster size in the mixed phase at coexistence may be estimated from the distribution
P (η) of cluster sizes, or monomer fractions η = (NM)D/NM in the largest cluster (including
(NM)D monomers) shown in Fig. 3.17 (left). The two peaks in the exemplary distributions
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〈η̃〉Tagg in the transition aggregate (right) for N = 13 polymers with ρm = 0.01.

correspond to the homogeneous, separated phase (small η) and a single macroscopic aggregate
with surrounding separated polymers (large η). The non-zero fraction of monomers in the
homogeneous phase is partly a consequence of the definition using the largest cluster. This
always includes at least N monomers such that 〈ηhom〉 → 0 but is non-zero for finite systems.
The local minimum, corresponding to the probability of transition aggregates, decreases with
increasing system size in correspondence with the assumptions made in Chap. 2. In addition,
these examples already show that one expects with increasing system size smaller average
cluster sizes also in the aggregated phase. From the similarities to particle condensation,
one may again expect that the large-system transition-aggregate includes ∼ M3/4 polymers.
Consequently, the monomer fraction η should scale as M−1/4. Choosing as finite-size transition
temperature Tagg the peak in the specific heat, the corresponding phases contribute to the
distribution with equal weight. Then, the average cluster size in the mixed phase at coexistence
may be estimated according to Eq. (2.50): 〈η̃〉Tagg = 1

Z̃

∫
ηmin

ηP (η)|Tagg dη, where ηmin is defined

such that Z̃ =
∫
ηmin

P (η)dη = 0.5, when the full integral yields 1. The results for both lattice

and bead-spring polymers are shown in Fig. 3.17 (right). For small system sizes, where the
discrete probability distributions may not even show clear double peaks, this estimate is not
very reliable. However, the qualitative conclusion that up to all polymers contribute to the
aggregate remains valid. This would correspond to a horizontal line. On the other hand,
with increasing number of polymers the M−1/4 scaling behavior of the aggregate size (solid
line) may be anticipated. This supports the hypothesis of a condensation-like first-order phase
transition from a homogeneous, separated polymer phase to a mixed phase of a macroscopic
aggregate in equilibrium with surrounding polymer solution.

3.4.3. Microcanonical analysis

A complementary analysis in the microcanonical ensemble [49, 50] promises to contribute to
the understanding of dilute polymer aggregation. For a short introduction and application to
particle condensation see Sec. 2.5. Figure 3.18 shows estimates of the microcanonical inverse
temperature β and its derivative γ for increasing system sizes of lattice polymers (N = 13)
at constant monomer density ρm = 0.01. Due to discrete energy states, the application of
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Figure 3.18.: Estimates of the microcanonical inverse temperature β (left) and its derivative
γ (right) for lattice polymer systems with N = 13 and ρm = 0.01. The inverse
temperature shows signals of nucleation for small M and condensation-like be-
havior for large M . In the latter case a first-order phase transition is supported
by a positive peak in γ approaching zero with increasing system size.

Bézier curves (see Sec. 5.4.1) is limited to large system sizes M ≥ 36. Interestingly, the inverse
temperature shows the characteristic backbending effect for very small (M = {2, 3, 4}) and
quite large system sizes, but not in between. The small system sizes show similarities to
the previously observed nucleation hierarchies [53, 64] with oscillations on the curves. For 2
polymers, there is one prominent phase separation process. For 3 and 4 polymers one may
anticipate 2 and 3 oscillations, of which only some show a backbending and the corresponding
entropic barrier. The vanishing backbending effect, which occurs for the following system sizes,
seems to be a lattice effect. For bead-spring polymers there is a small backbending visible for
every system size. On the other hand, the bead-spring polymers did not show prominent
nucleation hierarchies. This may be explained by the vibrational modes of the harmonic bonds
that allow to compensate energy and entropy differences between the sub-aggregated states.
For both lattice and bead-spring polymers, the backbending effect becomes prominent again
for large system sizes, M ≥ 85 and M ≥ 32, respectively. Moreover, the microcanonical
signature becomes a first-order signature comparable to the case of condensation (Sec. 2.5).
In particular, the derivative γ of the inverse temperature in Fig. 3.18 (right) shows a positive
maximum for the aggregation transition which already allows for a first-order classification
of the structural transition [49, 55]. Additionally, the decreasing peak height with increasing
number of polymers, tending towards zero for M → ∞, allows to speak of a first-order phase
transition in the usual sense. This is similarly also observable for bead-spring polymers (N =
13) at ρm = 0.01 already for comparably small system sizes M ≥ 12 (see also Fig. 4.14).

3.4.4. Crossover from condensation to aggregation

The presented results so far support that the polymer aggregation transition shows strong
similarities to particle condensation: a first-order phase transition with coexistence at the ag-
gregation temperature between a homogeneous phase of separated polymers and a mixed phase
of a single aggregate in equilibrium with additional separated polymers. The first-order nature
of the transition is supported by the microcanonical finite-size scaling but the expected large-
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Figure 3.19.: Finite-size rounding from the half-width of the specific heat peak for polymer
aggregation of lattice (left) and bead-spring (right) polymers of different lengthN .
The case N = 1 corresponds to particle condensation. In all cases an intermediate
regime (dashed slope) is clearly visible while the large-system condensation regime
may be merely anticipated for N 6= 1.

system finite-size scaling behavior is merely visible in the cluster size at the transition temper-
ature. In all other canonical observables, another scaling regime was apparent, consistent with
an intermediate scaling regime known from particle condensation. The finite-size rounding of
the specific heat peak seemed to best resolve the appearing scaling regimes. Therefore, one
may expect a qualitative support of the condensation-aggregation equivalence hypothesis by a
visual crossover with increasing polymer length from particle condensation (N = 1) to poly-
mer aggregation (N > 2). Figure 3.19 shows the finite-size rounding for both polymer models
with an increasing polymer length N in a double-logarithmic plot. Different power-law scaling
exponents result in different linear slopes. The intermediate scaling regime (dashed slope with
M−1) is clearly visible for all polymer lengths. Already the onset of this regime grows with
increasing polymer length. From the available data it is suggested that also the onset of the
large-system regime grows with increasing polymer length. This explains the difficulties with
the numerical results, because the computational complexity increases with longer polymer
chains, leading to a smaller maximal number of polymers M . The demand of larger M for the
large-system limit is then working in opposite direction, keeping in mind that the necessary
system sizes were just about reached for particle condensation. Still, the qualitative crossover
from single particle condensation to finite-length polymer aggregation together with the sim-
ilarities in the intermediate scaling regime support the condensation-aggregation equivalence
hypothesis. This would, however, require length scales much large than the typical extension
of a single polymer, i.e. L� Nr0.

The proposed condensation-aggregation equivalence is limited to the phase separation tran-
sition, i.e., the competition between energy minimization and entropy maximization, where
microscopic details may be neglected. However, with increasing polymer length N , there arise
intra-polymer mechanisms such as the single-polymer collapse. The resulting interplay between
collapse and aggregation may be hidden in the considered finite-size scaling analyses but leads
to structural changes at the aggregation transition. This microscopic detail may still play a
role from a polymer perspective and will be discussed below.
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3.5. Density dependence of dilute polymer aggregation in spherical confinement

Figure 3.20.: Snapshot from a multicanonical production run of M = 20 bead-spring polymers
of length N = 20 confined in a steric sphere of size RS = 30 [42].

3.5. Density dependence of dilute polymer aggregation in spherical
confinement

In order to investigate the effect of density on polymer aggregation in more detail, I consider the
model system of flexible bead-spring polymers (Sec. 3.1.2) inside a steric spherical confinement
with radius RS , see Fig. 3.20. The choice may be considered as a safe basis for the study of
density effects in finite system. This is because, in contrast to periodic boundary conditions, it
allows to systematically vary the density without the possibility that the aggregate or a single
polymer may self-interact across the boundaries. On the other hand, the steric confinement
(monomers may not cross the bounding shell) brings at most an effective repulsive interaction.
For the numerical data, I employ again parallel multicanonical simulations, covering the full
energy range of interest in a single simulation. Moreover, this allows to directly sample the
entropy of the system, which allows a qualitative insight into the derived arguments. Focus-
ing on the aggregation transition, I refine the energy range using numerical data from dense
simulations with short initial parallel tempering simulations. The Monte Carlo moves applied
in this study include single-bead displacement, bond rotation, polymer translation, as well as
inter- and intra-polymer rearrangement (double-bridging) moves with energy-dependent up-
date ranges (see Sec. 5.6) where possible. The fast conformational entropy increase in larger
spheres is partially accounted for by choosing the maximal translation step proportional to the
radius of the sphere.

In the following, I first discuss the competition between single-chain collapse and multi-
chain aggregation on an example system. Afterwards, I present entropic arguments in the
microcanonical ensemble in order to derive a leading-order dependence of the inverse transition
temperature on polymer density. Combined with scaling arguments for the finite-size regime
this leads to a data collapse of the density dependence for all system sizes with fixed polymer
length. Most parts of this section have been published in Refs. [42, 65].
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Figure 3.21.: Canonical estimates of the average energy (left) and specific heat (right) for
M = 8 flexible polymers of length N = 13 in spherical confinement. With
increasing radius RS , the density decreases and the aggregation transition shifts
to lower temperatures. The dilute limit refers to a single, isolated polymer.

3.5.1. Competition between collapse and aggregation

As discussed in Sec. 3.3, I consider the polymer length N as a system property which is fixed.
Above the aggregation transition, the polymers are in a homogeneous phase with independent
polymers. In this case, it may be expected that they explore the conformation space inde-
pendently, behaving like an isolated, single polymer which I refer to here as the dilute limit.
Moreover, for a fixed number of polymers, an increase in the radius of the confining sphere
decreases the density and eventually leads to the dilute limit over the full temperature range
for RS → ∞. For a finite volume, however, there exists an aggregation temperature below
which the polymers are no longer homogeneously distributed and independent. In equilibrium,
homogeneous aggregation leads to a single macroscopic aggregate possibly with additional in-
dependent polymers, see Sec. 3.4. This already shows, that the aggregation temperature has
to depend on the density and that in the limit of ρ → 0 it must hold Tagg → 0. In order
to illustrate this, consider a system with M = 8 homopolymers of size N = 13 in different
spherical confinements of size RS . Comparing to the dilute limit, or a single isolated polymer
of the same size, it is convenient to consider average single-polymer observables. One suit-
able choice is the average energy per polymer E/M and the corresponding specific heat per
polymer CV = β2

(
〈E2〉 − 〈E〉2

)
/M , where again β = 1/T (in units where kB = 1). Another

insightful observable is the average end-to-end distance per polymer. This is the average sum
over end-to-end distances between the first and the last monomer of each polymer REE,i:

REE =
1

M

M∑

i=1

REE,i. (3.12)

Estimates of the average energy and average end-to-end distance per polymer together with
their thermal derivatives are shown in Fig. 3.21 and Fig. 3.22, respectively. The lines are
obtained from the raw data of the multicanonical production run by histogram reweighting
with a fine temperature resolution. In equidistant temperature steps data points are presented
from time-series reweighting with error bars using jackknife error analysis. For details see
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Figure 3.22.: Same as Fig. 3.21 for the average end-to-end distance per polymer (left) and its
temperature derivative (right).

Sec. 5.8. The curve “dilute limit” is obtained from a separate multicanonical simulation of a
single polymer of length N = 13. The aggregation transition temperature may be identified
as the temperature where the energy and average end-to-end vector have a sharp jump and
the corresponding thermal derivatives show a large, narrow peak. One important observation
is the decreasing aggregation temperature with increasing radius, verifying the dilute limit for
vanishing density. As expected, above the aggregation temperature almost all curves follow
the behavior of an isolated polymer in the dilute limit. This holds true almost directly until
the point of equilibrium aggregation. The canonical observables again coincide below the
aggregation transition, because then the spherical confinement has almost no effect on the
structural properties of the aggregate as long as the confinement is larger than the aggregate.

An exception for the high-temperature, isolated chain regime are rather dense systems (small
RS). In this case, no pronounced aggregation transition occurs and it may be followed that
the spherical confinement is of the order of the aggregate and does not allow for separate,
independent polymers. This can be understood considering the overlap threshold Φ∗ of polymer
solutions [3]. For the applied polymer model with average bond length r0, the volume fraction
of a multi-polymer systems is given by

Φ = NM
(r0

2

)3
/R3

S . (3.13)

On the other hand, the intrinsic volume fraction of a single random coil may be defined as

Φ∗ ' N
(
r0
2

)3

R3
EE

' N1−3ν ≈ N−0.76, (3.14)

where REE ' r0N
ν is the end-to-end distance of a self-avoiding walk with ν ≈ 0.588. A

polymer system may be considered dilute if the volume fraction of a multi-polymer system
Eq. (3.13) is much smaller than the intrinsic volume fraction of a single random coil Eq. (3.14).
A volume fraction of the order of the single Gaussian-coil threshold, Φ = Φ∗, describes the
crossover to the semi-dilute regime, where polymers may no longer be considered independent.
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3. Aggregation transition in dilute systems with flexible homopolymers

Solving this for the radius of the spherical confinement yields a lower bound for a dilute system:

RcS ' r0M
1/3Nν . (3.15)

Consequently, if RS > Rc a multi-polymer system may be considered dilute and around
RS ≈ RcS a crossover to the semi-dilute regime occurs. For the considered example RcS ≈ 6.3
(N = 13, M = 8). This is consistent with the deviations observed in Fig. 3.21 and Fig. 3.22
for RS = 5 and to a lesser extent also for RS = 10.

Thus, only for dilute multi-polymer systems the canonical average observables follow the
isolated polymer behavior above the aggregation transition temperature. Moreover, Fig. 3.21
and Fig. 3.22 suggest that the individual flexible polymers each follow the collapse transition
of the dilute limit down to the point where aggregation suddenly sets in and becomes the
dominant physical process. This can be seen best in the average end-to-end distance REE.
With decreasing temperature, REE decreases as expected for polymer collapse with a broad
peak around T ∼ 0.9 in its thermal derivative. Directly at the aggregation transition, how-
ever, REE shows a sharp increase again. This signals that the polymers de-collapse at the
aggregation transition in order to form energetically more favorable aggregate structures. Not
distinguishing between inter- and intra-chain contacts, the single macroscopic aggregate will
assume a spherical shape forming highly entangled, amorphous aggregates (see also Sec. 4.2)
rather than patching collapsed polymers together. As a consequence, the average end-to-end
distance increases.

The competition between single polymer collapse and multi-polymer aggregation has been
observed before. For systems with equal inter- and intra-polymer interactions it has been
noticed that they are separate processes but that aggregation dominates especially in the
limit of increasing chain length [53]. The dominance of the aggregation transition can be
understood by its discontinuous nature opposed to the continuous collapse transition. This
discontinuous nature follows from a strong structural variation and can be seen as a sharp
jump of, e.g., the end-to-end distance. This is consistent with the presented data, showing
furthermore that with varying density the process of single-polymer collapse continues until
the density-dependent aggregation temperature. Moreover, Fig. 3.22 shows that the single-
polymer collapse is “reverted” at the aggregation transition, unfolding the polymers in order
to form equilibrium aggregates with entangled, more extended polymers.

3.5.2. Aggregation transition in the microcanonical ensemble

As mentioned above, the spherical confinement provides a safe and controllable base to study
the effect of density on the aggregation transition. In principle, a periodic box would also allow
to study this effect. This is discussed for particle condensation in Sec. 2.6. In analogy, here
the number of monomers per polymer N is considered as a system property that describes
the extension of a polymeric (extended) object. This assumption is useful when comparing
conformational entropies with varying density towards the dilute limit. In order to show the
generality of the results, we considered three polymer lengths N = {13, 20, 27}, which show
the same qualitative behavior.

The microcanonical ensemble allows to intuitively estimate a leading-order estimate of the
relation between aggregation temperature and density. Here, the microcanonical entropy is
defined by the logarithm of the total number Ω of configurations with a given (potential) energy:
S(E) = ln Ω(E). An estimate for Ω may be directly obtained from the parallel multicanonical
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Figure 3.23.: Microcanonical entropy S (up to an additive constant) as the logarithmic number
of states ln Ω for M = 8 polymers (N = 13), obtained from a microcanonical
analysis of the multicanonical data.

simulation in the course of a microcanonical analysis, see also Sec. 2.5 for more details. An
example of microcanonical entropies is shown in Fig. 3.23 for the 8×13 system confined in steric
spheres with radii RS . The microcanonical inverse aggregation transition temperature may be
estimated as the slope of the hull connecting the aggregated and separated phase [42, 49–51],
βagg = ∆S/∆E with ∆S = S(Esep) − S(Eagg). The arguments are now the same as for the
particle gas in Sec. 2.6: consider a fixed number of particles M and varying volume V ∝ R3

S .
Analogue to an ideal gas, the number of states in the separated phase may be approximated
proportional to VM , i.e.,

S(Esep) ∼ ln

[(
4π

3
R3
S

)M]
∝M lnRS . (3.16)

The number of states in the aggregated phase will barely be influenced by the confinement,
compared to the homogenous separated phase. This can be seen in Fig. 3.23, where S(Esep)
dominates over S(Eagg) such that ∆S ≈ S(Esep) up to a constant. Moreover, for a fixed
number of particles, the energy difference may be considered constant. Then, the inverse
microcanonical aggregation temperature depends on the logarithm of the polymer density
ρ = M/V [42, 65]

T−1
agg(RS) ∼ S(Esep)

∆E
∼ − ln ρ+ const. (3.17)

This is completely analogue to the results for particle condensation in Sec. 2.6, suggesting that
in fact dilute, flexible polymers may be considered as “extended objects”. Also, this has been
observed recently for two lattice proteins [60] and polymer adsorption [54]. This dependence
may be expected to also hold for the aggregation temperature obtained from the peak of the
specific heat. This is shown in Fig. 3.24 for N = 13 and N = 20 and several M with varying
density. Each solid line shows a fit to a fixed (N,M) tuple of the form Eq. (3.17). One can
see that the derived relation, based on entropic ideal gas assumptions in the microcanonical
ensemble, describes the qualitative behavior of the “canonical” aggregation temperature with
density. With increasing number of polymers, the slopes of the fits become more similar.
The case N = 27 is not shown explicitly here but looks similar and will be part of the next
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subsection. Tables with aggregation temperatures and the fit results are listed in Ref. [42].

3.5.3. Combining density dependence and finite-size effects

As mentioned before, flexible polymers form an amorphous aggregate with spherical shape. For
intermediate polymer numbers, a large fraction of polymers will be included in the aggregate
and one may argue that the aggregate should behave similar to a single polymer of length NM
below the aggregation transition. Then, the linear extension of the aggregate should scale as
R ∼ (NM)1/3 in this regime of “a few” polymers (see also Sec. 3.4). One measure for this is
the total squared radius of gyration

R2
gyr =

1

NM

∑
(ri − rcm)2 , (3.18)

where rcm is the center of mass vector with respect to all monomers. This may be tested
for small spheres (RS = 30) where the polymers are dilute enough to form stable aggre-
gates at sufficiently high temperatures. The choice of a small radius is justified considering
that the canonical and microcanonical results from the previous discussion in this section
show a consistent low-temperature behavior for different radii. Figure 3.25 (left) shows the
squared radius of gyration versus the expected scaling function of the total number of monomers
f(NM) = (NM)2/3. Since this was not the main focus of the study, the multicanonical simu-
lations were restricted to a reduced energy range bounded below by sufficiently small energies
for the considered system sizes. One drawback is, that this does not allow to reweight to
arbitrarily small temperatures below the aggregation transition. For the comparison of the
radius of gyration, a fixed temperature below the aggregation transition is required, which is
still within the sampled range of the simulation. As both boundaries vary with the length and
number of polymers, this leads to a relatively small sample size in Fig. 3.25 (left): the chosen
temperature T = 0.7 is too large for the smallest systems to be in the aggregated state but
too small for the large systems to be included in the sampled range. Nonetheless, the quali-
tative data collapse shows that the expectation of the similarity of many- and single-polymer
low-temperature extension is valid for finite polymer systems.
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In order to describe the finite-size dependence of the transition temperature for different
M at fixed density, one may thus assume for intermediate-sized systems that a majority of
constituents are contributing to the aggregate (compare also Sec. 2.3.3 and Sec. 3.4.2). For
flexible polymers, this aggregate is spherically shaped and the linear extension may be related
to the radius of a sphere, i.e., the radius of gyration. According to Sec. 3.4, one would expect
for the intermediate regime a scaling of the form

Tagg(M,N, ρ) ∝
(

1 + s(N, ρ)M−1/3 +O
(
M−2/3

))
, (3.19)

where s(ρ) is the amplitude of the leading correction and may depend on the density. Having
the functional dependence on the density from Sec. 3.5.2 allows to estimate the aggregation
transition temperature for any sufficiently small density in the measurement range. The error
may be then estimated by error propagation. The result for a polymer density ρ = 10−3 is
shown in Fig. 3.25 (right) for the three considered polymer lengths. A clear linear behavior of
the scaling form Eq. (3.19) is observable. In fact, s(N, ρ) shows a small density dependence,
which is expected to converge for small densities. However, a clear conclusion is difficult on the
basis of the present data. Since the effects on s(N) are rather small, it is considered constant
for the remaining part. The extrapolation to the infinite system size aggregation transition
shows the same ln ρ dependence, but is not physically justified using the intermediate regime.
This is, however, consistent with the results for particle condensation in Sec. 2.6 as expected
assuming ideal gas behavior and remembering the finite-size scaling discussion in Sec. 3.4.
As mentioned before, the available system sizes for polymer aggregation are restricted to the
intermediate scaling regime, which seems to be quite stable over a broad range of polymer
numbers.

If the finite-size corrections may be assumed to be systematic over a broad range of densities
(s(N) ≈ const.), then a rescaling of the aggregation temperature with these corrections would
allow for a reduced description independent of system size. Reconsidering the entropy-related
microcanonical density dependence, e.g., in Fig. 3.24, and multiplying Eq. (3.19) to the inverse
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Figure 3.26.: Rescaled inverse aggregation temperature versus density ρ (from Fig. 3.24) for
all three polymer lengths N = {13, 20, 27}.

aggregation temperature reduces the problem to a merely N -depending function of the polymer
density. The resulting data collapse is shown in Fig. 3.26 for the three considered cases. Here,
the parameter s(N) was assumed constant and its value is denoted on the y-axes of the plots.
The dashed line is a guide to the eye. The data collapse on a single line over several orders of
magnitude shows that assuming a globular macroscopic aggregate on the one side and an ideal
gas approximation on the other side allows for an efficient description of polymer aggregation
in the limit of a mesoscopic number of dilute uniform polymers. Moreover, this is consistent
with the interpretation of polymers as extended particles for which the same considerations
yielded comparable results.
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4. The role of stiffness in polymer aggregation

Introducing bending stiffness to (flexible) Θ-polymers results in a model system for an entire
class of semiflexible polymers with excluded volume and short-range attraction. The interplay
of excluded volume, short-range attraction and stiffness causes a multitude of structural phases.
Early studies of the role of stiffness for a single polymer include mean-field calculations [83] and
PERM chain-growth simulations of lattice models [84]. Depending on the considered model,
this structural phase diagram may become quite extensive – ranging from globular to toroidal
structures – as was shown for tubelike polymers [85–89] and bead-spring polymers [90, 91].
For sufficiently large stiffness, the wormlike chain model is recaptured, which only considers
stiffness and neglects self-avoidance and self-attraction.

Studying aggregation of coarse-grained semiflexible Θ-polymers allows to unravel which
properties may be reproduced already with a simple, generic model relying merely on self-
and mutual avoidance, short-range attraction and stiffness. This includes studies of general
mechanisms for peptide [51, 52, 92, 93] and homopolymer [42, 53, 65, 94, 95] aggregation.
Focusing on the effect of stiffness, it was possible to show that, depending on stiffness, the
aggregation transition of homopolymers may be accompanied by an additional freezing transi-
tion [53] and that stiffness plays a key role for the structural phases of polymer aggregates [95]
(see Sec. 4.2). For sufficiently large stiffness, semiflexible Θ-polymer bundles show consistent
results with interacting wormlike chains. Examples are the study of unbinding transitions for
two and more parallel filaments [76, 96] and the twisting of filaments in a wormlike bundle
model [97–99]

Using analytical and numerical techniques enables to understand or extend mechanisms,
check claims from experiments, and in the best case make predictions for experiments. For
example, structural motifs similar to those of twisted bead-spring or wormlike bundles occur
after bundling into mature amyloid fibrils [100] and upon adsorption onto nano-wires [101].
Furthermore, it was argued that the free-energy barrier of amorphous aggregates is lower than
for ordered structures, such as amyloid fibrils [102]. This was qualitatively verified comparing
amorphous aggregates and polymer bundles of semiflexible bead-spring polymers [95] (see
Sec. 4.2 and Sec. 4.3).

This chapter is organized in the following way. The model of a bead-spring Θ-polymer is
extended to semiflexible polymers in Sec. 4.1. The resulting structural phases, from amor-
phous aggregates to polymer bundles, are discussed in Sec. 4.2 for 2-8 (short) polymers. This
includes the introduction of an effective bundle parameterization in order to characterize low-
temperature conformations. In Sec. 4.3, I investigate the effect of stiffness on the fixed-density
finite-size scaling in an accessible (mesoscopic) regime. In extension to the previous discussion,
Sec. 4.4 recaptures the effect of density on aggregation of semiflexible polymers.

4.1. Semiflexible polymer model

In order to study the effect of stiffness on polymer aggregation, I restrict the discussion to the
case of bead-spring polymers in continuous space. While it is in principle possible to introduce
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stiffness also in a lattice model, this would of course introduce additional discretization effects.
Semiflexible polymers may be successfully described by the Kratky-Porod or wormlike-chain
(WLC) model [103, 104]. This has been applied to the study of structural and dynamic
properties of DNA, RNA, microtubules, intermediate filaments and actin filaments, to name
a few prominent examples. The WLC model is a continuum formulation of a semiflexible
polymer with contour length L, neglecting microscopic details on the monomer scale, and
modeling stiffness by an energy attributed to thermally excited bending. If the contour is
described by the continuous curve R(s), the curvature-depending Hamiltonian may be written
as

HWLC =
κ̃

2

∫ L

0
ds

(
∂2R(s)

∂s2

)2

, (4.1)

where κ̃ is the bending stiffness. Here, one usually introduces three regimes depending on
the bending stiffness or, more commonly, the persistence length lp = κ̃/kBT , which may be
associated with the tangent-tangent correlation length along the polymer. Usually, r0 ≈ lp � L
refers to flexible polymers, r0 � lp ≈ L refers to semiflexible polymers, and lp � L refers to
stiff polymers.

This formulation allows to treat certain problems analytically. The complexity of (bio-)
polymer physics is simplified by considering the isolated property of stiffness, neglecting self-
avoidance and also self-attraction. This is a valid assumption for many semiflexible polymers
and in the limit of stiff polymers. Considering Θ-polymers, however, introduces a short-range
self-attraction with the corresponding collapse transition, which may not be easily covered
by the WLC model. For several interacting wormlike chains, one usually introduces so-called
cross-linkers in order to model bundle transitions or networks.

4.1.1. Extension of the bead-spring model to semiflexible polymers

The success of the wormlike chain shows that the isolated property of bending stiffness alone
allows to describe a wide range of physical processes. Additionally considering the properties of
self-avoidance and short-range self-attraction yields a semiflexible Θ-polymer model. This may
be modeled with coarse-grained monomers connected by bonds and is no longer a continuum
formulation but a discrete polymer model in continuous space. Thus, the bending stiffness
needs to be formulated in terms of bonded monomers. The bonds may be related to local
tangents of the curve and may be written in terms of unit bonds bi = bui. For equally long
bonds the WLC Hamiltonian may be rewritten asH = (κ̃/b)

∑
(1− uiui+1) [105], which is also

known as the Heisenberg chain model up to a constant. Rewriting the scalar product in terms of
the angle θi between neighboring bonds, i.e., uiui+1 = cos θi, leads to H = (κ̃/b)

∑
(1−cos θi).

Formally, this only holds for equally long bonds.

For models with elastic, harmonic bonds like the bead-spring polymer one may argue that
the average bond length is the relevant length scale and may be associated with the constant
bond length. Moreover, it suffices to consider a potential that is motivated by the isolated
properties of the wormlike chain, which itself remains a model. Then, the bead-spring model
from Sec. 3.1.2 may be extended to semiflexible Θ-polymers by introducing a WLC-like bending
energy term

Ebend = κ
∑

(1− cos θi) , (4.2)

where κ is the bending stiffness that may be merely qualitatively related to the bending stiffness
κ̃ in the WLC formulation Eq. (4.1). Several polymers then naturally interact via inter-polymer
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Figure 4.1.: (left) Comparison of independent Metropolis simulations (data points) with canon-
ical expectation values reweighted from parallel multicanonical data (solid lines)
for different bending stiffness κ (M = 2, N = 13, ρ = 10−3). (right) The case
κ = 6 in its free-energy landscape and multicanonical data points.

Lennard-Jones contacts (with energy scale ε) as for flexible polymer aggregation in Chap. 3.
In the following, I will refer to rather flexible polymers for 0 ≈ κ < Nε and to rather stiff
polymers for κ ≈ Nε. This classification is in terms of energies and may be related to a
persistence length only by considering the temperature scale (see above).

The Monte Carlo updates I applied are the same as for flexible polymers in Sec. 3.1.2. All
numerical results in this chapter are again obtained from parallel multicanonical simulations.
As usual the data points with error bars are calculated using time-series reweighting with jack-
knife error analysis and the lines with higher resolution using histogram reweighting. In order
to test the implementation of the model, I performed independent Metropolis simulations for
2 polymers of length N = 13 for several κ with local updates (single monomer displacement)
only. For each temperature, 20 000 measurements were recorded with 52 000 updates in be-
tween. Each set of data points (fixed κ) is obtained from a single simulation starting at high
temperatures and step by step cooling down until the lowest temperature is reached. Figure 4.1
shows results from both Metropolis and multicanonical simulations. The left figure shows the
total (conformational) energy E for several κ values, verifying both implementation and anal-
ysis: the Metropolis data points are scattered around the muca estimates from histogram
reweighting (solid line). The error bars are obtained including an integrated autocorrelation
time analysis. It can be seen that the high-temperature regime shows strong agreement, but
differences occur in the low-temperature regime especially for κ = 6. It may be argued that the
Metropolis algorithm has difficulties in the latter temperature range, due to low acceptance
rates and large conformational or entropic barriers.

The extreme case κ = 6 is shown again in Fig. 4.1 (right) together with the microcanonical
free-energy landscape. The microcanonical free energy is related to the energy probability
distribution up to a constant, βF (E) = − lnP (E), which can be obtained directly from the
multicanonical simulation (see also Sec. 2.4). It can be seen that the data points from the mul-
ticanonical simulation (red crosses and line) follow the free-energy minimum. On close sight,
there are two temperature regions with two local free-energy minima: one around T ≈ 0.73 and
one around T ≈ 0.5. The larger temperature may be associated to the aggregation temperature
and the lower temperature is connected to the formation of entangled hairpins (see discussion
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Figure 4.2.: Example of the end-to-end correlation parameter CR, distinguishing between
amorphous aggregates (≈ 1/3) and correlated bundles (≈ 1) for 8 semiflexible
polymers of length N = 13 and ρm = 10−3. More flexible polymers (κ = 3) aggre-
gate into an amorphous phase; rather stiff polymers (κ = 13) aggregate directly
into bundles.

in Sec. 4.2.1). For low temperatures, the Metropolis simulation seems to get stuck in a confor-
mation that may not be easily transformed into the corresponding equilibrium conformation.
This is a known problem of local updates in canonical simulations at low temperatures. The
overall picture, however, supports that the multicanonical simulation samples the state space
fulfilling both ergodicity and detailed balance.

4.1.2. End-to-end correlation parameter

As mentioned in Chap. 3 one observes amorphous aggregates for flexible polymers. For suffi-
ciently stiff polymers, however, one expects to observe polymer bundles. In order to distinguish
amorphous aggregates from bundle or fibril structures, we introduce an order parameter [95]
that measures the correlation of the normalized end-to-end vector Ri of each polymer via the
scalar product:

CR =
2

M(M − 1)

∑

i<j

(
R̂i · R̂j

)2
. (4.3)

If all polymers are separated and freely moving, their relative orientations are independent of
each other. Integration over the full angular space of independent vectors results in CR = 1/3
(see the following argumentation). The same holds approximately for the amorphous aggregate,
where the polymers may be considered uncorrelated. On the contrary, forming a bundle, i.e.,
all polymers aligned in a cylindrical shape, results in a strong correlation of the end-to-end
vectors. Then, the average angle between Ri and Rj will be almost zero, such that cos(α) ≈ 0
and CR → 1. For an example with 8 polymers of length N = 13 see Fig. 4.2. Alternatively,
one may consider the nematic order parameter [106] at the additional cost of computing a full
bond-bond interaction tensor.

The bounding cases of correlated and uncorrelated vectors may be estimated by taking a
look at two unit vectors Ri and Rj . Starting with the correlated case, both vectors will be
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(anti-) parallel and the enclosed angle α vanished in the limit of completely correlated vectors,
such that the average squared scalar product will be 1. The same will be true if the number
of vectors is increased and all of them are correlated.

Consider now both unit vectors to be completely independent of each other. The average
squared scalar product is evaluated by integration over the full configuration space of both
vectors

〈(cosα)2〉 =

∫
dVidVj
16π2

(RiRj)
2 =

∫
dθidϕidθjdϕi

sin θi sin θj
16π2

(cosα)2 , (4.4)

with a transformation to spherical coordinates Ri = (sin θi cosϕi, sin θi sinϕi, cos θi) and the
resulting Jacobian sin θ. Inserting all the definitions into the squared scalar product yields

cos2 α = sin2 θi sin2 ϕi sin2 θj sin2 ϕj

+ 2 sin2 θi sinϕi cosϕi sin2 θj sinϕj cosϕj

+ 2 sin θi cos θi cosϕi sin θj cos θj cosϕj

+ sin2 θi sin2 ϕi sin2 θj sin2 ϕj

+ 2 sin θi cos θi sinϕi sin θj cos θj sinϕj

+ cos2 θi cos2 θj .

Since all angles are independent of each other, the integrals may be evaluated independently.
For this task, I make use of the following list of known integrals:

∫
dx sinx = − cosx

∫
dx cosx = sinx

∫
dx sin2 x =

1

2
(x− sinx cosx)

∫
dx cos2 x =

1

2
(x+ sinx cosx)

∫
dx sin3 x =

1

12
(cos 3x− 9 cosx)

∫
dx sinx cosx = −1

2
cos2 x

∫
dx sin2 x cosx =

1

3
sin3 x

∫
dx sinx cos2 x = −1

3
cos3 x

Integrating over θ ∈ [0, π] and ϕ ∈ [0, 2π] causes the contributions with linear terms of sin or
cos to vanish and one remains with

〈(cosα)2〉 =

∫
1

16π2

{
sin3 θi cos2 ϕi sin3 θj cos2 ϕj

+ sin3 θi sin2 ϕi sin3 θj sin2 ϕj

+ sin θi cos2 θi sin θj cos2 θj
}

=
1

16π2

{(
4

3

)2

π2 +

(
4

3

)2

π2 +

(
2

3

)2

(2π)2

}

=
1

3
.

With the proper normalization in Eq. (4.3), the same result is also valid for an increasing
number of vectors, if all of them are completely uncorrelated.
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Figure 4.3.: Effect of stiffness on the canonical estimates of the average energy (left) and specific
heat (right) for 8 semiflexible polymers of length N = 13 (ρm = 10−3). The
temperature is shifted around the aggregation temperature Tagg and the graph
color encodes the bending stiffness κ in the interval [0, 12] with ∆κ = 0.2.

4.2. Structural phases of semiflexible polymer aggregates

One key question to be answered is the effect of stiffness on the structure of Θ-polymer aggre-
gates. The arising complex interplay of collapse and aggregation with stiffness leads to generic
κ-T structural phase diagrams of an entire class of semiflexible polymers. This section focuses
on the discussion of these structural phase diagrams for 2-8 semiflexible polymers of length
N = 13. Of particular interest will be the arising intermediate-stiffness regime, the occurrence
of twisted bundles for more stiff polymers at low temperatures, and a comparison of free-energy
barriers for amorphous aggregates and polymer bundles. Most of the results in this section are
published in Ref. [95].

In order to relate the aggregation transition of semiflexible Θ-polymers to flexible polymers
(κ = 0, see also Chap. 3), Fig. 4.3 shows canonical estimates of the average energy and the
specific heat CV per monomer for 8 polymers with different κ (encoded in the line color).
The temperature axis is shifted to center around Tagg, defined as the temperature of the
largest peak in CV . In all cases, the data display a sharp, discontinuous transition when
the polymers aggregate from an entropy dominated, soluble regime at high T into an energy
dominated aggregated regime at low T . On close sight, one may observe that the size of
the energy jump and the height of the specific heat peak increase with stiffness. Below the
aggregation transition, further less pronounced peaks are visible for intermediate κ values,
indicating continuous transitions subject to discussion below. The energy clearly shows the
involved structural transitions but seems unsuitable to distinguish the possible structures of
the aggregate. The same holds for the phase separation parameter Γ2 (see Sec. 3.1), which only
shows small differences, see also Ref. [65]. Therefore, I make use of the end-to-end correlation
parameter introduced above in order to distinguish the occurring structural motifs.
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4.2.1. Structural phase diagrams for finite semiflexible polymer systems

An overview over the involved structural phases of small semiflexible polymer systems with
M = {2, 4, 8} polymers of length N = 13 is shown as generic κ-T “phase” diagrams in Fig. 4.4.
The monomer density is in all cases ρm = 10−3. Due to the finite systems, the transitions
between structural phases should not be confused with thermodynamic phase transitions. As
discussed in Sec. 3.4, the thermodynamic limit may be recovered for the aggregation transition
in the limit M → ∞ (see also Sec. 4.3). From the discussion of flexible polymer aggrega-
tion, one may expect with increasing polymer number a mixed aggregated phase consisting
of a single macroscopic aggregate in equilibrium with separated polymers. For the considered
system sizes and small density, the aggregated conformations include all polymers. The dis-
cussion of the corresponding finite-size structural phase diagram is thus not applicable to the
thermodynamic limit but gives insight into the transition mechanisms and structural proper-
ties involving few polymers. This may be relevant also for non-equilibrium considerations of
semiflexible polymers, where inhomogeneous aggregation results in local interaction of only rel-
atively few polymers. For semiflexible polymers this may lead to network formation and twisted
structures. Examples include the finite thickness of DNA bundles observed in experiment and
simulation [107], as well as finite thickness of F-actin bundles [108, 109]. The (equilibrium)
structural phase diagrams presented here highlight what happens in the aggregation process
of a finite number of polymers for an entire class of semiflexible polymers over a wide range of
stiffness and temperature.

The diagrams are obtained from parallel multicanonical simulations at fixed κ values in the
range [0, 14] with ∆κ = 0.2. This includes both flexible (κ = 0) and rather stiff (κ ≈ Nε)
polymers. Exemplary simulations of shorter and longer chain length support the obtained
picture. The structural phase diagrams combine the landscape of the end-to-end correlation
parameter CR with transition points obtained from the peaks of the specific heat (black dots)
and of the thermal derivative of the phase separation parameter (blue squares). In the latter
case, the color encodes the strength of the signal from rather strong signals (dark blue) to
rather weak signals (light blue), which in some cases may be merely fluctuations without
physical significance. Next to the diagrams, typical conformations are presented from different
structural regions for selected κ and T . In principle, I distinguish between the separated
or soluble phase (S), in which all polymers are independent of each other; the aggregated
phases (A) with polymers located close to each other; and the “frozen” phases (F ) as the
corresponding low-temperature regions with rather well-ordered structures. The aggregated
and frozen phases are further differentiated into amorphous aggregates (A1, F1) with CR ≈ 1/3
for rather flexible polymers (small κ), and polymer bundles (A2, F2) with CR ≈ 1 for stiffer
polymers. For referencing purposes, the frozen phases are partially further subdivided with a
second index.

The amorphous aggregates (A1) show uncorrelated structures for all three cases, visible
in CR ≈ 1/3 and looking at the corresponding typical conformations. The compact, spher-
ical structure suggests that close packing is the driving formation mechanism, maximizing
monomer-monomer contacts. The line-shape of the polymers seems unimportant. For rather
flexible polymers, this seems similar to the collapsed state of a single polymer or a cluster of
non-bonded monomers. Decreasing the temperature even further results in additional freezing-
like transitions, again similar to the single-polymer case [69, 86–88, 90] but with the additional
possibility to wrap around each other (F1). On the contrary, stiffer polymers form correlated
polymer bundles (A2), aligning elongated polymers in parallel. Here, clearly the linear na-
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Figure 4.4.: Structural phase diagrams for 2, 4 and 8 polymers with N = 13 monomers each
(ρm = 10−3). The surface plot shows the end-to-end correlation parameter CR; the
symbols mark the maxima of the heat capacity (black dots) and of the temperature
derivative of the phase separation parameter Γ2 (blue squares). Several structural
phases are identified, namely S (soluble), A (aggregated) and F (frozen), and
typical conformations for the low-temperature phases are presented. The figure is
partially adapted from Ref. [95].
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ture of the polymer is important. Within these large-temperature bundles, the polymers may
fluctuate both along the bundle direction and perpendicular. Similar bundle structures were
observed in simulations of semi-dilute DNA solutions as explicit semiflexible polymers [107]
with comparable parameters to those considered here. For lower temperatures, the bundles
tighten until they may be describes as twisted bundles (F2) recapturing the qualitative be-
havior of the wormlike bundle model [97] for sufficiently large stiffnesses at fixed N . This is
already observed for 4 polymers and becomes more prominent for 8 polymers. The twist may
be explained by a large energetic gain from maximizing Lennard-Jones contacts compared to
the energetic loss from bending (see discussion below in Sec. 4.2.4). This is consistent with
analytical considerations of twisted fibers [98, 99] and numerical studies with several tubelike
polymers [94]. For rather stiff Θ-polymers, the (discrete) wormlike chain seems to become
a good approximation. This allows to relate the persistence length and bending stiffness to
leading-order as lp/r0 ≈ κ/kBT . For a large range of the twisted bundle regime in Fig. 4.4,
the length ratio lp/Nr0 is of order unity. This matches typical scales of amyloid fibrils, where
the pitch length is of the order of the protofibril length (which, however, are both much
larger) [110]. Additional specific interactions such as hydrogen bonds and hydrophobic effects
may stabilize or destabilize structural motifs.

In all three cases, an intermediate stiffness regime is observable roughly between κ ≈ 4 . . . 8,
where both uncorrelated and correlated aggregates are present for a fixed κ. The details,
however, differ noticeably from 2 to 8 polymers. For 2 polymers, lowering the temperature
in this region leads to an initial correlation into polymer bundles followed by a decorrela-
tion into hairpin-like structures (F13). The entangled hairpins may have a slight twist and
in some cases entangle perpendicular (CR ≈ 0 for 2 polymers only). A similar picture is
obtained for 4 polymers, while the crossover along κ shows that within the narrower regime
both amorphous aggregates and polymer bundles are observable. For low temperatures, again
hairpin-like structures are achievable. However, the case of 4 polymers already differs from 2
polymers and indicates a qualitative change in the intermediate regime. The case of 8 poly-
mers then demonstrates the reverse situation, where first uncorrelated aggregates A1 form
right below the aggregation transition, followed by a correlation of polymer end-to-end vectors
for lower temperatures resulting in polymer bundles A2. Lowering the temperature even fur-
ther, the bundles undergo an additional structural transition into the frozen twisted bundle
phases. Follow for example the temperature along κ = 6, which is also supported with typical
conformations in Fig. 4.4. Varying κ at fixed low T leads to a narrow crossover in all cases.

4.2.2. Microcanonical analysis in the intermediate stiffness regime

As discussed in Sec. 2.5, a microcanonical analysis [49, 50] may provide additional information
for structural transitions and is a suitable tool to classify the order of a structural transitions
in finite systems [55]. This is now particularly useful in order to shed some light into the
finite-size transitions within the intermediate stiffness regime.

An estimate of the microcanonical entropy S(E) (in terms of the potential energy) may be
obtained directly from the multicanonical production run. Using numerical derivatives (see
Sec. 5.4.1) yields the microcanonical inverse temperature β(E) = ∂S(E)/∂E and its derivative
γ(E) = ∂β(E)/∂E. This is shown in Fig. 4.5 for the three cases M = {2, 4, 8} inside the
intermediate regime. In all cases, the aggregation transition at larger energies shows a first-
order like signature (γ > 0 peak). For 2 polymers an additional first-order transition occurs at
lower energies. This may be associated to the transition A2 → F13 from an extended “bundle”
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Figure 4.5.: The first (β) and second (γ) derivatives of the microcanonical entropy for M = 2,
M = 4 and M = 8 polymers with N = 13 show the occurrence of an additional
transition for the intermediate stiffness regime besides the first-order like aggrega-
tion transition (γ > 0 peak).

into entangled hairpins. In case of 4 polymers, the transitions at lower temperatures are
not apparent in the available microcanonical range. Also in the canonical ensemble there are
merely small peaks in the corresponding thermal derivatives. This signals that these structural
changes at lower energies and corresponding temperatures are second-order like transitions or
crossovers. For 8 polymers, there are additional second-order like transition peaks (γ < 0)
visible that may be associated to the transition A1 → A2 from amorphous aggregates into
polymer bundles. The structural changes at lower temperatures into twisted bundles are again
not visible in the microcanonical ensemble indicating a crossover from polymer bundles to
twisted bundles.

It may be noted that the aggregation-peak in γ(E) decreases with increasingM which may be
overlooked due to the scaling of the axes. This seems surprising remembering that for flexible
polymers in Sec. 3.4 one needed larger polymer numbers in order to see a monotonic decrease.
This may be due to the lower density and may also change again with intermediate polymer
numbers. Still, this supports that also for semiflexible polymer the aggregation transition is
a first-order phase transition. To clarify this, Sec. 4.3 includes a microcanonical finite-size
scaling analysis.
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4.2.3. Free-energy barrier

Recalling Sec. 3.4, flexible polymer aggregation is a first-order phase transition in the limit
of increasing polymer number. Flexible polymers are a limiting case of semiflexible polymers
with κ = 0. Combining this result with the first-oder signatures for finite-size semiflexible
polymer aggregation, it is expected that the aggregation transition is accompanied by a free-
energy barrier. Figure 4.6 shows an example of the microcanonical free-energy barrier ∆F
for 8 polymers, encoding the stiffness in the line color with κ ∈ [0, 12], ∆κ = 0.2. The
microcanonical free energy is obtained from the canonical energy probability distribution at
equal height temperature Teqh:

Feqh(E) = −kBTeqh ln (Peqh(E)) . (4.5)

The free-energy barrier is then defined relative to the free-energy minimum, ∆F = Feqh(E)−
Fmin. Alternatively, the microcanonical free-energy may be defined in terms of the transition
temperature from the specific heat peak corresponding to an energy probability distribution
with both peaks of equal weight. This would emphasize that one phase is more stable than
the other, while the overall picture of the barrier is not altered but less clear. In the current
definition, the two minima of the free energy correspond to the equilibrium phases at coexis-
tence: the soluble (S) phase at ES and the aggregated (A) phase at EA. The existence of a
local maximum, or barrier, between these two phases supports the first-order nature already
for this finite system size.

Figure 4.6 shows that the free-energy barrier between the coexisting structural phases clearly
depends monotonically on the stiffness. In addition, one may qualitatively distinguish the
amorphous regime A1 (blue) from the bundle regime A2 (green). A finite-size scaling of the
barrier with system size follows in Sec. 4.3, but this already supports the recent claim that
the free-energy barrier for amorphous aggregation is lower than for aggregation into ordered
structures, such as bundles [102].
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4.2.4. Effective parameterization of Θ-polymer bundles

In order to study the emerging twisted polymer bundles, I make use of effective parameteri-
zations of Θ-polymer bundles at zero temperature. This will not allow to calculate a ground
state but to compare different parameterizations and identify possible ground-state candidates.
Moreover, the discussion is restricted to bead-spring polymers for which it has been shown that
single flexible polymers form icosahedral structures in the ground state [69], similar to Lennard-
Jones crystals. In the current parameterization this may be also expected for several flexible
polymers. If bending stiffness κ is introduced the situation changes and some possible scenarios
are discussed below.

Two parallel rods

The first naive ground state estimate is parallel aligned stiff rods. In this case, the bending
potential does not contribute and considering neighboring monomers in their local energy
minimum also leads to a vanishing FENE-potential contribution. This leaves only the Lennard-
Jones interactions. Assuming for T → 0 a regular structure, Fig. 4.7 shows two examples of
parallel stiff rods: symmetric (left) and shifted (right). The shifted case is arranged such that
all closest Lennard-Jones contacts are in the minimum r0, resulting in a r0/2 shift. This can
be shown to be the optimal shift. The corresponding total energies for two polymers of length
N with a Lennard-Jones cutoff radius rc = 2.5σ ≈ 2.23r0 <

√
5r0 are then given by

Ep,sym = NV ∗LJ(r0) + 2(N − 1)
[
V ∗LJ(
√

2r0) + V ∗LJ(2r0)
]

≈ −1.4165N + 0.3350

Ep,shift = V ∗LJ(r0) (N +N − 1) + V ∗LJ(
√

3r0) (N − 1 +N − 2) + V ∗LJ(2r0) (N − 2 +N − 2)

≈ −2.1095N + 1.2116

For N = 13 this would yield energies Ep,sym ≈ −18.08 and Ep,shift ≈ −26.21. This is consistent
with the energy scale from simulations.

Two twisted rods

With the estimations of parallel rods in mind, it may be attempted to study the effect of a
twist on two semiflexible polymers. Consider two parallel, shifted polymers with monomers
located on circles of radius R at distance d, see Fig. 4.8. The polymers are at initial angular
distance ϕ. Now, each polymer gets an additional twist described by an angular change of ω
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Figure 4.8.: Possible parameterization of 2 twisted rods.

per bond. Again, the distance between neighboring monomers along each polymer is fixed to
r0 as well as the distance between monomers of different polymers with the same index.

This leads to the following constraints on d and R using the law of cosines c2 = a2 + b2 −
2ab cos(γ) in the projected plane of Fig. 4.8 (right):

r2
0 = d2 +

[
2R2 − 2R2 cos(ϕ)

]
(4.6)

r2
0 = (2d)2 +

[
2R2 − 2R2 cos(ω)

]
. (4.7)

This is a system of two linear equations with two unknown variables and can therefore be
solved yielding

R = r0

√
3

2 (3− 4 cos(ϕ) + cos(ω))
(4.8)

d = r0

√
cos(ω)− cos(ϕ)

cos(ω)− 4 cos(ϕ) + 3
. (4.9)

For ω = 0 and ϕ = π, the shifted parallel rods are recaptured with R = 1
2

√
3
4r0 and d = 1

2r0.

By construction, all angles between neighboring bonds are constant and a function of (d,R).

In principle this may be written in polar coordinates in order to obtain an analytical ex-
pression that may be solved numerically. However, it is far more feasible and controllable to
use the parameterization in the existing computer program, vary ϕ and ω and compare the
resulting energy including the Lennard-Jones cutoff. Moreover, one only needs to evaluate
this one time, measuring the monomer-monomer interaction and the (constant) polar angles
separately. This may then be combined with the bending energy in a straight-forward way:
Figure 4.9 shows ELJ(ϕ, ω) + κ2 (N − 2) (1− cos θ(ϕ, ω)) for selected κ values. It can be
seen, that the Lennard-Jones energy of flexible chains may be reduced by the parameterized
shift (1.3π, 0.54π). Of course, this is not compatible with the formation of a spherical globule.
If stiffness is introduced, the energetically favorable minimum changes towards ϕ → π and
ω → 0. However, for κ in the regime of polymer bundles there remains an energy minimum
with a small twist (π 6= 0) instead of purely parallel rods.
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Figure 4.9.: Total energy ELJ(ϕ, ω) + κ 2(N − 2) (1− cos θ(ϕ, ω)) from numerical variation of
ϕ and ω for the 2× 13 twisted polymers parameterization for several κ.

98



4.2. Structural phases of semiflexible polymer aggregates

d = r0

R = r0
∆

R

ϕ

ω
r0

Figure 4.10.: Possible construction of a twisted polymer bundle with 7 polymers.

Twisted bundle - first shell

From the discussion in Sec. 4.2.1 it seems that for more than 2 polymers the low-temperature
twisted bundles have a more pronounced twist and form a shell structure. Starting with a
bundle core, a hexagonal first shell may be expected as shown in Fig. 4.10. Similar assumptions
for polymer bundles have been applied in the literature, e.g., in Refs. [97, 99].

The simplest way to arrange the seven polymers of the first shell is in parallel alignment on
a circle of radius R = r0, minimizing all Lennard-Jones contacts due to the hexagonal closed
packing with ϕ = π/3 and ω = 0 in Fig. 4.10. If the monomer layers are at distance d = r0 the
FENE contribution vanishes again. Geometric arguments give the following Lennard-Jones
contributions

layer i− layer i : 12V ∗LJ(r0) + 6V ∗LJ(
√

3r0) + 3V ∗LJ(2r0) + . . .

layer i− layer i+ 1 : 24V ∗LJ(
√

2r0) + 12V ∗LJ(2r0) + 3V ∗LJ(
√

5r0) + . . .

layer i− layer i+ 2 : 7V ∗LJ(2r0) + 24V ∗LJ(
√

5r0) + 6V ∗LJ(
√

7r0) + 3V ∗LJ(
√

8r0) + . . .

Considering a Lennard-Jones interaction with cutoff rc = 2.5σ ≈ 2.23r0 <
√

5r0, this yields an
energy Ep,sym,7 ≈ −17.700N + 5.6162 and Ep,sym,7(N = 13) ≈ −224.48. Obviously, this may
not be the ground state but further analytical considerations quickly become tedious. Keeping
the stiff polymer constraint, Fig. 4.11 (left) shows the total energy from numerical variation
of the radius R and a shift ∆ of the core polymer, shown by the black, dotted monomers in
Fig. 4.10. For a bundle of parallel stiff rods (ω = 0), the optimal conformation is obtained for
∆ = 0.5r0 and R ≈ 0.945r0.

While minimizing the full problem of seven twisted rods includes too many free parameters,
it is possible to learn qualitative features from a simplified parameterization for the twist.
Consider the optimal conformation from the previous parallel bundle. In addition, I introduce
a rotation of consecutive monomers along the radius of the given shell by ω. Fixing the outer
shell polymer bonds leads to the condition

d = r0

√
2 cosω − 1. (4.10)

This will compress the central polymer bond. However, this is affordable since the bond
is described by the FENE potential, which shows in the given parameterization less energy
increase in the harmonic region than the Lennard-Jones potential. The results are shown
in Fig. 4.11 (right). The numerical variation measures the monomer-monomer interaction of
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Figure 4.11.: Numerical results for 7×N = 13: (left) Variation of a shift ∆ of the core polymer
and radius of the first shell R. (right) Variation of the twist ω at the minimal
conformation with ∆ = 0.5r0 and R = 0.945r0.

flexible polymers and the (constant) bending angle from the twist. Then, for different bending
stiffness one merely needs to linearly add κ · 6(N − 2) (1− cos θ(ϕ, ω)) again.

This shows that for the considered parameterization the benefit of the additional Lennard-
Jones interactions along different layers outweighs the cost for bending even for large bending
stiffness. This may be related to surface-tension arguments, e.g., in Ref [99], and is expected
to remain for long and stiff polymer chains. In addition, also flexible polymers show helical
ordering in the elongated parameterization, consistent with the results for 2 polymers above
and for a single polymer adsorbed onto a nano-wire [101]. This large benefit of (stretched)
flexible polymers to form twisted bundles may be exploited: while usually forming amorphous
aggregates, one could imagine to artificially stretch flexible polymers, e.g., by an external
pulling force or field. The resulting competition between force and twist may allow for a
controllable adjustment of bundle twist and corresponding length. This would both be of
theoretical and experimental interest, with possible applications in, e.g., molecular measuring
devices.

4.3. Finite-size effects depending on polymer stiffness

The above discussion showed first-order like transition signatures for finite semiflexible poly-
mer aggregation. This is not unexpected since the considered model is an extension of flex-
ible Θ-polymers in Chap. 3. Thus, one may expect the same qualitative first-order phase
transition behavior in the limit of increasing polymer number M → ∞, as was shown in
Sec. 3.4. I consider only semiflexible bead-spring polymers, which limits the accessible system
sizes. Therefore, the results presented here will be in the previously noted intermediate scaling
regime [42]. Also, this reduces the discussion to a merely qualitative comparison with several
open questions remaining. For example, the relevant length scale was argued to be the linear
extension of the aggregate in Sec. 3.4. This is consistent with particle condensation, because
both transition droplet and amorphous aggregate are of spherical shape. On the other hand,
as shown above in Sec. 4.2, rather stiff semiflexible polymers form bundles instead. This could
influence the geometric arguments made before, depending on the length scale at which the
rather stiff polymer aggregates tend to form a spherical (or ellipsoid) structure again. This
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Figure 4.12.: Finite-size dependence of the aggregation temperature (left) and the transition
rounding (right) for polymers of length N = 13 with selected κ (ρm = 10−2).

very interesting aspect may not be studied in detail with the available data and has to be left
for future investigations. In the following, I will discuss several observables for polymers of
length N = 13 and monomer density ρm = 10−2 with selected stiffnesses κ = {0, 3, 6, 9, 12}.
I performed parallel multicanonical simulations with up to 256 cores and usually 2.56 million
measurements. The maximal number of polymers is limited to 20 in order to have the same
data set sizes for all stiffnesses.

The finite-size transition temperature and the finite-size rounding are shown in Fig. 4.12.
The aggregation temperature Tagg is defined as the temperature where the specific heat has
its largest maximum, and the solid lines show the fits with the best (largest) goodness of
fit parameter Q ∈ [0, 1] [82]. All fits include the largest system sizes Mmax . 20. As already
mentioned this is not very large. Consequently the large-system condensation-like scaling of the
form M−1/4 may not be expected. However, an intermediate scaling as M−1/3 is plausible as
observed for flexible polymer aggregation in Sec. 3.4 and Ref. [42]. Since this was geometrically
motivated, it may not be trivially generalized to semiflexible polymer aggregation, where bundle
formation was observed in Sec. 4.2 and Ref. [95]. Interestingly, the aggregation temperature
does not show a deviating behavior with increasing stiffness, which may be partially attributed
to the small system sizes. On the contrary, all data yield good fits with the intermediate scaling
ansatz. A clear conclusion about a general dependence of the aggregation temperature on the
stiffness is not possible.

The finite-size rounding of the transition is obtained from the half-width of the specific
heat peak (as in Sec. 2.3.2). Figure 4.12 (right) shows that the rounding ∆T decreases with
increasing stiffness. This means that the peaks become sharper with increasing stiffness. The
dashed line shows the expected intermediate scaling behavior M−1 from particle condensation
and flexible polymer aggregation. In addition, the solid line shows the particle-condensation
large-system scaling behavior M−3/4. The data points seem to follow the expected intermediate
scaling regime in all cases. Again, the system sizes are too small in order to yield quantitative
conclusions. This is, however, an interesting subject for future investigations. With the present
techniques, system sizes of about M = 60 should be feasible.

Expecting a scaling behavior similar to particle condensation in the limit of large polymer
numbers, another insightful observable is the size of the largest aggregate at the transition.
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at the transition temperature for polymers of length N = 13 with selected κ
(ρm = 10−2).

This may be defined in terms of a monomer fraction 〈η̃〉Tagg in the largest aggregate from
Sec. 3.4, considering only the aggregate phase at the transition temperature Tagg. Exemplary
distributions of the monomer fraction η are shown in Fig. 4.13 (left) for M = 20 polymers and
the considered stiffnesses. Relevant for 〈η̃〉Tagg is only the right peak at larger η, i.e., a single
aggregate plus unattached polymers. In all cases, the distribution of the largest cluster size
is, as expected, similar to the case of flexible polymer aggregation and particle condensation.
A peak at large fractions shows that a single macroscopic aggregate forms. With increasing
stiffness, however, the right peak tends to even larger fractions. In addition, the suppression of
intermediate aggregate sizes is increased. This is also reflected in the average fraction 〈η̃〉Tagg ,
shown in Fig. 4.13 (right). With increasing stiffness, the fraction increases. Importantly,
the fraction differs from 1 for larger system sizes, with a decreasing trend. The solid line in
the figure shows the expected scaling of the fraction as M−1/4, from the balance of surface
tension and fluctuation entropy seen for particle condensation. No data set shows this scaling
explicitly, which may again be explained by the small system sizes. However, the systematic
deviation from 1 may be seen as a first trend towards the expected scaling. More importantly,
it supports that a single macroscopic aggregate forms, which may be surrounded by unattached
but individual polymers, compare also Sec. 3.4.

The aggregation transition of semiflexible polymers shows similarities to particle condensa-
tion on a generic level. This may be identified as the mechanism of phase separation: in both
cases a transition occurs between a homogeneous phase and a mixed phase, which consists
of a macroscopic cluster plus surrounding constituents in the otherwise homogeneous phase.
Then, also semiflexible polymer aggregation should be a common first-order phase transition
in the limit of increasing polymer number. Figure 4.14 shows a qualitative microcanonical
analysis according to Sec. 2.5. The inflection point analysis [49, 55] allows to classify finite-
size phase transitions using the second derivative γ(E) of the microcanonical entropy (fixed
potential energy). A positive peak in γ(E) signals a first-order like transition. If this peak is
additionally decreasing towards zero with increasing system size, this is a strong indication of
a first-order phase transition in the according thermodynamic limit. This is the case for all
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Figure 4.14.: Microcanonical analysis for polymers of length N = 13 with selected κ
(ρm = 10−2). A first-order phase transition is characterized by a positive peak in
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Figure 4.15.: Scaling of the free-energy barrier for selected κ. The barrier increases with in-
creasing stiffness. Solid lines are fits to the condensation-like expected behavior
and should be considered rather as guides to the eye due to the small system
sizes.

considered stiffnesses. In addition, the peak sizes seem to increase from flexible to rather stiff
polymers. For κ = 9 there are additional second-order like signatures below the aggregation
transition (negative peaks in γ(E)), which are not as systematic but may survive in the con-
sidered limit. The presented results show that semiflexible polymer aggregation is a first-order
phase transition in the proper limit.

When semiflexible polymer aggregation is a first-order phase transition, it should be ac-
companied by a free-energy barrier. The free-energy barrier may be estimated from the en-
ergy probability distribution Peqh(E) at the equal-height transition temperature as the ratio
between maximum and minimum. Then β∆F = (lnPmax − lnPmin), see also Sec. 2.4 and
Sec. 3.4. This may be estimated straight-forwardly from multicanonical simulations, obtaining
the equal height histograms via binary-search histogram reweighting and estimating the barrier
with jackknife errors using histogram reweighting of time-series subsets. Figure 4.15 shows the
resulting free-energy barriers for selected κ with increasing number of polymers. It can be seen
that the barrier increases with stiffness for all data points, neglecting the fits (solid lines) for
now. This is in good agreement with the previously observed increase of the free-energy bar-
rier in Sec. 4.2 and Ref. [95]. Furthermore, it shows that this also holds for increasing system
size and should thus remain in the proper finite-size scaling limit. This strongly supports the
claim that the free-energy barrier is systematically smaller for amorphous aggregates than for
ordered structures, such as bundles or fibrils [102].

Making use of the similarity to particle condensation on a generic level, one may consider
a free-energy scaling ansatz according to Eq. (2.63), namely in three dimensions β∆F = c0 +
c1N

1/2. Of course, there may be additional terms, e.g., a logarithmic contribution considered
in Ref. [48]. However, in three-dimensions this simple ansatz described the free-energy barrier
scaling for particle condensation already well and is thus considered also for aggregation as
solid lines in Fig. 4.15. The (preliminary) fits with optimal goodness-of-fit parameter Q should
be considered as guides to the eye, due to the very small system size. However, it may be
roughly seen that the slope c1 increases from amorphous aggregation (small κ, c1 ≈ 0.6) to
bundle formation (larger κ, c1 ≈ 1.4). The numerical data and fits for κ = {0, 3, 6, 9, 12} are
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Figure 4.16.: Canonical estimates of the average energy (left) and average end-to-end distance
per polymer (right) for M = 8 stiff polymers of length N = 13 (κ = 9) in
spherical confinement. With increasing radius RS , the density decreases and the
aggregation transition shifts to lower temperatures. The dilute limit refers to a
single, isolated polymer.

thus consistent with an increasing free-energy barrier with stiffness as expected. A detailed
analysis of this, including larger system sizes, is a promising future investigation.

The conjectured equivalence to particle condensation would require large system sizes, as
discussed in Sec. 3.4. This leads to length scales much larger than the polymer extension, i.e.,
L � Nr0. Moreover, the system would be required to be sufficiently dilute. Both conditions
are clearly not satisfied by biopolymers (like actin or microtubules) in cells. In fact, the dilute
condition is usually not satisfied in real biological systems, which are generally considered to
be crowded. This emphasises the relevance of the intermediate scaling regime, which should
remain dominant when confining biological polymers on typical scales and, in such an approach,
may be accessible by experiment.

4.4. Effect of spherical confinement

As an extension to Sec. 3.5, I briefly discuss the effect of density on the aggregation transition
of exemplary rather stiff polymers of length N = 13 and stiffness κ = 9. Again, a spherical
confinement of radius RS is considered in order to adjust the density. Parts of this section
have been published in Refs. [42, 65].

For the selected parameters and temperature ranges, a single polymer may be considered
rather stiff and will not collapse but instead stretch upon a temperature decrease. In this
region, the single semiflexible Θ-polymer shows wormlike chain behavior [90]. This single-
polymer behavior is shown in Fig. 4.16 as the dilute limit (dashed line) of the average energy
per polymer and the average end-to-end distance for 8 × 13 stiff polymers. For sufficiently
large sphere radii, the high temperature behavior is described by the dilute limit. In this
regime, the polymers are essentially isolated maximizing the translational entropy within the
sphere. The aggregation transition results in a sharp drop of the average energy and an
initial additional stretch of the individual polymers. Below the aggregation transition, the
low-temperature behavior is again independent on the density: with decreasing temperature,
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Figure 4.17.: Density dependence of the inverse aggregation temperature for stiff (κ = 9) poly-
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the average energy monotonically decreases while the average end-to-end distance first increases
and then decreases as well. In both cases, the energy is minimized by maximizing polymer
contacts - first by stretching in order to align within polymer bundles, and afterwards by
forming twisted bundles at lower temperatures as observed before in Sec. 4.2. This density
depending isolated-chain versus bundle-formation behavior is consistent with experiments and
simulations of (rather stiff) DNA solutions [107]

As observed for flexible polymers in Sec. 3.5.1, the high-temperature dilute regime of individ-
ual, separated polymers is only achieved for sufficiently dilute systems. For flexible polymers,
the onset of the semi-dilute regime was estimated comparing volume-fraction estimates by de
Gennes [3] of a multi-chain and a single-chain system, see Eq. (3.15). While this may not be
completely generalized to stiff polymers, it seems to be able to predict the order of magnitude
as well. For 8 flexible polymers of length N = 13, the onset yields RcS ≈ 6.3 assuming a self-
avoiding walk exponent. Considering for stiff polymers instead a maximal exponent of ν = 1,
leads to an upper bound of RcS ≈ 18.2, which is in decent agreement with the onset of the
dilute regime, as observed in Fig. 4.16.

The density dependence of the aggregation temperature, estimated in Sec. 3.5.2 from micro-
canonical arguments comparing the conformational entropy of the aggregated and the “ideal-
gas-like” separated phase should still remain valid for stiff polymers. This means that the
inverse aggregation temperature should be linearly depending on the logarithm of the poly-
mer density, i.e., T−1

agg(ρ) = −c1 ln ρ + c2, see also Sec. 2.6. This is supported by results for
specific heterogeneous lattice polymers as a model for protein aggregation [60]. In addition,
Fig. 4.17 (left) shows exemplary results for the inverse aggregation temperature for up to
M = 20 rather stiff bead-spring homopolymers of length N = 13 at different densities. This
clearly confirms the expected density dependence for sufficiently low densities. Notice that
“sufficiently small” seems to be over an order-of-magnitude smaller for stiffer polymers than
for flexible polymers, where for the same polymer length densities ρ < 10−3 were described by
the logarithmic dependence.
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As for the flexible polymers, I apply the finite-size scaling arguments from Sec. 4.3 for
semiflexible and rather stiff polymers in order to rescale the inverse temperature axis with
the extrapolation of the intermediate scaling regime. To this end, the density dependence of
the leading-order correction amplitude is neglected and an effective value chosen instead. The
resulting data collapse is shown in Fig. 4.17 (right) with the rescaling parameters given in the
axis label. This emphasizes the onset of sufficiently small densities for the logarithmic density
dependence. Furthermore, it shows that the finite-size effects in the intermediate regime allow
for a stable description of finite-size dependence. Compared to Sec. 2.6 and Sec 3.5.1, this
highlights the generic density dependence of these phase separation transitions, caused by a
reduction of translational entropy from homogeneous to mixed phases.
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The previous numerical results mostly rely on Markov Chain Monte Carlo simulation methods.
While loosing any information about the dynamics, these methods allow to sample the config-
uration space with a given ensemble probability. The most-known example is the Metropolis
algorithm [111] in the canonical ensemble. If several canonical ensembles are simulated in par-
allel with exchange of configurations, we talk about the parallel tempering method [112–116].
However, also other ensembles may be considered, for example the microcanonical ensem-
ble [49, 50, 56–59] or the “multicanonical” ensemble [117–119]. For the discrete systems, I
additionally applied exact enumerations in order to validate the numerical results. While most
of the results are produced with a parallel version of the multicanonical method [120], I usually
applied a combination of algorithms. This will be discussed in the following sections, where
I will shortly describe the underlying concept and the applied methods with a focus on the
parallel multicanonical simulation.

5.1. Monte Carlo simulations in the canonical ensemble

In order to understand the concept of enumeration, importance sampling and reweighting, it is
unavoidable to consider the formulation of statistical mechanics in the canonical ensemble (for
detailed discussions see, e.g., Refs. [6, 121–123]). Here, one considers a system in equilibrium
with a thermal reservoir at a given temperature T or inverse temperature β = (kBT )−1, i.e.,
there is no net macroscopic flow of matter or energy. Consider the phase space spanned by
the momentum vector p and the position vector q, describing a complete classical system. The
Hamiltonian H(p, q) encodes all interactions in the system, relating momentum and position
to an energy. The canonical probability density in phase space is given by

P (p, q) =
1

Z(T, V,N)
e−βH(p,q), (5.1)

normalized with the partition function over all possible states

Z(T, V,N) =

∫
dp

∫
dq e−βH(p,q). (5.2)

Now, for any system in which the forces do not depend on the momenta we can explicitly
integrate over the momenta. While this is not possible for systems with moving particles in
a magnetic field, it is applicable for most systems of interest. Then, for classical systems, the
Hamiltonian can be merely written as a contribution from the kinetic energy and the potential
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energy and for N constituents in d dimensions we end up with

Z =

∫
dp

∫
dq exp

[
−β
(
dN∑

i=1

p2
i

2m
+ V (q)

)]

=

∫
dp exp

[
−β

dN∑

i=1

p2
i

2m

]∫
dq e−βV (q)

= (2πmkBT )dN/2
∫
dq e−βV (q). (5.3)

This allows to only consider the configuration space, which is in fact what one usually
does in classical Monte Carlo simulations. Ignoring the time trajectories of a system, Monte
Carlo simulations in classical statistical physics sample the canonical equilibrium probability
distribution

P (q) =
1

ZMC
e−βV (q), (5.4)

with the normalization

ZMC =

∫
dq e−βV (q), (5.5)

which may be considered as a Monte Carlo (MC) partition function. This may be rewritten
with respect to any suitable variable (or in fact several variables) of choice, for example the
potential energy E

ZMC =

∫
dE Ω(E) e−βE , (5.6)

where Ω(E) is called the density of states.

In practice, the integrations usually will be sums either due to discrete systems, artificial
discretization of continuous systems or latest due to discretization in the computer program.
Moreover, it is not possible to sample every state of the system in a finite amount of time.
Instead, Markov Chain Monte Carlo simulations make use of importance sampling, such that
in stationary equilibrium “detailed balance” is fulfilled. If p(q → q′) denotes the transition
probability from state q to state q′, this means that the master equation is time independent, i.e.
d
dtP (q, t) = 0 =

∫
[P (q′)p(q′ → q)− P (q)p(q → q′)]dq′. This is solved trivially by the “detailed

balance” condition
P (q)p(q → q′) = P (q′)p(q′ → q), (5.7)

as one possible solution. Now, the transition probability is the product of the probability to
select a new state ps(q → q′) and to accept it pa(q → q′). Then, one solution to Eq. (5.7) is
the following rule for the acceptance probability

pa(q → q′) = min

(
1,
P (q′)ps(q′ → q)

P (q)ps(q → q′)

)
. (5.8)

For symmetric selection probabilities, ps(q → q′) = ps(q′ → q), this yields the famous
Metropolis algorithm [111]: With the Boltzmann weight P (q) ∝ exp{−βE(q)}, the expression
simplifies to min(1, exp{−β∆E}). This means that a trial configuration is generated and
immediately accepted if ∆E ≤ 0 or else accepted with probability exp{−β∆E}.
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The resulting importance sampling leads to estimators of the expectation value in configu-
ration space. I want to briefly discuss the difference between the canonical expectation value
of an observable 〈O〉 and the corresponding estimator O. The expectation value is the integral
(or the sum) over the full configuration space {q}, weighting the observable with its probability
weight P (q) and is exact:

〈O〉 =
1

ZMC

∫
dq O(q) e−βE(q). (5.9)

Exact enumerations (see next section) yield the expectation value. However, using equilibrated
Markov chains allows to estimate the expectation value as its arithmetic mean [6]

〈O〉 =

∫
dq O(q)P (q) ≈ O =

1

N

N∑

k=1

O(xk). (5.10)

As mentioned above, one often only considers the sum due to discretization. Then, the above
equations change according to ∫

dq →
∑

{q}
. (5.11)

In general, I will obtain most relevant information from the thermal derivatives of observ-
ables. Strong changes in observables, associated with phase transitions, are apparent as a peak
in the first derivative and a zero crossing in the second derivative. One prominent example is
the specific heat 〈CV 〉 = d

dT 〈E〉/V . Considering the definition of the expectation value in the
canonical ensemble Eq. (5.9), the thermal derivative may be computed

d

dT
〈O〉 = β2 (〈OE〉 − 〈O〉〈E〉) . (5.12)

This may be generalized in terms of estimators, yielding

d

dT
O = β2

(
OE −O E

)
. (5.13)

5.2. Exact enumerations

The exact enumerations performed throughout this thesis are simple recursive sums over the
full state space {q} of discrete systems. The idea is to perform the sum of Eq. (5.6) explicitly
and hence enumerate the density of states Ω(E), or possibly Ω(X) where X is a set of variables.
In order to evaluate observables which are not constant for fixed X, one needs to additionally
consider the sum of each observable over the full space with fixed X: OΣ(X) =

∑
q O(q)δX(q)X .

Note that Ω(X) = 1Σ(X) is in this sense a “counting observable”. This allows to calculate
exact canonical expectation values at any temperature with

ZEE =
∑

X

Ω(X) e−βE(X)

〈O〉β =
1

ZEE

∑

X

OΣ(X) e−βE(X). (5.14)
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In case of the Ising model, this would mean to consider a very small, initially homogeneously
filled, lattice with N spins and recursively flip single spins until all 2N conformations are
generated. Upon a spin flip, the magnetization (

∑
si) changes. This corresponds to the

canonical ensemble of the Ising model. However, in this thesis I considered in a first step gas
systems with M particles equivalent to the Ising model at fixed magnetization, see Sec 2.1.1.
Then, the enumeration has to generate a fixed number of particles on a small lattice. This
can be done recursively as follows: start by putting a single particle successively on each site
of the lattice. Now, for every realization of a particle on a site, one repeats this procedure
with a second particle on all remaining available sites. Again, for every combination of two
particles on the lattice, one successively puts a third particle on each available site and so on.
Every time when the last particle is added the energy as well as other possible observables get
evaluated and counted in the density of states and corresponding arrays, respectively. Thus, I
was quickly able to enumerate up to 8 particles on a two-dimensional 7× 7 square lattice with
periodic boundary conditions, which suffices for comparing purposes.

In the case of lattice polymers, this was a little more demanding. The single interacting
self-avoiding polymer of length N (number of monomers) may be also enumerated with a
recursive function. Consider a polymer conformation already at length N − 1, then all non-
occupied neighbors to the (N − 1)th monomer get successively occupied one after another,
always evaluating the observables of interest such as the energy, the number of contacts, the
end-to-end distance and so on. The polymer conformation of length N − 1 itself is only one
of the generated ones from a previous conformation of length N − 2 and so on. That way, all
possible combinations of polymer conformations of length N are generated and evaluated. In
three dimensions, I was able to enumerate a single polymer of length N = 18 without additional
tricks on a conventional CPU within a day. Of course, applying symmetry considerations would
allow longer chains or shorter computing times, but would not allow to add another polymer
easily.

As I am ultimately interested in polymer aggregation, I had to combine this with the previous
method for particle condensation. The first polymer is enumerated with a fixed starting point.
For each complete configuration (N -monomers), a second polymer is enumerated at a second
fixed starting point. In principle, this procedure has to be repeated for all pairs of sites on the
lattice. However, considering only two polymers on a cubic lattice of size L > 2N +1 (periodic
boundary conditions), one can make use of the following symmetry considerations: the first
polymer may be fixed at the center due to translational invariance. The second starting
point may be chosen from a 16th of the volume, namely half of any of the octants, due to
rotational and mirror symmetries. Every starting point then gets a factor of 16, unless on the
boundaries for which less mirror points exist. Moreover, I distinguished between inter-chain
contacts ni and intra-chain contacts no, sorting the sum of observables in two-dimensional
arrays OΣ[ni][no]. This allows to reweight to the canonical expectation value depending on
temperature and interaction ratio ε′ = εo/εi with E(X) = εini + εono

Z =
∑

ni,no

Ω(ni, no) e
−β(εini−εono)

〈O〉β,ε′ =
1

Z

∑

ni,no

OΣ[ni, no] e
−β(εini−εono) (5.15)
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Figure 5.1.: Scheme of parallel tempering taken from Ref. [124]. The system is simulated for
a set of temperatures in parallel with the possibility that two Markov chains may
exchange configurations according to Eq. (5.17).

5.3. Parallel tempering

Parallel tempering [112–116] uses a number of replica at different temperatures that may in-
terchange system configurations. It is also known as replica-exchange Markov Chain Monte
Carlo sampling and is based on the Metropolis algorithm and the general considerations in
Sec. 5.1. In principle, p copies of the systems are simulated simultaneously at different inverse
temperatures β1 < β2... < βp. The temperatures may be, in the easiest way, equally distributed
in a desired interval Ti ∈ [Tmin, Tmax] or more complex schemes may be applied. The impor-
tant requirement is that the resulting histograms H(E) overlap. These copies are randomly
initialized and simulated with the Metropolis algorithm [111] individually, but at fixed update
intervals the copies may exchange configurations with a certain acceptance probability main-
taining equilibrium, see Fig. 5.1. The idea is to circumvent the slow Monte Carlo dynamics
at low temperature: if a system gets stuck in a (low-temperature) local energy minimum it
may now change back into a higher-temperature replica and “walk around” possible barriers.
As mentioned before, the replica exchange should maintain equilibrium and hence each fulfill
ergodicity and detailed balance according to Eq. (5.8). Consider two states q and q′ at inverse
temperature β and β′ respectively. Since the two replica may be considered independent, the
joint probability is the product of the individual probabilities

P (q, q′) =
1

ZZ ′
e−βE(q) e−β

′E(q′). (5.16)

Choosing only updates with symmetric selection probabilities, i.e. ps(qq′ → q′q) = ps(q′q → qq′),
the acceptance probability simplifies to

pa(qq′ → q′q) = min

(
1,
e−βE(q)−β′E(q′)

e−β′E(q)−βE(q′)

)
= min

(
1, e−∆β∆E

)
(5.17)

That way, emerging barriers in the free-energy landscape may be “walked around” in princi-
ple. However, this requires an appropriate overlap of neighboring energy probability distribu-
tions which may become quite cumbersome. In this thesis, I am merely using the parallel tem-
pering method for small system sizes in order to estimate the energy range for multicanonical
simulations. Thus, the temperatures are equally distributed from Tmin to Tmax and a suitable
number of sweeps and replica changes are chosen such that the system relaxes to the desired
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temperature range. In the end, I consider the average energies in the lowest-temperature and
the highest-temperature replica for further processing.

5.4. The multicanonical method

The multicanonical method (MUCA) [117–119] allows to sample a broad parameter space
with a single simulation. This is achieved by modifying the acceptance probability of updates
such that the simulated distribution becomes flat over the full sampling range, hence often
also referred to as “flat-histogram method”. Previously suppressed states have to become
more probable. To this end, the Boltzmann factor in the probability distribution P (q) ∝
exp{−βE(q)} is replaced, or sometimes extended, by a weight function W (E(q)). The partition
function may thus be rewritten as

Zcan =

∫
dq e−βE(q) =

∫
dE Ω(E)e−βE (5.18)

→ ZMUCA =

∫
dq W (E (q)) =

∫
dE Ω(E)W (E). (5.19)

This is formulated here in terms of the (potential) energy E, because it is the suitable choice,
if one wants to reweight to a set of canonical ensembles or temperatures in the end. Moreover,
this may be applied in generalized formulations leading to multimagnetic, multibondic or even
other realizations. For this thesis, my desired ensemble is the canonical ensemble and I stick
to the (more intuitive) formulation in terms of the energy E. The acceptance probability for
symmetric selection properties is then given by

pa(E → E′) = min

(
1,
W (E′)
W (E)

)
(5.20)

The most demanding part is to iteratively modify W (E) in order to yield a flat histogram.
From Eq. (5.19) it can be seen that a flat histogram - meaning all energies from a chosen
interval have the same probability or contribution to the partition function - requires W (E) ≈
Ω−1(E). So in principle, one needs to estimate the density of states. That is a common issue
in statistical physics, but also shows the potential of the method or equivalent methods like
Wang-Landau [125, 126]. The general procedure is to modify W (E) until a flat histogram is
obtained and, in the end, to perform a production run with fixed weights sampling the desired
statistics. While the Wang-Landau method modifies the weight function after every update,
the general procedure in multicanonical simulations is to perform equilibrium simulations at
fixed weights in each iteration and to modify the weights in between iterations. In Sec. 5.4.2,
I will discuss two possibilities to update the multicanonical weight function and additional
modifications that I applied. As mentioned above, the multicanonical weights are related to
the density of states which usually covers several hundred or even several thousand orders of
magnitude. It is thus in any case advantageous to consider logarithmic weights ln(W (E)) for
numerical reasons.

Formally, the above formulation is valid for a continuous energy space. However, due to nu-
merical reasons, I consider an equally discretized energy space on which I define the histograms
and weight function. For the lattice systems I considered, this is the exact energy space, while
for off-lattice systems energies are sorted into bins

[
Ei − ∆E

2 , Ei + ∆E
2

)
. For the artificially

114



5.4. The multicanonical method

discretized systems a definition of canonical expectation values via histograms on this discrete
space as in Eq. (5.14) would yield systematic deviations, since the conformations are exponen-
tially suppressed within each bin. However, I only apply the discretized space to the weight
function and the histograms but not to the measured observables in the final production run.
This allows to apply standard reweighting techniques to obtain precise results.

5.4.1. Reweighting to other ensembles

In general, having sampled data according to a multicanonical distribution W (q), i.e., in a
(fixed) multicanonical ensemble, allows to reweight to a desired distribution P (q) in other
ensembles using standard reweighting techniques. As usual, this requires that the desired
distribution is covered by the available data and that throughout the production run the
multicanonical weights are fixed. Now, the estimator of an expectation value in the desired
ensemble may be reweighted from importance sampled multicanonical data by performing the
ensemble average, where each contribution is multiplied with the desired probability P (q) and
divided by the sampled probability W (q):

〈O〉 =

〈
OP (q)W−1(q)

〉
MUCA

〈P (q)W−1(q)〉MUCA

. (5.21)

Here, 〈. . . 〉MUCA refers to the ensemble average in the multicanonical ensemble.

Reweighting to the canonical ensemble, the desired distribution is the Boltzmann distribu-
tion P (q) = P (E(q)) = exp{−βE(q)}. This allows to express the above equation in terms
of the energy and serves as a good example for the following reweighting techniques applied
throughout this thesis. Since most systems considered in this thesis include continuous vari-
ables (especially the energy), this requires time-series reweighting for non-biased estimates of
expectation values. As the name suggests, the time series (measurements at fixed intervals)
from the production run is directly used and with it the full precision of the measured observ-
ables. The concept is the same as above: the multicanonical ensemble average is modified such
that the sampled probability is “removed” and the desired probability is “added”:

〈O〉can =
1
N

∑
Oi e

−βEi/W (Ei)
1
N

∑
e−βEi/W (Ei)

. (5.22)

This approach is as systematic as possible, since each precisely measured value is weighted with
the precise probability, divided by the possibly discrete weight function. The discrete weight
function is not a problem as long as it is fixed throughout the production run (importance
sampled according to W (E)), because it is subtracted out in the end.

Another technique is histogram reweighting, which may introduce a (small) systematic bias
for continuous variables, depending on the bin size of the discrete histograms. In general, the
time series of the production run would be sorted into a histogram. For discrete systems it is
often often possible to record the histogram directly within the simulation. In these cases (e.g.
lattice gas and lattice polymers) and according bin size, this remains as precise as time-series
reweighting. In any case, it allows to quickly reweight to the canonical probability distribution

Pcan(E) =
H(E)e−βEi/W (Ei)∑
E H(E)e−βEi/W (Ei)

, (5.23)
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and also to estimate canonical expectation values. In the latter case, the observable is usually
not constant throughout an energy interval such that the sum of observables at equal energy
OΣ(E) =

∑
E′ O(E′)δEE′ is considered, as in the case of exact enumeration (see Eq. (5.14)).

Again, for continuous energies this may be obtained from the times series by sorting into a
binned histogram. The data from the production run is then reweighted according to

〈O〉can =

∑
E OΣ(E)e−βEi/W (Ei)∑
E H(E)e−βEi/W (Ei)

. (5.24)

This is a lot faster than time-series reweighting at the cost of a systematic bias when weighting
variables with continuous energies in the interval

[
Ei − ∆E

2 , Ei + ∆E
2

)
with the same weight.

Another important ensemble considered in this thesis is the microcanonical ensemble, which
may provide complementary information when studying transitions [49, 50]. Moreover, a mul-
ticanonical simulation in terms of the (potential) energy E is already somehow in the micro-
canonical ensemble as all functions depend on E. Here, the microcanonical ensemble is defined
as the set of states with a fixed (potential) energy E. As mentioned before, the weight function
is approximately proportional to the inverse density of states related to the microcanonical en-
tropy: W (E)−1 ≈ Ω(E) = exp{S(E)}. It is possible to estimate the microcanonical entropy
from the histogram of the final production run, such that S(E) = ln(H(E)) − ln(W (E)).
From this, we may obtain the microcanonical caloric temperature β(E) = ∂S

∂E , as well as

the second derivative γ(E) = ∂2S
∂E2 , which is just the inverse microcanonical specific heat

γ(E) = −
[
Cmicro(E)/β(E)2

]−1
[95]. For qualitative statements this and the numerical deriva-

tives

f ′(E) ≈ −f(E + 2∆E) + 8f(E + ∆E)− 8f(E −∆E) + f(E − 2∆E)

12∆E
, (5.25)

f ′′(E) ≈ −f(E + 2∆E) + 16f(E + ∆E)− 30f(E) + 16f(E −∆E)− f(E − 2∆E)

12∆E2
, (5.26)

are sufficient, while having truncation errors and introducing the previously mentioned small
bias. This still allows for a qualitative microcanonical analysis [49–51, 55]. In case of data with
large noise one may apply Bézier curves [127]. For an example see Sec. 2.5. When a precise
estimate and a proper error estimation is required, then the reweighting should be performed
analogue to the time-series reweighting in the canonical case described above.

It needs to be mentioned that for the microcanonical ensemble one may distinguish between
two cases. A practical choice from Monte Carlo simulations is to consider constant potential
energy E, such that the weight becomes the Kronecker-Delta function δE′E . The formal def-
inition, however, is a fixed total energy Et = E + Ek as the sum of potential energy E and
kinetic energy Ek. Remembering that we integrated over all momenta Eq. (5.3), this fixed-
energy constraint introduces a Θ-function and results in a weight depending on the degrees of
freedom (dof), namely (Et − E)(dof−2)/2, which replaces the Boltzmann weight [56–59]. For a
Monte Carlo simulation in configuration space, the kinetic energy is then merely a “reservoir”
where additional energy may be stored in or taken from.

5.4.2. Weight modification

The simplest iteration scheme is to estimate the consecutive weights from the current histogram
via the trivial modification W (n+1)(E) = W (n)/H(E). This corresponds to a local estimation
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of the density of states Ω(E) ≈ H(E)/W (E), which is used in the estimation of the consecutive
weight function. The weight function, on the other hand, is assumed to sample the inverse
density of states W (n+1)(E) ≈ Ω−1(E), leading in a self-consistent approach to the update
rule. One immediately sees that states with a high probability (large histogram entries) get
a lower probability in the consecutive weights, while suppresses states get a relatively higher
probability. In general, this is a good starting point and might even outperform “smart”
modifications. The problem for this trivial modification is, however, that it needs a large
amount of samples in each single iteration in order to work reliably.

The most intuitive and simple approach is to begin with weights according to the canonical
ensemble at infinite temperature, i.e. β = 0 and W = const. However, it may be suitable to
start at a finite temperature T0, where W (E) = exp{−E/T0}, to save computational time in
the iterations. Especially for first-order like transitions it is beneficial to systematically adjust
the weights from high to low energies, or vice versa. If starting at high energies, then the initial
temperature should be sufficiently above the expected transition temperature.

Another possibility to speedup the convergence is to extrapolate the logarithmic weights at
the boundaries of the so far sampled region. For this, it is crucial to have a rough understanding
of the weight functions final form. Consider for example the lower energy bound. After the ith

iteration, the logarithmic weights have been modified down to Eilow. It may be expected that
the logarithmic weights will be monotonically increasing with decreasing energy (this however
strongly depends on the studied system and also on Eilow). A rather safe choice is to extrapolate
the logarithmic weights with the Boltzmann weight of a sufficiently large temperature, say
Tmax. Moreover, one might measure the local slope of the modified weight function above Eilow

and extrapolate this into the range below Eilow. At first-order phase transitions this needs
additional care due to the “backbending effect” [49] in the microcanonical temperature and
the corresponding so-called “convex intruder” in the microcanonical entropy [51–54]. This
convex intruder in the logarithmic weight function (the negative microcanonical entropy) may
cause a local slope smaller than the convex hull (see also Sec. 2.5) which may over-estimate the
required weight for low-energy states. In the worst case, this may lead to an amplification of
the low-energy regime which may become lengthy to undo by the considered update algorithm.
The same may be applied to the upper bound analogously.

As mentioned above, the “trivial modification” requires a large amount of samples per sweep
that is forgotten afterwards. A possible way out is the recursive weight modification [119]. This
scheme considers all previous iterations in the weight update using a statistically weighted
average. From the general definition Eq. (5.19) it is evident that each iteration locally allows
to estimate the density of states Ω(E) ≈ H(E)/W (E). Since the microcanonical entropy S(E)
is defined as the logarithm of the density of states S(E) = ln(Ω(E)), it is convenient to express
the consecutive weight function as an estimate of the microcanonical entropy lnW (n+1)(E) ≈
−S(E) in an analog self-consistent approach. This microcanonical entropy is a good base for
the discussion of the recursive updates scheme. One may now consider the change in entropy
∆S(E) = S(E + ∆E) − S(E) and thus relate two energy values. Inserting the definition for
S(E) and the estimation of Ω(E) one obtains

∆S(E) = ln

(
H(E + ∆E)

W (E + ∆E)

W (E)

H(E)

)
(5.27)

In the recursive scheme, this ∆S(n+1)(E) is estimated using the weighted average of the previ-
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Figure 5.2.: Idea of the multicanonical recursion.

ous estimates ∆S(n)(E) (including all previous iterations) and the current estimate Eq. (5.27),
see Fig. 5.2. The quality of the estimate is weighted with the parameter p(E). This parameter
compares the values of the contributing histogram entries: if both entries have approximately
the same value, the parameter has to be large, while the parameter needs to be small if one
histogram entry is much larger than the other.

p(n)(E) =
H(E + ∆E)H(E)

H(E + ∆E) +H(E)
(5.28)

The accumulated parameter pacc(E) =
∑n−1

i p(i)(E) is the collected weight of the estimate
∆S(n)(E). The consecutive entropy change is thus

∆S(n+1)(E) =
pacc(E)∆S(n) + p(n)(E)∆S

pacc(E) + p(n)(E)
, (5.29)

where ∆S(n)(E) = lnW (n)(E) − lnW (n)(E + ∆E) and ∆S(E) is given by Eq. (5.27). The
new (logarithmic) weight function is obtained by the sum of entropy changes lnW (n+1)(E) =
−∑E′<E ∆S(n+1)(E′). In the literature one often finds another formulation defining a weight
relation R(E) = W (E + ∆E)/W (E). In this case most of the summands in the exponential
of the weight functions cancel, which leads to R(n+1)(E) = exp

{
−∆S(n+1)(E)

}
. Moreover,

inserting Eq. (5.29) with all definitions and sorting according to weights and histograms, this
yields

R(n+1)(E) = R(n)(E)

[
H(n)(E)

H(n)(E + ∆E)

]κ
, (5.30)

where κ = p(n)(E)

pacc(E)+p(n)(E)
. This is a more compact representation but somehow hides the

insightful relation to the microcanonical entropy. The numerical implementation benefits
from storing and working with logarithmic numbers, which requires logarithmic addition:
lnC = ln(A+B) = max(lnA, lnB) + ln {1 + exp (−| lnA− lnB|)} [122]. As mentioned be-
fore, this is due to numerical reasons when handling numbers that span several orders of
magnitude: the finite number of decimal places on a computer causes problems, e.g., adding
to a small number a very large one, followed by subtracting the same large number may not
yield the same small number again.

One remaining point is the convergence criterion, or a combination of criteria, that deter-
mines when the weight iteration is finished and the production run begins. First, it is important
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Figure 5.3.: Scheme of the parallel multicanonical method taken from Ref. [120]. Independent
Monte Carlo simulations sample the same distribution, after a fixed number of
updates their histograms are merged, the consecutive weights are determined and
distributed to the parallel threads which continue with the next iteration.

that the full energy range is covered with sufficient entries in the histogram. I generally consid-
ered this to be valid if no histogram entry deviated from the average by more than a factor of
2. Additionally, I required the sampling processes to achieve sufficiently many tunnel events,
passing from the high-energy bound to the low-energy bound or vice versa.

5.5. Parallel MUCA

Due to the large computational demand of condensation and aggregation phenomena espe-
cially for off-lattice systems and in the limit of large systems, it was unavoidable to optimize
the simulation method. Since computer performance mainly increases in terms of parallel
processing on multi-core architectures, we developed a parallel implementation of the multi-
canonical method [120]. The results of this section are published already in Refs. [17, 120, 128],
where we tested the scaling properties for the Ising and q-state Potts model [120, 128], for a
single bead-spring polymer [128] and for lattice gas condensation [17]. In all cases, we observed
ideal scaling under suitable conditions.

The idea is to distribute the time consuming generation of statistics on p independent pro-
cesses, a scheme is presented in Fig. 5.3. In each iteration, the processes perform equilibrium
Monte Carlo simulations with identical weights W (n)(E) and measure individual histograms
Hi(E). After a chosen number of sweeps per iteration Niter, these histograms are merged to
a total histogram H(E) =

∑
Hi(E). The total histogram represents the sampled distribution

of the fixed weight function with independent, uncorrelated contributions. It has at least the
same quality as a histogram from a single-process simulation with the same amount of statis-
tics. Now, the weight modification of choice may be applied with H(E) in order to obtain
W (n+1)(E), which is again distributed to all processes and the next iteration starts.

5.5.1. Performance for spin systems

I investigated the scaling properties of the parallel multicanonical method for the case of the
two-dimensional Ising and q-state Potts model on a square lattice in Refs. [120, 128]. The
Ising model exhibits a temperature driven second-order phase transition and the q-state Potts
model (2D) shows a temperature driven first-order phase transition for q ≥ 5 and a second-
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Figure 5.4.: Performance of the parallel multicanonical method for the Ising model with in-
creasing system size: (left) the speedup factor and (right) the time-independent
statistical speedup factor. The dashed line represents a perfect scaling Sp = p.

order phase transition otherwise. The Ising model is a widely applied model in statistical
physics and a standard model for testing algorithms and scaling predictions. It is described by
the Hamiltonian H(Ising) = −J∑〈i,j〉 sisj , with nearest-neighbor interaction, the spin variable
s ∈ {−1, 1} and the coupling constant J . This is equivalent to the q = 2 state Potts model,
which is a generalized spin model with H(Potts) = −J∑〈i,j〉 δ(si, sj), where q ∈ {0, . . . , q − 1}
and δ(si, sj) is the Kronecker-Delta function. In this section, I will consider q ∈ {2, 3, 4, 6, 8}.

For a fair comparison, I consider the optimal number of sweeps per core Mopt for each degree
of parallelization p. This will influence the required number of iterations until convergence
Niter. A detailed discussion is given in Ref. [120], where the minimum of NiterMp vs. M is
determined and the following dependence on linear system size L and degree of parallelization
is obtained:

M
(Ising)
opt (L, p) = 5.7(5)× L2+0.51(4) 1

p

M
(8Potts)
opt (L, p) = 24(4)× L2+0.67(6) 1

p
.

(5.31)

This power-law behavior is characteristic for the explicit implementation, but is consistent
with the scaling of multicanonical tunneling times in Refs. [117, 118, 129] and reflects that a
random walk through energy space has to depend on the system size and the number of spin
states q. Interesting to notice is the prefactor ratio which corresponds to the increase in q,
from the q = 2 (Ising) to the q = 8 Potts model. I will make use of this, when comparing
the scaling properties depending on q, interpolating Eq. (5.31) for the intermediate values.
For a systematic study, the systems are thermalized only in the beginning and not in between
iterations in order to avoid additional parameters.

Moreover, I apply two definitions for the speedup with p cores compared to single-core
simulation [120]: the ratio of real simulation time t until convergence of the MUCA weights

Sp =
t1
tp
, (5.32)
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Figure 5.5.: (left) Statistical speedup factor for the 8-state Potts model with increasing system
size. (right) Scheme of Niter/core compared to the integrated autocorrelation time
τ demonstrating the natural limit of parallelization [120].

and the time-independent statistical speedup, which is defined in terms of the total number of
sweeps on each core until convergence N̄iterMopt(L, p),

S∗p =
[N̄iterMopt(L, 1)]1
[N̄iterMopt(L, p)]p

. (5.33)

The subscript indicates the number of cores used. In both cases, error bars are obtained by
averaging over 32 independent parallel-multicanonical simulations for each degree of paral-
lelization. All simulations were performed on the compute cluster of our institute. If one
considers only the distribution of statistics, the optimal scenario would be a linear speedup
with slope one, Sp = p.

Figure 5.4 shows the results for the Ising model over several system sizes. It can clearly be
seen that the parallel implementation leads to an ideal linear speedup up to 64 cores already for
system sizes L ≥ 24 in either definition. The statistical speedup is optimal for all considered
system sizes. The “breakdown” for small system sizes in the real-time speedup (Fig. 5.4 (left))
may be easily explained by the extremely short simulation times within milliseconds which
are difficult to measure on our compute cluster. While communication is kept to a minimum,
only occurring in between iterations, this becomes relevant for small system sizes, when the
iterations become very short. This is why the statistical speedup (Fig. 5.4 (right)) is a less
biased observable, especially when communication infrastructure may vary drastically between
the local compute cluster at our institute and international high-performance clusters. For
the Ising model, we can see that for intermediate degrees of parallelization there actually
occur speedups systematically larger than the optimal scaling. This is only possible, since
the parallelization adds independent Markov chains with every degree of parallelization, which
allow for a qualitatively better sampling of the underlying distribution than a single Markov
chain. As a consequence, the estimate of the consecutive weights is improved and this may
lead to a faster convergence. Thus, the parallelization also profits from a more systematic
convergence to the desired flat distribution, which will be subject to further discussion below
in Sec. 5.5.2.

The 8-state Potts model exhibits a first-order phase transition which is accompanied by
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Figure 5.6.: Statistical speedup for different q-state Potts models (q ≤ 4 second-order and q > 4
first-order phase transition) on a 64× 64 lattice.

emerging barriers. The results of the performance study for the 8-state Potts model is shown
in Fig. 5.5 (left) with increasing system size. The statistical speedup shows a saturation for
large degrees of parallelization, where the final speedup increases with system size. This may
be explained by the emerging barriers, which result in an increase of integrated autocorrelation
time τ . If now, with increasing parallelization, the number of sweeps per core gets reduced
to the order of τ , then this reduces the chance to efficiently cross the apparent barriers, see
Fig. 5.5 (right). This was also observed for multimagnetic simulations [120, 128] where “hidden
barriers” are known to emerge [15, 16, 48, 130].

As a cross-check of these arguments, Fig. 5.6 shows the scaling properties in dependence
on the number of spin states q for a 64 × 64 square lattice. It can be seen, that for small q
the scaling is ideal, while for large q the observed saturation occurs. This is consistent with
the order of the temperature driven phase transition which is in two-dimensions second-order
for q ≤ 4 and first-order for q > 4. The case q = 5 may be considered as an exception
because it is only weakly first-order. Thus, the emerging barriers and the involved integrated
autocorrelation time give a natural limit to the degree of parallelization.

5.5.2. Performance for particle condensation and polymer aggregation

In order to justify the application of the parallel multicanonical method throughout my thesis,
I tested the scaling properties for the cases of particle gas condensation [17] and polymer
aggregation. The considered systems are the lattice particle gas in two and three dimensions
as defined in Sec. 2.1, as well as the flexible bead-spring polymer system as defined in Sec. 3.1.

Figure 5.7 shows the performance of parallel multicanonical simulations for two- and three-
dimensional lattice gas. In each dimension (d) we considered 1000 particles in a roughly
constant volume. Other than for the Ising/Potts model, I did not predetermine the optimal
number of updates per sweep and number of cores but assumed the same p-dependence as be-
fore, namely 25600/p sweeps in both cases. A single sweep consists of Ld updates. This choice
was motivated by initial parallel multicanonical simulations that consistently converged and
should serve as a day-to-day application example. For the statistical averages we consider 32
simulations for each degree of parallelization. The average number of iterations in Fig. 5.7 (left)
shows a clear decrease with increasing number of cores. This shows the previously mentioned
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Figure 5.7.: Performance of the parallel multicanonical method for lattice gas condensation in
two and three dimensions: the average number of iterations (left) shows that an
increase in the number of independent Markov Chains improves the convergence
and the statistical speedup (right) shows an (even better than) ideal behavior.
The chosen parameter were not optimized as in the case of the Ising/Potts model.

improvement of sampling with increasing number of independent Markov Chains. The conver-
gence relies on some chosen bounds and criteria and the number of iterations until these are
reached vary depending on the initial seed of the random number generator. For a single pro-
cess, the Markov Chain is correlated and with it the local contributions to a given distribution.
This situation changes when several independent Markov Chains contribute to the sampling
of the same distribution. The quality is improved and the required number of iterations until
convergence may get reduced, as long as the individual Markov Chains are larger than the
integrated autocorrelation time, see Sec. 5.5.1. However, this also shows that especially for the
two-dimensional case the choice of parameters was not optimal.

This is also reflected in the statistical speedup, Fig. 5.7 (right), which shows an (better than)
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Figure 5.8.: Simulation-time speedup for the aggregation of two polymers of length N = 13.
The speedup shows an ideal behavior that may be expected to continue also for
more than 32 cores.
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ideal speedup. While the two-dimensional case clearly seems to be a special case and depends
on the chosen parameter, the general picture of an ideal speedup may be supported for the
case of lattice gas condensation. The situation also remains unchanged for flexible off-lattice
bead-spring polymers. For single polymer collapse, we showed an ideal speedup (N = 40, 80)
for up to 32 cores [128]. For aggregation of two flexible polymers (N = 13) Fig. 5.8 shows
the simulation-time speedup that again presents ideal scaling. There is no reason to expect
a different result for semiflexible polymer aggregation or the aggregation of a lattice polymer
(iSAW) model. The presented results justify to apply the parallel multicanonical method for
the considered models throughout this thesis.

5.6. Adaptive update ranges for off-lattice updates

For updates with non-equal selection probability (ps in Sec.5.1), there exists an efficient
Metropolis-Hastings like scheme to tune the acceptance rate without breaking detailed bal-
ance, which is also applicable in combination with the multicanonical method: adaptive update
ranges [70]. I will briefly recapture the proposed method and the general formulation and refer
to Ref. [70] for additional details. The explicit update-dependent realizations will be given in
Sec. 5.7, where the updates are introduced.

The main goal is to choose energy-dependent update ranges in order to obtain a sufficiently
large acceptance rate especially at low energies and correct for the emerging detailed balance
violation. Why may detailed balance be violated? Recall that the detailed balance condition
Eq. (5.7) leads to the general acceptance probability Eq. (5.8) with the probability distribution
P (q) and the selection probability ps(q′ → q). Considering the above described multicanonical
ensemble, the probability distribution becomes W (E) and the acceptance probability to go
from a state of energy E to a state of energy E′ is again

pa(E → E′) = min

(
1,
W (E′)ps(E′ → E)

W (E)ps(E → E′)

)
, (5.34)

where now ps(E → E′) 6= ps(E′ → E) in general. If this inequality is not taken into account,
then the acceptance probability is biased and this leads to detailed balance violation and errors
in the sampled distribution. There are, in principle, two possible scenarios now that need to
be considered. In the best case, the selection probabilities are different but not zero and the
occurring violation of detailed balance may be corrected by choosing an appropriate acceptance
weight according to Eq. (5.34). If, however, the selection probability for the reversed update
is zero, then this is a “hard detailed balance violation” and the update needs to be rejected!

This may be illustrated on the example of a uniform single particle displacement within a
box of length L around its current position R. The proposed new position is R′ = R+r, where
r = (x1, x2, x3) is a random vector with |xi| ≤ L/2. The selection probability for this update
is given by the inverse volume of the box, ps(E → E′) = L−3, which may be seen as a proposal
density. Now, imagine that the update range for position R′ with energy E′ is L′. If L′ > L
there will be no problem because R = R′ − r may be constructed with |xi| ≤ L′/2. However,
the selection probability changed, namely ps(E′ → E) = L′−3 < L−3. Thus, the probability
to go from state R to R′ is larger than the reverse scenario and this is corrected in the initial
acceptance ratio via Eq. (5.34). The situation changes if L′ < L; it might occur that the reverse
transformation R = R′ − r is no longer allowed since |xi| > L′/2. Then, the proposed update
E → E′ will have to be rejected (because there is no legal “back transformation”) in order to
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avoid hard detailed balance violation. For the displacement in a box, we may summarize

pa(E → E′) =

{
min

(
1, W (E′)L3

W (E)L′3

)
, if |xi| ≤ L′

0 else.
(5.35)

For all updates I consider, the scenario will be similar: a selection probability is derived from
the possible update volume that depends on a single parameter, the update range. The update
range is adjustable as a function of the energy and for now denoted U(E). This function
starts out as a constant function and is tuned within the multicanonical iteration. After each
update proposal E → E’ (accepted or rejected), the update range of the initial energy U(E)
is modified according to the rule [70]

Unew(E) =

{
(1 + 2ε) U(E) if E > E′

(1− ε) U(E) if E ≤ E′,
(5.36)

where 0 < ε � 1. This should lead to an average acceptance of about 60 − 66% [70], which
I can confirm. Since I employ parallel multicanonical simulations, I tune the update ranges
on every processor and average the results after every iteration. In addition, roughly every
10 000 updates, I locate the lowest energy sampled so far Elow and the energy with the smallest
update range U(Emin), where Emin > Elow, and adjust all U(E) for E < Emin with the average
U =

∑Emin
Elow

U(E). For less noise on the update range function, I further smooth the full range
with a low-pass filter, essentially averaging over a small neighborhood of each function value.

It has to be noted that especially in the initial multicanonical iterations there may occur
large fluctuations on the boundary entries of the histograms, where the estimate of the weights
rely on only little statistics from the previous iteration. This may lead to severe problems in
the tuning procedure but can be circumvented by introducing a lower energy bound for the
tuning range Et,low below which the update range is not modified. This energy bound may
be chosen as the lowest energy reached in the second to last iteration, which is then usually
already well sampled in the current iteration. Also, since the update range constantly changes
in the tuning process, this actually violates detailed balance in the iteration procedure. I
usually choose a tuning parameter ε = 10−4, which leads to only small violations and does
not disturb the usual multicanonical convergence. However, for the final production run, the
update range function has to be fixed just like the weight function in order to fulfill detailed
balance and with it obtain reliable equilibrium estimates.

5.7. Lattice and off-lattice updates

In this section, I will briefly explain the Monte Carlo updates used from lattice particle con-
densation to off-lattice polymer aggregation. Instead of discussing the implementation in great
detail, I will focus on the concepts and difficulties. Modifications necessary for the adaptive
update ranges in Sec. 5.6 are provided where possible. It is my experience that the choice of
updates is crucial for an efficient, ergodic outcome of any applied method to a given prob-
lem. An exemplary demonstration is presented in Sec. 5.7.6. Consistency checks with exact or
independent results are provided in the corresponding previous sections.

In most cases, I chose a combination of updates to allow efficient sampling of both the high-
and low-energy domains. In this case, I randomly chose from the set of updates with different,
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Figure 5.9.: (left) Schematic presentation of the single-monomer displacement move within a
sphere of size rmax. (right) Result of the adaptive update ranges on the example
of eight flexible 20mers.

heuristic probabilities in order to ensure both ergodicity and good sampling.

5.7.1. Single monomer/particle displacement

The basic update for off-lattice bead-spring polymers, off-lattice particle gas and lattice gas
models is the single monomer or particle displacement. This update allows in principle to reach
any conformation, while for polymer aggregation the combination with additional moves is
recommendable (see below). For off-lattice systems, the single particle is shifted to a uniformly
distributed random position R′ within a sphere with radius rmax around its current location
R (see Fig. 5.9 (left)). In case of lattice gas, I only considered displacements to either a
random nearest neighbor or a jump to any random lattice site (equivalent to a Kawasaki
update scheme).

For off-lattice particles displaced in a sphere of radius rmax we may apply the adaptive
update ranges from Sec. 5.6. Then, the maximal update range becomes a function of the
energy rmax(E) and the selection probability (proposal density) is give by the inverse volume

ps(E → E′) =
(

4
3πrmax(E)3

)−1
. This yields for a proposed single shift by r the acceptance

probability

pa(E → E′) =

{
min

(
1, W (E′)rmax(E)3

W (E)rmax(E′)3

)
, if |r| ≤ rmax(E′)

0 else.
(5.37)

An example of a tuned maximal shift range is presented in Fig. 5.9 (right) for eight flexible
polymers of length N = 20.

5.7.2. Bond rotation and pivot

Another quite generic update for off-lattice polymers is the single-bond rotation update, or
spherical update [74, 131]. Here, a random bond is defined as the zenith direction and rotated
along a spherical cap with opening angle 2θmax. This is achieved by uniformly choosing the
polar angle θ and azimuthal angle ϕ in the ranges cos θmax ≤ cos θ ≤ 1 and 0 ≤ ϕ < 2π,
respectively. This update is bond-length conserving up to numerical precision. The remaining
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Figure 5.10.: (left) Schematic presentation of the bond-rotation move within a cone of size
2θmax. (right) Result of the adaptive update ranges on the example of eight
flexible 20mers.

“end” of the polymer is simply translated by the resulting shift, see Fig. 5.10 (left) for a
two-dimensional sketch. In practice, a random monomer i is chosen together with a random
polymer end (either direction along the polymer starting from monomer i).

Again, this update is suitable for the application of adaptive update ranges (Sec. 5.6).
Here, the opening angle of the cap becomes a function of the energy, θmax(E). The inverse
surface of the cap (a simple integration in the before mentioned range) determines the selection
probability ps(E → E′) = (2π (1− cos θmax(E)))−1. The acceptance probability is depending
on cos θmax because cos θ needs to be uniformly distributed, i.e.,

pa(E → E′) =

{
min

(
1, W (E′)(1−cos θmax(E))

W (E)(1−cos θmax(E′))

)
, if θ ≤ θmax(E′)

0 else.
(5.38)

An example of a tuned maximal polar angle θmax is presented in Fig. 5.9 (right) for eight
flexible polymers of length N = 20.

For lattice polymers, I applied the pivot update [67, 132, 133] instead, which allows for
discrete rotations of a full polymer end about a random monomer (the pivot point). The
natural restriction of the opening angle is then 90 degrees. For more than one polymer, again
one of both ends needs to be selected at random.

5.7.3. Slithering snake

Throughout my thesis, I additionally considered the slithering snake update for lattice poly-
mers, while it is also applicable to off-lattice polymers in principle. Here, a random end of the
polymer is chosen at which a new randomly oriented bond is created. For lattice polymers this
means to draw a random next-neighboring site to the last monomer. The last monomer on
the other end is removed. This is accepted with the usual acceptance probability considering
all hard constraints (e.g. self-avoidance, walls, etc.). It is important that the polymer end is
randomly chosen because otherwise systematic errors may be (and have been) encountered,
especially if an unfavorable sequence of updates with fixed order is chosen.
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Figure 5.11.: Schematic presentation of the intra-polymer bridging (left) and inter-polymer
bridging (right) move. The current implementation always considers double
bridges.

5.7.4. Polymer translation

When several polymers are considered at low density, it is advantageous to additionally use full
polymer translation updates. This is comparable to the particle displacement in the particle
condensation and enhances the sampling of entropy. As in Sec. 5.7.1, a random displacement
vector in a sphere of size rmax is chosen and all monomers belonging to the selected polymer
are shifted by this vector. In principle, this would also allow to apply adaptive update ranges,
however, I purposely did not use them in order to allow large translations out of the aggregate
even at low energy.

5.7.5. Double-bridging

An important Monte Carlo update that I considered throughout my studies is the double-
bridging or double-pivot move [134–136]. This update was crucial in order to “easily” reach and
evenly sample low-energy (amorphous) aggregated phases. In exemplary test cases with several
flexible polymers, this update made the difference of a successful simulation in reasonable time
or not.

In order to ensure detailed balance, the implementation of the double-bridging update move
that I applied always acts on pairs of bonded monomers. This is different to Ref. [134], where
re-bridging of trimers is considered, and it makes use of the polymer model property that the
average bond-length r0 is of the order of the monomer extension σ [137]. In addition, the
constraint of monodisperse homopolymer chains needs to be fulfilled which leads to a reduced
set of possible re-bridging moves. First, a random monomer i of the system in state q is selected.
Then all monomers within a radius RDB are stored as possible bridging partners NDB(i, q),
including the previously bonded ones. If the current bond length would be larger than RDB,
then the update is rejected. Using the FENE potential, Eq. (3.4), a suitable choice is the
maximal extension RDB = r0 + R. Among the bridging partners, a random bridging partner
monomer j is selected, which is either within the same polymer (intra-polymer bridging) or
in another polymer (inter-polymer bridging), see also Fig. 5.11. In both cases, the selection
probability for a bridging partner is then ps(i, q → q′) = 1/NDB(i, q). Note that NDB is always

128



5.7. Lattice and off-lattice updates

non-zero because each monomer has at least one bonded bridging partner by construction. The
same conformation q′ can be obtained via several monomers (all involved monomers in the re-
bridging). Since the double bridge update does not alter the monomer positions NDB(i, q) =
NDB(i, q′). While the current implementation may not be the most efficient, it ensures that
this remains true for all involved bridging monomers m such that the selection probability of
the forward and reverse update is the same ps(q → q′) = 1

NM

∑
ps(i, q → q′) = ps(q′ → q)

and detailed balance is not violated. However, since the bonds are extensible it needs to be
checked in addition that all old and new bonds are shorter than RDB because otherwise this
would result in a hard detailed balance violation.

In case of the intra-polymer double bridging in Fig. 5.11 (left), the new bond (i) − (j)
requires a suitable second bond either between (i+1)− (j+1) or (i−1)− (j−1). This ensures
monodisperse polymers and avoids a separation of a single polymer into a closed loop and an
additional piece. Also, if i is at one end of the polymer this does not result in the so called
backbite move but always remains an update that rewires two bonds. Thus, the problems with
detailed balance discussed for the backbite update in Ref. [138] are avoided by this definition
because choosing the same monomer i again would yield the same update probability in both
forward and reverse direction. In my implementation for off-lattice polymers, the monomers
enclosed by the pair i, j are merely exchanged. For lattice polymers, I did not consider the
intra-polymer case.

For the inter-polymer double bridging update in Fig. 5.11 (right), there are three possible
cases. Next to the new bond (i) − (j) there may now be either the bond (i + 1) − (j + 1),
(i−1)− (j−1) and (i±1)− (j∓1). In all cases, the condition of monodisperse polymers needs
to be verified in addition. My implementation for off-lattice polymers follows this description,
again exchanging corresponding pairs of monomers. For lattice polymers, my implementation
is following Ref. [135].

5.7.6. How to choose a proper combination of updates

As mentioned before, the choice of Monte Carlo updates may make the difference of a successful
sampling or not. Using the multicanonical method with non-efficient moves may lead to slow
convergence, a reduced energy range, and few tunnel events. Tunnel events are here defined as
the number of times the system evolves from the high-energy to the low-energy range or vice
versa.

Using more than one update move may be realized by choosing a fixed set of updates that are
repeated over and over again. However, I have encountered small detailed balance violations
using an inconvenient set of updates including an asymmetric slithering snake update move,
treating both ends separately but including both versions in the update set. As a consequence,
it is advantageous to use symmetric implementations (including e.g. both polymer ends, see
also the bond-rotation and slithering-snake update) if possible. Moreover, in order to choose
arbitrary fractions of occurrence I generally choose a random update from a set of n updates
with given probabilities pi,

∑n
1 pi = 1. In practice, a random number r is compared to

∑i′
1 pi

and the largest possible i′ for which
∑i′

1 pi < r determines the update move.

In order to test and demonstrate the efficiency of the chosen set of updates, I performed a test
simulation with M = 8 polymers of length N = 13 and density ρ = 5×10−3, which is identical
up to the probabilities pi in the sweeps (M × N updates). The simulation uses 32 cores
and starts with a short parallel tempering simulation (3 million sweeps in the temperature
range [0.5, 2]), followed by a parallel multicanonical simulation with trivial weight updates
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Figure 5.12.: Comparison of different combinations of updates from Table 5.1 for a 8 × 13
flexible polymer system. The final histogram (left) shows the covered range and
gives a hint on the weak sampling, while the canonical energy (right) clearly
shows the drawback of purely local moves.

(see Sec. 5.4.2) in the energy range determined by the parallel tempering part. Afterwards a
production run with 2.56×109 sweeps is performed. The set of updates includes single-monomer
displacement (S), polymer translation (T), bond rotation (R) and double-bridging (B) moves.
Also, adaptive update ranges (see Sec. 5.6) are applied for (S) and (R) within the convergence
part but no longer in the production run. Details are provided in Table 5.1 including the
update selection probability pi, the lower-energy-bound from the parallel tempering simulation
Emin,PT, the number of iterations until convergence, the simulation time, and the number of
tunnel events in the final production run.

Figure 5.12 (left) shows the histograms from the final production run. The covered energy
range is a result from the parallel tempering run, while the fluctuations on the histogram
show the “quality” of the random walk in energy. The reweighted estimate of the canonical
expectation value of the total energy E is shown in Fig. 5.12 (right). It can clearly be seen that
using only local single-monomer displacements (version 1) results in a reduced energy range
that is moreover weakly sampled and does not allow to reweight down to T < 0.9. This may be
explained by the large correlation times due to only small changes of conformations. Adding
polymer translations (version 2) enhances the sampling of the high-energy phase (where the
polymers are separated) and also brings the polymers together more often, resulting in a slightly

Table 5.1.: Comparison of different combinations of updates for a 8×13 flexible polymer system
with ρ = 5 × 10−3. In each step the updates were randomly chosen from a set of
updates including single-monomer displacement (S), translation (T), bond-rotation
(R) and double-bridge (B) moves.

Version Updates pi Emin,PT Niter time(h) Tunnel-events

1 S 1.0 -232.00 90 10.6 73
2 S, T 0.8/0.2 -269.00 57 17.5 118
3 S, T, R 0.5/0.1/0.4 -324.00 38 25.6 300
4 S, T, R, B 0.5/0.1/0.2/0.2 -323.00 15 19.2 12022
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lower energy and increased number of tunnel events, see also Table 5.1. This is also reflected
in the total energy in the vicinity of the aggregation transition (see inset in Fig. 5.12 (right)),
where the expectation value of version 1 coincides within the error with the remaining version
but clearly deviates. The reason for this is the increased sampling of the aggregation transition
associated with more tunnel events. Applying non-local updates, namely the bond-rotation
update in version 3 drastically lowers the energy bound and allows to reweight down to the
desired temperature Tmin = 0.5. Using in addition the double-bridging move (version 4) results
in a flatter histogram after fewer iterations with a large increase in tunnel events. This is due to
the fact that the low-energy state of flexible polymers is an amorphous aggregate (see Sec. 4.2
and Ref. [95]) where the double-bridging update allows major conformational changes. The
canonical expectation values are almost indistinguishable between version 3 and 4.

This suggests that the implementation of the involved moves satisfies detailed balance. More-
over, it emphasizes the need for an appropriate combination of proper updates suitable to the
problem at hand for a successful and efficient (multicanonical) simulation. For (flexible) poly-
mer aggregation, version 4 is a good choice.

5.8. Error estimation

In order to judge the quality of an estimator, it needs a proper error estimation. I mainly
applied two methods to estimate the error. One possible measure of sampling quality is the
number of tunnel events, i.e., how often a simulation passed from the high-energy bound to the
low-energy bound or vice versa. If a production run is long enough and includes many tunnel
events (or possibly several “independent” production runs as will be the case for the parallel
multicanonical method, see Sec. 5.5), the binning error analysis provides a quick and decent
error estimate. The time series is split into NB equally sized bins. For each bin, the according
estimator OB,n is calculated. Under the assumption that the estimators are uncorrelated, their
variance may be obtained with the standard (unbiased) estimator, which leads to the squared
binning error as a statistical error [6]

ε2B,O =
1

NB(NB − 1)

∑

n

(
OB,n −OB

)2
, (5.39)

where ŌB is the average of the binned estimators. If the data is more correlated, however,
there is a way to deal with this correlation using the jackknife error analysis [139]. Again, the
time series is split into NB blocks, but now the estimators OJ,n are calculated over the full time
series excluding the current bin. That way, the jackknife estimators are trivially correlated
which may be corrected by multiplying (NB − 1)2 and the squared error becomes [6]

ε2J,O =
NB − 1

NB

∑

n

(
OJ,n −OJ

)2
, (5.40)

where ŌJ is equivalently the average of jackknife estimators. While this of course takes more
time, it is an error estimator without correlations.

Throughout this thesis, I always consider data points with error bars from time-series
reweighting together with connected lines at higher precision from histogram reweighting.
Using multicanonical simulations, reweighting procedures may only be applied as long as the
canonical probability distribution is covered by the multicanonical histogram. With respect to
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the canonical estimators, this limit of reweighting range may be noticed in unexpected behav-
ior of the otherwise monotonic total energy (e.g. if the energy at low temperatures suddenly
becomes constant, see also Sec. 5.7.6) and consequently in the specific heat. For continuous
systems, the ground state is usually not sampled for non-zero temperatures (this may differ for
discrete models). Thus, a constant energy accompanied by a vanishing heat capacity usually
indicates the lower temperature bound and may introduce artificial transition peaks.
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6. Summary and outlook

In this thesis, large-scale multicanonical simulations were combined with theoretical arguments
in order to study phase (separation) transitions from particle condensation to semiflexible poly-
mer aggregation. An additional focus was put on the structural motifs of polymer aggregates,
where stiffness was identified as a key parameter. These studies required further development
of advanced simulation techniques, which I discussed in detail. This included a parallel im-
plementation of the multicanonical method with extensive performance tests on all relevant
model systems discussed [17, 120, 128].

First-order condensation and aggregation transition. Particle condensation/evaporation is
a standard example of a first-order phase transition in the limit of an infinite number of con-
stituents. Theoretical considerations show that the transition separates a homogeneous gas
phase and an inhomogeneous phase of a droplet surrounded by vapor. This leads to scaling
predictions for canonical observables, the free-energy barrier, and microcanonical signatures,
which were presented in Chap. 2. For (semiflexible) polymer aggregation (Chap. 3-4) the same
qualitative behavior was observed for an increasing number of polymers of fixed length. Es-
pecially, the microcanonical analysis showed a prominent “backbending effect”. The positive
slope of the corresponding inflection points was shown to decrease with increasing polymer
number. In this limit, polymer aggregation is thus a first-order phase transition in the com-
mon sense, separating an entropy-dominated and an energy-dominated phase. The presented
results rely on finite-size-scaling analyses at a fixed density. For condensation and aggregation
phenomena, this approach is orthogonal to the common fixed-temperature considerations. For
the condensation transition temperature of a lattice gas, this orthogonal approach was shown
to yield results consistent with exact solutions and low-temperature series expansions [21].
In addition, this approach highlights complementary aspects, with both advantages and dis-
advantages. One unexpected finding for polymers is an intermediate scaling behavior of the
aggregation temperature and the transition rounding, which deviates from the large-system
scaling expectations (Chap. 3-4 and Ref. [42]). This is, however, consistent with a mesoscopic
scaling regime observed for particle condensation (Chap. 2 and Ref. [21]). In this regime, the
aggregate/condensate includes a majority of the constituents (and thus dominates the inho-
mogeneous phase), which influences the interplay of fluctuation entropy and surface tension
relevant for the scaling expectations. This is consistent with a relation to non-periodic first-
order phase transitions between homogeneous phases, where the aggregate/condensate may be
interpreted as the relevant embedded subsystem. Particle condensation and dilute polymer
aggregation thus show strong similarities. This is not unexpected when polymer aggregation is
interpreted as condensation of extended objects. In this case, dilute polymer aggregation is also
expected to be a first-order phase transition between a homogeneous phase (solute) and an in-
homogeneous phase (aggregate plus unattached polymers). However, the large-system scaling
would be expected only for length scales much larger than the single polymer extension.
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Density dependence of condensation and aggregation transition. At the homogeneous-to-
inhomogeneous phase transition, energy minimization balances entropy maximization. Keeping
the number of constituents constant and changing the density thus allows, in leading order,
to study the entropic contribution in isolation. From ideal-gas considerations in the micro-
canonical ensemble, one can estimate that the transition temperature depends linearly on the
logarithm of the density. This was confirmed for particle condensation with periodic bound-
ary conditions (Chap. 2) and for semiflexible polymer aggregation in spherical confinement
(Chap. 3-4 and Refs. [42, 65]). Rescaling the transition temperature with the finite-size-scaling
results at fixed density yields a consistent data collapse in all considered cases. In addition,
the spherical confinement allowed to safely investigate the onset of the dilute limit for polymer
aggregation, excluding the possibility of a single polymer to self-interact across the bound-
aries. Comparing the single-chain and many-chain volume fraction yields an estimate of the
minimal confinement size at which the system can be considered dilute. For the considered
example, this estimate is in remarkable agreement with the numerical data. In the dilute
regime, separated polymers above the aggregation temperature behave like isolated chains.
The aggregation transition then dominates the single-polymer collapse for flexible polymers:
starting in the high-temperature phase (above the aggregation temperature), single polymers
begin to undergo the continuous collapse transition down to the point of aggregation, where
the collapse process is then partially reverted.

Structural phases of semiflexible aggregates. For semiflexible Θ-polymers, stiffness plays a
key role in determining structural motifs of aggregates [95], ranging from amorphous aggregates
to polymer bundles. This was discussed in Chap. 4 for several small system sizes. Flexible
polymers tend to form amorphous aggregates, spherical objects in which the polymers are more
or less uncorrelated. By contrast, stiffer polymers form bundles, ordered structures in which
polymers are aligned. At lower temperatures these bundles become twisted, in good agreement
with wormlike-chain-based descriptions applicable in this limit of rather stiff Θ-polymers. The
discussion was supported by an effective bundle parameterization. It was shown that in this
case the energy is minimized by a twist for all stiffnesses. This has exciting implications, e.g.,
the possible formation of twisted flexible bundles under external force. In addition, semiflex-
ible polymers feature an intermediate-stiffness regime, where both amorphous aggregates and
polymer bundles are possible. A microcanonical analysis showed that the transition from amor-
phous aggregates to bundles becomes second-order like in this case. For the full stiffness range,
the first-order aggregation transition is accompanied by a free-energy barrier. This barrier was
shown to increase with stiffness and hence with structural order of the aggregate. Additional
finite-size-scaling results for the free-energy barrier of semiflexible polymers support this result
and suggest that it is a generic feature of the structural order to increase the free-energy barrier,
which is in agreement with recent claims in the literature. The presented results thus expand
the understanding of transition mechanisms leading to the formation of mesoscopic structures
and the corresponding structural properties of “a few” polymers. This is important, because
relevant systems are usually neither empty, nor much larger than the polymer extension. In
this way, the study of (isolated) finite systems in equilibrium may help to understand specific
transitions occurring in nature. In addition, the application of finite-size scaling may identify
and support equivalences even without the formal definition of a thermodynamic limit.
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Outlook: Of course, I was not able to answer every question that I raised within this thesis.
This was partially due to the large computational demand. One promising new approach are
“physical” microcanonical Monte Carlo simulations [58, 59] in combination with a replica ex-
change scheme. For technical reasons one could then also choose a polymer model in which
bonded monomers are connected with usual harmonic springs instead of the FENE poten-
tial. Regarding the scientific content, an extended study of the intermediate scaling regime
of semiflexible polymers would be interesting, in order to better investigate the effect of the
aggregate shape on the scaling. Of special interest would be a more detailed scaling analysis of
the free-energy barrier and a systematic investigation of the free-energy landscape. Extending
the exact enumeration study of two lattice polymers by Monte Carlo simulations would bring
further insight, generalizing the equivalence between polymer binding and adsorption known
from directed polymers to undirected flexible polymers. A particularly promising new topic is
the aforementioned possibility to construct twisted bundles of flexible polymers under exter-
nal force. If achievable, this could lead to exciting applications, e.g., aperture devices on the
molecular level.
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A. Appendix

Table A.1.: Condensation of 2D lattice gas with fixed density ρ = 10−2. The condensation
temperature Tc and rounding ∆T are obtained from the specific heat peak and
the fraction 〈η̃〉Tc of particles in the largest cluster is determined at Tc. The equal
height temperature Teqh is estimated from a binary-search histogram reweighting
scheme and the free-energy barrier is estimated at this temperature. Error bars, if
given, are obtained from jackknife error analysis.

L N Tc ∆T 〈η̃〉Tc Teqh βeqh∆F

20 4 0.23427(15) 0.09481(7) 1.0(0) - -
30 9 0.27102(15) 0.09260(16) 0.81503(16) - -
40 16 0.29315(6) 0.07260(11) 0.72686(17) - -
50 25 0.30800(19) 0.05888(12) 0.66910(20) - -
60 36 0.31906(5) 0.0489(7) 0.61223(21) - -
70 49 0.32753(14) 0.0410(6) 0.56242(24) - -
80 64 0.33423(6) 0.03486(20) 0.51834(10) - -
90 81 0.33969(5) 0.02968(24) 0.48066(14) - -

100 100 0.344182(22) 0.02512(14) 0.45298(12) - -
120 144 0.351199(28) 0.01839(8) 0.39803(10) 0.352 -
140 196 0.35640(4) 0.01375(8) 0.35792(10) 0.357 -
160 256 0.36041(4) 0.010541(29) 0.32574(10) 0.361 -
180 324 0.363612(18) 0.00826(8) 0.30094(15) 0.364 0.410(21)
200 400 0.366229(22) 0.00665(4) 0.2766(18) 0.366 0.553(21)
250 625 0.371054(12) 0.004293(29) 0.24022(16) 0.371 1.022(29)
300 900 0.37439(4) 0.003015(15) 0.21371(12) 0.374 1.442(28)
400 1600 0.378777(22) 0.001778(6) 0.1785(8) 0.379 2.44(5)
500 2500 0.381605(25) 0.001205(6) 0.1564(8) 0.381 3.43(8)
600 3600 0.383582(13) 0.000889(6) 0.1402(7) 0.383 4.46(6)
700 4900 0.385081(10) 0.0006987(18) 0.1277(6) 0.385 5.21(5)
800 6400 0.38622(4) 0.000562(5) 0.1185(17) 0.386 6.43(10)
900 8100 0.387183(28) 0.000473(4) 0.1100(10) 0.387 7.15(10)

1000 10000 0.387988(15) 0.0004033(11) 0.1032(8) 0.388 7.83(10)
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Table A.2.: Condensation of 3D lattice gas with fixed density ρ = 10−2. The condensation
temperature Tc and rounding ∆T are obtained from the specific heat peak and
the fraction 〈η̃〉Tc of particles in the largest cluster is determined at Tc. The equal
height temperature Teqh is estimated from a binary-search histogram reweighting
scheme and the free-energy barrier is estimated at this temperature. Error bars, if
given, are obtained from jackknife error analysis.

L N Tc ∆T 〈η̃〉Tc Teqh βeqh∆F

14 27 0.38497(24) 0.0418(5) 0.7067(12) 0.387 -
15 33 0.39698(23) 0.0347(8) 0.67(4) 0.398 0.40(5)
16 40 0.4076(5) 0.0284(4) 0.6501(9) 0.408 0.57(5)
17 49 0.42011(24) 0.0233(6) 0.6204(9) 0.419 0.78(5)
18 58 0.42858(28) 0.0195(4) 0.5976(9) 0.428 0.97(4)
19 68 0.43586(4) 0.01639(5) 0.58265(13) 0.435 1.204(10)
20 80 0.44415(22) 0.01405(10) 0.5625(8) 0.443 1.49(4)
21 92 0.4497(4) 0.01192(19) 0.5500(6) 0.448 1.79(5)
22 106 0.45604(25) 0.01038(12) 0.533(4) 0.454 2.13(4)
23 121 0.46150(18) 0.00907(6) 0.5192(5) 0.460 2.44(4)
24 138 0.46711(22) 0.00794(4) 0.507(8) 0.465 2.79(4)
25 156 0.47172(10) 0.00706(8) 0.4961(7) 0.470 3.14(4)
26 175 0.47568(26) 0.006283(29) 0.4864(27) 0.474 3.54(5)
27 196 0.47977(12) 0.005618(27) 0.4782(29) 0.478 3.94(4)
28 219 0.48390(19) 0.005092(30) 0.468(5) 0.482 4.31(4)
29 243 0.48727(14) 0.00461(4) 0.4595(15) 0.486 4.72(5)
30 270 0.49121(7) - 0.4508(18) 0.490 5.13(5)
32 327 0.497118(9) 0.0035310(20) 0.43602(8) 0.496 6.020(24)
35 428 0.505299(11) 0.0027926(24) 0.4151(7) 0.504 7.471(30)
38 548 0.512368(16) 0.0022635(14) 0.3967(5) 0.511 8.907(28)
40 640 0.516700(7) 0.0019920(10) 0.3851(5) 0.516 9.94(4)
45 911 0.525666(7) 0.0014889(5) 0.3598(8) 0.525 12.67(5)
50 1250 0.533109(16) 0.0011531(9) 0.3376(6) 0.533 15.61(5)
55 1663 0.539281(7) 0.0009175(5) 0.3187(6) 0.539 18.67(6)
60 2160 0.544640(8) 0.0007462(6) 0.3017(6) 0.544 21.88(5)
65 2746 0.549220(13) 0.0006183(8) 0.299(4) - -
70 3430 0.553237(12) 0.00051927(24) 0.2734(11) 0.553 28.98(13)
80 5120 0.559925(11) 0.0003807(10) 0.2503(13) 0.560 36.27(10)
90 7290 0.56524(5) 0.0002892(8) 0.2318(20) 0.565 44.43(7)

100 10000 0.569727(25) 0.0002282(4) 0.2147(20) 0.570 51.90(21)
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Table A.3.: Condensation of 3D Lennard-Jones gas with fixed density ρ = 10−2. The con-
densation temperature Tc and rounding ∆T are obtained from the specific heat
peak and the fraction 〈η̃〉Tc of particles in the largest cluster is determined at Tc.
The equal height temperature Teqh is estimated from a binary-search histogram
reweighting scheme and the free-energy barrier is estimated at this temperature.
Error bars, if given, are obtained from jackknife error analysis.

N Tc ∆T 〈η̃〉Tc Teqh βeqh∆F

4 0.24597(28) 0.0878(4) 1.0(0) - -
6 0.2950(4) 0.0646(4) 0.9421(4) - -
8 0.32670(26) 0.0523(4) 0.9040(5) 0.309 2.94(4)

10 0.34942(27) 0.04379(28) 0.9082(4) 0.340 1.91(4)
12 0.3666(4) 0.03751(25) 0.8823(4) 0.360 1.53(4)
14 0.3808(4) 0.03276(16) 0.8630(6) 0.376 1.50(4)
16 0.39282(18) 0.02827(26) 0.8485(6) 0.388 1.64(4)
18 0.40299(16) 0.02502(14) 0.8343(7) 0.399 1.80(4)
20 0.4118(5) 0.02236(14) 0.8382(6) 0.408 1.97(4)
22 0.4197(4) 0.02053(20) 0.8243(6) 0.415 2.16(4)
24 0.42657(25) 0.01881(6) 0.8136(6) 0.422 2.32(4)
26 0.43265(28) 0.01738(15) 0.8043(6) 0.428 2.49(4)
28 0.43784(21) 0.01608(8) 0.7969(7) 0.434 2.68(4)
30 0.44324(27) 0.01508(5) 0.7885(6) 0.439 2.87(5)
32 0.44772(13) 0.01419(11) 0.7801(7) 0.443 3.04(4)
36 0.45589(20) 0.01257(6) 0.7698(7) 0.452 3.39(5)
40 0.46316(12) 0.01133(6) 0.7592(7) 0.459 3.77(5)
44 0.46922(15) 0.01037(4) 0.749(6) 0.465 4.04(5)
48 0.47498(21) 0.00957(4) 0.740(13) 0.471 4.39(5)
64 0.49208(6) 0.007349(22) 0.711(14) 0.489 5.42(5)
80 0.50485(20) 0.00607(4) 0.688(4) 0.502 6.39(7)
96 0.51428(13) 0.005152(28) 0.6716(6) 0.512 7.26(5)

112 0.52200(8) 0.004532(12) 0.6539(18) 0.520 8.05(5)
128 0.52827(11) 0.004031(19) 0.641(6) 0.526 8.82(5)
160 0.53858(14) 0.003359(9) 0.617(4) 0.537 10.16(6)
192 0.54635(13) 0.002881(12) 0.5999(23) 0.545 11.44(5)
224 0.55264(9) 0.002549(8) 0.583(4) 0.551 12.54(5)
256 0.55784(13) 0.002282(7) 0.570(4) 0.556 13.66(5)
320 0.56620(10) 0.001913(9) 0.546(4) 0.565 15.50(8)
384 0.57252(5) 0.001653(5) 0.5273(28) 0.571 17.24(6)
448 0.57767(19) 0.001462(8) 0.512(4) 0.577 18.85(7)
512 0.58199(9) 0.001317(4) 0.499(4) 0.581 20.25(8)
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Table A.4.: Aggregation of 3D flexible lattice polymers at fixed density ρ = 10−2. The ag-
gregation temperature Tagg and rounding ∆T are obtained from the specific heat
peak and the fraction 〈η̃〉Tagg of monomers in the largest aggregate is determined
at Tagg. The equal height temperature Teqh is estimated from a binary-search
histogram reweighting scheme and the free-energy barrier is estimated at this tem-
perature. Error bars, if given, are obtained from jackknife error analysis.

L N Tc ∆Tc 〈η̃〉Tc Teqh βeqh∆F

14 2 0.9026(18) 0.9246(24) 1.0(0) - -
16 3 1.0235(21) 0.610(15) 1.0(0) - -
18 4 1.0890(18) 0.4241(30) 0.90994(27) - -
20 6 1.1912(7) 0.3223(20) 0.92507(19) - -
22 8 1.2525(5) 0.2597(28) 0.87910(25) - -
24 11 1.3223(6) 0.2096(17) 0.85161(21) - -
26 14 1.367(5) 0.1709(22) 0.8006(10) 1.382 -
28 17 1.39654(21) 0.1419(10) 0.78641(20) 1.407 -
32 25 1.4540(10) 0.0961(30) 0.71801(29) 1.458 -
32 25 1.4542(7) 0.0961(30) 0.71801(29) 1.458 -
36 36 1.5055(4) 0.0669(6) 0.67321(26) 1.506 0.52(4)
40 49 1.5406(6) 0.04706(25) 0.63199(27) 1.539 0.86(4)
44 66 1.57440(28) 0.0344(5) 0.59214(28) 1.572 1.29(5)
48 85 1.59730(20) 0.02587(17) 0.55979(24) 1.594 1.73(5)
52 108 1.61796(18) 0.01994(10) 0.5323(30) 1.615 2.29(6)
56 135 1.6358(7) 0.0159(4) 0.5099(10) 1.633 2.89(10)
60 166 1.6515(6) 0.01285(17) 0.488(7) 1.648 3.42(10)
62 183 1.6578(8) 0.01151(17) 0.483(4) 1.655 3.81(10)
64 202 1.6652(5) 0.01044(18) 0.474(6) 1.662 4.03(8)
68 242 1.6768(6) 0.00879(19) 0.457(7) 1.674 4.78(11)
72 287 1.6870(4) 0.00745(7) 0.443(6) 1.685 5.48(10)
76 338 1.69667(26) 0.00641(7) 0.429(4) 1.694 6.21(10)
80 394 1.7048(5) 0.00551(7) 0.420(5) 1.703 7.24(16)
84 456 1.71270(19) 0.00488(4) 0.406(4) 1.711 7.77(11)
88 524 1.7193(4) 0.00428(6) 0.397(6) 1.718 8.87(27)
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Table A.5.: Aggregation of 3D flexible bead-spring polymers at fixed density ρ = 10−2. The
aggregation temperature Tagg and rounding ∆T are obtained from the specific heat
peak and the fraction 〈η̃〉Tagg of monomers in the largest aggregate is determined
at Tagg. The equal height temperature Teqh is estimated from a binary-search
histogram reweighting scheme and the free-energy barrier is estimated at this tem-
perature. Error bars, if given, are obtained from jackknife error analysis.

N Tc ∆Tc 〈η̃〉Tc Teqh βeqh∆F

4 1.1004(20) 0.2175(29) 0.9131(13) 1.112 0.19(4)
6 1.1683(22) 0.1345(27) 0.9305(14) 1.175 0.24(6)
8 1.2127(17) 0.0993(24) 0.892(4) 1.216 0.25(5)

10 1.243(4) 0.0786(26) 0.890(5) 1.244 0.39(5)
12 1.2661(16) 0.0627(15) 0.834(4) 1.266 0.56(6)
14 1.2829(28) 0.0529(26) 0.8157(20) 1.282 0.73(6)
16 1.2980(22) 0.0461(15) 0.8008(21) 1.297 0.83(5)
18 1.3111(17) 0.0407(19) 0.7837(18) 1.309 1.02(7)
20 1.3217(19) 0.036(4) 0.7755(22) 1.319 1.17(7)
24 1.3383(18) 0.0291(8) 0.7567(19) 1.336 1.45(7)
28 1.351(4) 0.0244(12) 0.7414(19) 1.348 1.75(7)
32 1.3637(20) 0.0206(13) 0.7350(26) 1.361 2.06(8)
36 1.3717(16) 0.0182(5) 0.7191(20) 1.369 2.37(10)
40 1.3804(30) 0.0165(6) 0.71(4) 1.377 2.56(9)
48 1.3955(11) 0.01366(22) 0.6831(25) 1.393 3.05(11)
56 1.4037(11) 0.0115(7) 0.6733(17) 1.401 3.58(9)
60 1.4086(4) 0.01078(16) 0.6672(19) 1.406 3.69(8)
64 1.4109(12) 0.01005(27) 0.660(21) - -
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