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Abstract: The purpose of this study was to investigate different 4-point water
models (Tip4p) inside the ordinary, hexagonal ice phase (ice Ih), with re-
spect to the structure of their degenerate local energy minima. Another aim
was to find out how the underlying structure influences the results of Monte
Carlo (MC) simulations in and near the ice phase. The first aim was achieved
by minimization of random water clusters in the experimentally known ice Ih
configuration for different parameterizations, and characterization of the unit
cells. In order to obtain representative system sizes, the long-range interac-
tions were cutoff at 25Å. It was found that the Tip4p models have stable
hexagonal minimum configurations with specific lattice constants. The re-
sults indicated that the Tip4p model already lifts the energy degeneration
slightly. MC simulations of 128 molecules with fixed oxygen positions re-
vealed a qualitative dependence of the MC results on the lattice constant
and indicated that energy cutoffs above 9Å provide very similar results. In-
clusion of the translational degrees of freedom was shown to be a promising
approach in the search for a phase transition between the liquid and the solid
phase of the Tip4p water model.
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1 Introduction

Water is, without a doubt, an essential part of our world, playing an important
role in many biological and chemical processes.

In addition its physical properties are quite unusual. It presents a number of
“anomalous” properties [1, 2, 3, 4]. For one, water at room temperature is in
its liquid phase, while molecules with similar mass remain in the gaseous phase.
Moreover, liquid water is observed to be denser than ice, resulting in the fact that
ice floats on water. The maximal density is achieved at a temperature of 277K.The
solid structure of water depends largely on the temperature and pressure and
may take various forms. This work will focus on the ordinary ice phase (ice Ih),
presenting a hexagonal structure.

The extraordinary behavior of water gives rise to the question of the underlying
causes and following consequences. Therefore, a molecular understanding of the
properties and structure of water is of considerable interest. For this purpose
scientists developed several models throughout the last century. As a result, the
mystical anomalies obtained plausible explanations. For example, the liquid phase
at room temperature can be explained by the strength of the hydrogen bond
between molecules, which will be discussed in detail later.

The structure and property of water has been investigated with much effort in
the past. Especially the ice Ih phase is now fairly well understood (for a detailed
discussion see [1]). In 1921 W. H. Bragg proposed the hexagonal arrangement of
oxygen atoms [5]. Until now, the oxygen structure has been investigated exten-
sively by X-ray, electron and neutron diffraction [6, 7]. In principle, they confirmed
the tetrahedral arrangement of neighboring oxygen atoms, forming a hexagonal
structure with only small deviations from the ideal arrangement. As mentioned
above, several more ice phases exist, many of which are also discussed in [1].

Due to the importance of water in many biological and chemical processes, it
is very important to have appropriate water models. Today, many simulations
are performed in order to investigate processes on a biological or chemical scale,
often involving water molecules. The search for water models has been ongoing for
more than 70 years and has been summarized up to 2002 by Guillot [8]. The first
realistic model for water was proposed in 1933 by Bernal and Fowler [9]. They
suggested a simple electrostatic point model with its center of negative charges
shifted away from the oxygen, along the dipole axis, towards the positive hydrogen
charges. Barker and Watts [10] as well as Rahman and Stillinger [11] performed
the first computer simulations of liquid water towards the end of the 1960s. A
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1 Introduction

number of models were developed in the subsequent decades, including a simple
point charge model (SPC) [12] with almost tetrahedral geometry; the so-called
Tip3p and Tip4p models proposed by Jorgensen et al. [13]; as well as the Tip5p
model [14]. Usually, the parameters of the models are obtained by reproduction
of thermodynamic properties in simulations. For this reason different models or
parameterizations are suitable for different applications or phases. Recently it was
shown that Tip4p models predict the equilibrium pressure reasonably well and are
stable in the ice phase throughout the simulation [15].

This work compares different parameterizations of the Tip4p model, which is
supposed to be already quite general, in the ordinary ice phase with respect to
the structure of the unit cell and its stability in more detail. Furthermore it
is investigated whether the ground states of the continuous models support the
energy degeneration, which has been proposed [16] and experimentally verified
[17]. Afterwards the effects of the obtained results on Monte Carlo results are
investigated.

The thesis starts with the description of the model and the ice Ih structure known
from experiment. It continues with a brief overview of the implementation of the
model, followed by an explanation of the numerical methods used. Afterwards a
short chapter about possible optimizations is presented, including the simulation
on graphics cards. In the end the numerical results are presented and discussed.
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2 Theory

2.1 Water model

When it comes to investigating the behavior of water on a computer, the molecules
need to be approximated by a model. In general there are two requirements on
the model. On the one side it needs to be a generic model, reproducing a large
set of properties. On the other side it needs to be simple enough, in order to be
computable at reasonable costs.

There exist several simple water models, for example spherical approximations,
dipole models and models on atomic scale. They all try to reproduce certain
macroscopic properties of water. However, none are able to reproduce all macro-
scopic properties in both the pure liquid phase and in solution [3], or as a matter
of fact, in the solid phase. One therefore needs to choose a model, appropriate
for the task at hand. The models on atomic scale differ by the number of points
of interaction and their parameterization. Maybe the most intuitive model is the
3-point model, in which the oxygen as well as both hydrogen atoms are considered
as point particles and their charges are localized on the corresponding positions
[13]. “Higher” point models usually split and shift the charges a little bit.

In common atomic water models, two interactions are considered between water
molecules, while the intramolecular interactions are neglected as rigid, uncharged
molecules are assumed. For point charges the electrostatic interaction is deter-
mined by the Coulomb potential, which is proportional to the charges and the
inverse distance. Furthermore the Lennard-Jones potential describes the inter-
action between two uncharged molecules or atoms resulting in their character-
istic behavior. Despite the experimentally [18] supported presumption that the
Lennard-Jones interaction is rather non-spherical, it is often simply considered as
a spherically symmetric interaction between neutral molecules, with the oxygen
atoms being the source of interaction. In this case the 12-6 Lennard-Jones poten-
tial is considered, including a repulsive term proportional to r−12 and an attractive
term proportional to r−6. The potential energy between two molecules a and b
is thus given by the sum of the interactions. As the molecules are approximated
as rigid bodies, where the internal angles and distances are fixed, the interactions
are only considered between points of different molecules and not within a single
molecule. In the following qi is the charge of the interaction point i, rij is the dis-
tance between charge i and j and kC is the Coulomb constant. Furthermore rOO
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Figure 2.1: Interaction energies between two water molecules versus the distance
between the oxygen atoms. The molecules are oriented in a “hydrogen-bond”
configuration (see Sec. 6.1.1).

is the distance between the oxygen atoms and tipA as well as tipC are constants
of the Lennard-Jones interaction. The interaction energy between two molecules
is thus given by

Eab = kC

in a∑
i

in b∑
j

(qiqj
rij

)
+
tipA

r12
OO

− tipC

r6
OO

. (2.1)

The total energy between two molecules may have a minimum, depending on
their spatial orientations. Fig. 2.1 shows an example for the Lennard-Jones and
Coulomb interaction terms and the resulting total energy. It is important to
notice that for long ranges the Lennard-Jones potential decreases with r−6, while
the Coulomb potential decreases only with r−1. This means that at large distances
the energy contribution of the Coulomb interaction is dominating.

2.1.1 Tip4p water model

One of the simple water models is the Tip4p water model. Tip4p is the abbre-
viation for the 4-point-transferable-intermolecular-potential, referring to a simple
rigid water model with four interaction points contributing to the potential en-
ergy. It is based upon the early proposal of Bernal and Fowler [9]. As for the
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Parameter Tip3p[13] Tip4p[13] Tip4p/2005[19] Tip4p/Ice[20]

Distance H-O (Å) 0.9572 0.9572 0.9572 0.9572
Distance O-charge(Å) 0.0 0.15 0.1546 0.1546
Angle (deg) 104.52 104.52 104.52 104.52
Charge H 0.417 0.52 0.5564 0.5564

TipA (Å
12

kcal/mol) 582× 103 600× 103 731.6× 103 858.2× 103

TipC (Å
6
kcal/mol) 595 610 736.2 850.8

kC (Å kcal/mol) 332.064 332.064 332.064 332.064

Table 2.1: Some parameterizations of the Tip4p water model.

real molecule, the model consist of two hydrogen and one oxygen atom. The hy-
drogen atoms bond with the oxygen atom by “sharing” their electrons, resulting
in a slightly positive charge of the hydrogen and a slightly negative charge of the
oxygen. These bonds are formed at a rigid angle, resulting in a dipole.

In the Tip4p model the charge from the oxygen is shifted along the molecule’s
dipole axis, causing the model to have four points of interactions (see Fig. 2.2).
The specific distances depend on the parameterization of the model.

Consequently the Tip4p model does not uniquely define a specific molecule, but
rather a class of four-point water models with different parameters. Tab. 2.1 shows
the parameterizations considered in this work. The historical convention cal/mol can
be converted into SI units by 1J = 4.183cal and the Avogadro constant.

Figure 2.2: General Tip4p water model
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2.1.2 Forces in the Tip4p model

In the Tip4p model the water molecule is considered to be a rigid body with
discrete mass points. This means that in the center of mass frame of a single
molecule no intermolecular forces are acting, such that the positions and angles
are conserved. The external forces acting on the atoms in this center of mass frame
cause a torque responsible for a rotation. Furthermore external forces will act on
the center of mass resulting in a translation. Thus the motion of the rigid body
can be divided in the translation of the center of mass and the rotation of the
body. The forces are described in more detail in the following subsections.

Center of mass force

For a discrete rigid body with finitely many mass points, the force on the center
of mass is identical to the force on the center of mass of a system of free mass
points (see [21], p. 159). Considering a single water molecule as a system of
N free particles, it is possible to separate the forces acting on each atom into
external forces due to neighboring molecules, and internal forces due to internal
interactions.

The equation of motion of any particle from this system contains the sum over
the internal forces and the external force

mi~̈ri =
∑
j 6=i

~F
(int)
ji + ~F

(ext)
i , (2.2)

where ~F
(ext)
i is the total external force acting on particle i. Furthermore, the center

of mass can be considered as a mass point of mass M =
∑N

i=1mi at position

rcm =
PN

i=1mi~ri
M

. The corresponding equation of motion takes the form

M~̈rcm =
N∑
i=1

mi~̈ri =
N∑
i=1

∑
j 6=i

~F
(int)
ji +

N∑
i=1

~F
(ext)
i .

The first sum will vanish due to Newtons law of actio-reactio, such that the force
on the center of mass is given as the sum of all external forces on the particles of
the system considered

M~̈rcm =
N∑
i=1

~F
(ext)
i = ~Fcm. (2.3)

This means that the force on the center of mass of a water molecule is obtained by
the direct sum of the external forces acting on each of the four interaction points,
regardless of their mass.
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Torque

The torque ~T causes a rotation of a mass point about an axis. It is defined as

~T = ~r × ~F , (2.4)

where ~r is the distance between the point of rotation and the mass point and ~F
is the force acting on that point. In the case of the rigid body, the total torque
about its center of mass is of interest. Considering the rigid body as a system of
free particles, the torque of a single particle i is given by

~Ti = ~ri × ~Fi = ~ri ×

(∑
j 6=i

~F
(int)
ij + ~F

(ext)
i

)
, (2.5)

where ~ri is the position vector in relation to the center of mass. The internal forces
are acting along a direct path between two interacting points such that

~Ti =
∑
j 6=i

(
F

(int)
ij

~ri × (~ri − ~rj)
rij

)
+ ~ri × ~F

(ext)
i . (2.6)

Summing up all individual contributions, the term involving the internal forces
vanishes due to Newtons third law. The total torque of the rigid body is thus
given by the sum of the individual torques caused by external forces

~T =
∑
i

~Ti =
∑
i

~ri × ~F
(ext)
i . (2.7)

2.2 Ice Ih phase

Compared to liquid water, ice is very well understood. Throughout the last century
the structure of ice was experimentally analyzed using X-Ray, electron and neutron
diffraction. This gave insight into the crystal structure, the symmetries and the
acting forces. The ordinary ice known from day-to-day life is in the so called ice
Ih phase. Furthermore there exist a number of ice phases for lower temperatures
or higher pressures, which will not be considered in this work.

2.2.1 Structure

In the ice Ih phase the oxygen atoms have a crystalline structure, while the ar-
rangement of the hydrogen atoms and thus the orientation of the molecules can
be considered glass-like [9]. Every oxygen atom is at the center of a tetrahedron,
which is formed by the four neighboring oxygen atoms, each a lattice constant a
away [1]. Each water molecule bonds to its four nearest neighbors by hydrogen
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c

(a) The ice Ih phase structure repre-
sented by the oxygen backbone.

(b) View of Ice1 structure along
the c-axis. Hard sphere approx-
imation of atoms shows the va-
cant shafts along the c-axis.

Figure 2.3: Structure of water in the ice Ih phase

bonds, directing its hydrogen atoms towards the neighboring molecules lone-pairs
of electrons as well as directing each of its lone-pairs towards a hydrogen atom
of a neighboring molecule. This results in a hexagonal lattice (see Fig. 2.3(a)) in
which intermolecular cohesion is large [1].

In Fig. 2.3(a) a particular direction is specified, often referred to as the c-axis,
perpendicular to which the layers are oriented. These layers consist of hexagonal
rings and repeat their configuration every second layer. There are in principle two
forms of hexagonal rings, one inside a layer, where opposite sites have opposed
displacements from the hexagonal plane (sometimes called “chair” configuration)
and one between two layers, where opposite sites have the same displacement from
the hexagonal plane (referred to as “boat” configuration) [22]. Mapping the chair
configuration to a plane, each angle is 120◦ and all sides have the same length.

When looking along and perpendicular to the c-axis vacant shafts are visible.
The resulting perforated structure is an important characteristic and responsible
for the fact that ice floats on liquid water [1]. This is shown in Fig. 2.3(b), by
representing the atoms with their spacial occupation in order to illustrate the
perforated structure. A schematic representation is given in Fig. 2.4

In general a crystal structure is made up of small repeating units, reproducing
any other part of the point lattice by translations. They are called unit cells and
can be composed of a single point or a set of points. The unit cells fill the whole
lattice space and are symmetric under translation by the lattice vectors (for further
information see [23]). For the ice Ih crystal the unit cell consists of four molecules.
One possible unit cell is shown in Fig. 2.5.
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Figure 2.4: Projection of the alternating layers into the x-y plane. The up(u) sites
are above and the down(d) sites are below the plane.

In solid state physics, crystal structures are characterized by their symmetries.
It is commonly accepted that the ice Ih crystal has the symmetry P63/mmc [1].
This is the name of a non-cubic space group in the international nomenclature.
Converted to Schoenflies nomenclature this is read D6h. This means that the unit
cell is symmetric under a rotation about the c-axis by 2π/6 [23]. Furthermore,
there exist three perpendicular axes, about which a rotation by 2π/2 is a symmetry
operation, as well as a mirror plane perpendicular to the first rotation axis. Due
to the regular displacement from the hexagonal plane, the rotational symmetry
about the c-axis only holds for rotations of 2π/3. It is important to notice that,
depending on the choice of the unit cell, the symmetry can be obvious or hidden.
It is most obvious choosing a full hexagonal ring over three layers.

The basis vectors of the lattice, by which the unit cell can be periodically trans-
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Figure 2.5: Possible unit cell of water in the ice Ih phase, 3D (black sites are inside
unit cell) and 2D (with basis vectors)
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lated, are given by

~b1 =
1

2
bx̂− 1

2

√
3bŷ

~b2 =
1

2
bx̂+

1

2

√
3bŷ (2.8)

~b3 = cẑ,

where x̂, ŷ, ẑ are the unit vectors in Cartesian coordinates (see Fig. 2.5). In the
literature b is often called a, which is not done in this context since a is defined to
be the distance between nearest neighboring oxygen atoms, the lattice constant.

There have been some uncertainties with respect to the unit cell dimension, as
emphasized by Lonsdale in 1958, because the measured ratio of the unit cell side
length c/b (see (2.8)) seems to be smaller than the value of a structure build from
perfect tetrahedra [24]. Lonsdale proposed either a shorter hydrogen bond along
the c-axis, or a difference in the O-O-O angles from the perfect tetrahedral angle
109.47◦, or a combination of both, supported by following studies [7]. Measure-
ments using synchrotron radiation verified this deformation [25] and identified it
with the O-O-O angles being wider when two oxygens are in the hexagonal plane.
The lattice constants were identical within the limit of the error.

The placement of the hydrogen atoms in the ice Ih phase is even more compli-
cated than in the case of the oxygen atoms. Because of the similarity of several
physical properties of ice to those of water vapor, Bernal and Fowler [9], as well
as Pauling [16], reasoned that the H2O molecules have to be intact. Furthermore
the following ice rules have to be fulfilled:

Ice rule 1: Between two adjacent oxygen atoms lies exactly one hydrogen
atom, closer to one of the oxygen atoms. This bond is then called
hydrogen bond.

Ice rule 2: To each oxygen atom belong exactly two hydrogen atoms,
which are closest to it.

These ice rules are the basis of argumentation for a residual entropy by Pauling,
considered in the following subsection. With the possibility of neutron diffraction,
Peterson and Levy essentially confirmed this for low temperatures [6].

The water molecule structure is not very different from isolated molecules. Eisen-
berg and Kauzman state that the distance between the oxygen and the hydrogen
atom is about 1.01Å[1], which deviates from the value obtained for the Tip4p
model. Furthermore they state that the H-O-H angle is probably not much greater
than the angle of isolated molecules.
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2.2.2 Residual entropy

The hydrogen arrangement in the ice Ih phase is not unique, considering the ice
rules. Pauling argued in 1935 that all arrangements which satisfy the ice rules,
assuming intact molecules, have the same probability to occur and are degenerate.
This implies that a crystal satisfying these three conditions is not completely or-
dered at zero temperature, thus having a residual entropy, a non-vanishing positive
entropy term S0 at zero temperature. The residual entropy is given in terms of
the Boltzmann factor k and the number of configuration for N molecules WN by

S0 = k ln(WN) > 0. (2.9)

Pauling calculated the residual entropy by estimating the number of configura-
tions in two different ways [16]. There are six ways a water molecule can orient
itself in a tetrahedral structure satisfying ice rule 2. If furthermore all molecules are
given one of those orientations at random, each bond has two adjacent molecules
with the probability of 1/2 each that one of their hydrogen atoms lies along that
bond. Thus there is a 1/4 chance to satisfy ice rule 1, having exactly one hy-
drogen atom between all two oxygen atoms. This results in a total number of
configurations of

W
(Pauling)
1 = (6/4)N = (3/2)N . (2.10)

The same result is obtained by the following equivalent argument. Ignoring ice
rule 2, simply demanding one hydrogen atom between two bonding oxygen atoms
there are 22N configurations (2N is the number of bonds), each hydrogen atom
having the choice of being closer to one of the two oxygen atoms. Considering
any oxygen atom, there are hence 24 = 16 possible arrangements of the hydrogen
atoms, ten of which are ruled out by ice rule 1, because they result in (H4O)++,
(H3O)+, (OH)− or O−−. Thus for each oxygen atom only 6/16 = 3/8 configura-
tions are allowed resulting in a total number of configurations of

W
(Pauling)
2 = 22N(3/8)N = (3/2)N . (2.11)

With the use of the definition of the residual entropy this result leads to

S(Pauling) = kN ln(3/2) = R ln(3/2), (2.12)

where the molar gas constant is given as R = 8.314472(15)J/mol K [26] . This results
in a residual entropy of

S(Pauling) = 3.3712...J/mol K = 0.80574...cal/deg mol.1 (2.13)

1The conversion to historical units requires K→ deg and 4.184J = 1cal.
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Refined estimations [27] of the residual entropy by means of multicanonical simu-
lations give

S(MUCA) = (0.81550± 0.00021)cal/deg mol, (2.14)

in good agreement with the results of the series expansion method by Nagle [28].
With the use of calorimetry Giauque and Stout [17] obtained an experimental
value for the residual entropy in good agreement with Pauling and the theoretic
estimation.

S(exp) = (0.82± 0.05)cal/deg mol (2.15)

This shows that each possible ice state has almost the same probability.
Neutron diffraction experiments done by Peterson and Levy confirmed this dis-

ordered structure for −50 and −150◦C, analyzing D2O ice [6]. This degeneration
of ground states is essentially responsible for the previously mentioned glass-like
behavior of the water. It may be argued that, due to the different possible arrange-
ments of the dipoles, there exist ground states that are more stable than others
[29]. For low temperatures, the ordered form of ice Ih (ice XI) was experimentally
found to exist for KOH-doped ice [30], even though the energy differences to the
local minima of ice Ih are very small [31].
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3.1 Construction of the periodic ice structure

In Sec. 2.2 the structure of ice Ih was discussed. Reproducing this structure,
it is important to keep in mind the hexagonal layers perpendicular to the c-axis
(see Fig. 2.4) and the tetrahedral arrangement. These are two criteria that help
to determine the Cartesian dimensions in terms of a given lattice constant a, the
distance between two bonding oxygen atoms.

Projecting the layer to a plane results in a hexagon with side lengths of axy
and inner angles of 120◦ each. This is schematically shown in Fig. 3.1. Further-
more there are three variables introduced: dx, dy and dz, the displacement from
the hexagonal plane indicated by up(u) and down(d). With basic geometry it is
possible to express the variables in terms of axy:

dx = axy cos(30◦) =

√
3

2
axy

dy = axy sin(30◦) =
1

2
axy (3.1)

(2dz)2 = a2 − a2
xy

The last equation presents axy as a function of a and dz. A unique solution of axy
and dz in terms of a is not possible without two linearly independent equations.
As mentioned above, a second criterion is available, namely the fact that the
oxygen atoms are arranged tetrahedral, such that the angles are 109.47◦. For
the determination of the variables any tetrahedral angle in the system can be
considered as reference. In the following argument, the angle between a given
molecules neighbor along the y-axis and the neighbor counterclockwise in the layer
plane was chosen (see Fig. 3.1). Knowing the length of each vector is a, the
following condition is obtained

~v1 · ~v2 = a2 cos(109.47◦) = (0,−axy, 2dz) (dx, dy, 2dz)

= −1

2
a2
xy + 4dz2. (3.2)
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Figure 3.1: Distances necessary for the construction of the ice Ih lattice, in the x,y
plane with the bond labels (left), and in the y, z plane (right).

Inserting (3.1) into the last equation yields

−3

2
a2
xy = a2(cos(109.47◦)− 1)

axy = a

√
2

3
(1− cos(109.47◦)). (3.3)

With cos(109.47◦) = −0.33331 ≈ −1/3 the variables can be written in terms of a:

axy =

√
8

3
a

dz =
1

6
a

dy =

√
2

3
a

dx =

√
6

3
a

(3.4)

The construction of the periodic oxygen structure can be achieved by duplicating
a “worm”, defined along the y-axis. As can be seen in Fig. 3.1 and even better
in Fig. 2.4 (left) on page 19, a periodically appearing pattern is a worm starting
at the lower left corner with an up position, followed by the next three positions
in y-direction (u,d,u,d). For the next layer the pattern is simply inverted with
respect to the displacement along the z-axis (u ↔ d). This pattern is periodic in
the x, y direction, while the layer configurations repeat itself every second layer.
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Nearest neighbor labeling

The nearest neighbors of a given molecule are identified with the bond at which
they are attached. That way any two closest neighbors, connected by a bond, will
identify each other with the same label, the label of their shared bond. In order
to achieve this the following convention is introduced: The neighbor in z direction
(along the c-axis) gets the label 0, while the neighbor that is merely in y direction
(with respect to the hexagonal plane projection) is identified as 1-neighbor. In
Fig. 3.1 the 0-bond is not shown and the 1-bond is represented by a solid line.
The remaining neighbors are now labeled counterclockwise from the 1-neighbor.
In the figure the 2-bond is depicted as a dotted line, while the 3-bond is shown as
a dashed line.

3.2 Spherical layer system

For the energy minimization the hexagonal lattice structure with periodic bound-
ary conditions has some disadvantages. By far the biggest one is the enforced box
size, since the system can neither expand nor contract. A structure with open
boundary conditions is needed, while the resulting boundary effects should not in-
fluence the structural analysis. Due to the long-range Coulomb interactions only a
small subset of elements at safe distance to the boundaries may be considered not
influenced by boundary conditions. It is thus necessary to minimize the boundary
surface.

A layer-based spherical configuration is of advantage, since it provides a small
surface area and the elements at the center of the sphere have approximately the
same distance to the boundary in every direction. This configuration is constructed
by starting with a central element and adding all its nearest neighbors. Every
subsequent layer is added by attaching all nearest neighbors of the previous layer
to the set of molecules. In order to fulfill the ice rules, which are easily implemented
in the cubic case (see Sec. 3.1), the spherical molecule system can be constructed
by first building a cubic system with side length of at least the diameter of the
spherical system. A central molecule can be chosen as origin and layers are added,
using the following breadth-first search [32]:
Starting with the origin molecule, all nearest neighbors are appended to a list.
Beginning at the top of the list, the molecules are added to the system and their
nearest neighbors are attached to the end of the list again. This is done until the
wanted depth (in number of layers) is reached. Thus each layer is completely added
one after another in contrast to the depth-first algorithm, where each branch is
followed to the deepest level, adding all molecules along the path to the system.
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Figure 3.2: (left) Ordered ice Ih hydrogen arrangement projected to the x,y plane.
(right) Scheme of a molecule flip and corresponding corrections. Gray lines indicate
the bonds in the z direction.

3.3 Arrangement of the hydrogen atoms

As mentioned in Sec. 2.2.2, there exist many configurations, satisfying the ice
rules.

Ordered arrangement

One possibility to arrange the hydrogen atoms periodically in the hexagonal oxy-
gen lattice is achieved by reducing the number of hydrogen configurations to two
principle ones. The first configuration places the hydrogen atoms on the c-axis
(bond 0) and along the y-direction (bond 1), while the other configuration places
the hydrogen atoms along the remaining bonds in x-y direction (bonds 2, 3). These
configurations are then assigned to the up respectively down displacements of a
given layer (see Fig. 3.2 (left)). This assignment is inverted for the neighboring
layers in order to satisfy the ice rules. The resulting system is relatively ordered.

Random arrangement in the spherical layer system

In the spherical layer system it is possible to construct a random hydrogen arrange-
ment by starting with the central molecule as seed. Layer after layer the hydrogen
atoms are randomly placed on the neighboring bonds, such that the ice rules are
satisfied. This will eventually run into dead ends, because there exist sites with
three neighbors from lower layers. If all of these bonds are already occupied, the
algorithm has to go back to a previous, still valid, layer and continue until at last
a valid configuration is found. Two drawbacks appear, for one this is only possible
for open systems and furthermore the required computation time explodes with
system size.
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An efficient alternative starts with the previously discussed ordered arrange-
ment. Random molecules are then flipped, meaning that two random neighboring
bonds are chosen on which the hydrogen atoms are placed. The resulting vio-
lations of the ice rules are corrected by a flip of the involved neighbors, causing
new violations and so on (see Fig. 3.2 (right)). The processing of the neighbors is
breadth-first, treating all directions simultaneously and therefore allowing in prin-
ciple closed loops. In general the corrections will process until they reach an open
end, which restricts an efficient application to open systems. A sufficient number
of flips is needed in order to reach true random arrangements, at least proportional
to the number of molecules. Similar approaches can be seen in [33, 29].
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4 Numerical Methods

4.1 Energy minimization

In order to be able to simulate water with the help of a given model, it is important
to have essential knowledge about the behavior of the model. Monte Carlo simula-
tions (explained in detail below) in the ice phase present difficulties due to the low
temperatures. Thus, when sampling the phase space it is necessary to know the
principal structure of the model in this phase. In the best case the model assumes
the same arrangement known from experiments. Therefore the ideal hexagonal ice
Ih structure is a good initial configuration. Following the dynamics of the system
it is then possible to minimize the energy, thus finding a local minimum describing
the properties of the model.

4.1.1 Equations of motion

The motion of a molecule can be separated into translation of the center of mass
and a rotation of the rigid body (see Sec. 2.1.2). Thus each molecules equation of
motion is obtained with respect to the position of the center of mass ~rcm and the
rotation angle ϕ.

One equation of motion relates the magnitude of the torque T to the rotation
angle. The torque may also be defined as the rate of change of the body’s angular
momentum ~L

~T =
d~L

dt
. (4.1)

For a fixed rotation axis, which is applied during any given time step, the angular
momentum is proportional to the angular velocity ~ω: ~L = I~ω. I is the moment of
inertia, defined for a body of a finite number (N) of mass points as

I =
N∑
i=1

mir
2
i . (4.2)

Here ri are the shortest distances between the mass points and the rotation axis.
Considering that the rotation axis is fixed during any given time step, it is sufficient
to consider the scalar lengths only, relating the strength of the torque to the
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rotation angle about the axis

T = I
dω

dt
= I

d2ϕ

dt2
. (4.3)

It is important to notice that the moment of inertia is directly dependent on the
orientation of the torque and hence has to be calculated in each time step.

The second equation of motion relates the center of mass force ~Fcm to the center
of mass position (see (2.3)) via the total mass of the rigid body M . Thus the
following differential equations are the foundation of the dynamics used in the
minimization, where Tcm is the torque about the center of mass.

M~̈rcm = ~Fcm

Iϕ̈ = Tcm
(4.4)

4.1.2 Energy minimizing time integration

It is important to notice that the energy minimization in this context does not aim
for the global minimum. On the contrary the local minima are of great interest in
order to classify the mean structure of the ice Ih phase.

In a naive approach, the energy minimization can be realized by a simple time
integration omitting the particles velocities, neglecting the particles inertia. This is
achieved by setting the state after each time step to be the new initial configuration
with zero velocity. That way the particles only move in direction of the acting,
decreasing forces, directly towards a local energy minimum. This can be imagined
as the motion of the state in the phase space, being a potential energy landscape
(see Fig. 4.1). Since the system experiences no inertia, the state cannot move
beyond this local point as long as the time step is small enough. Integration of
the equations of motion (4.4), with zero velocity and a time step ∆t, yields the
following change of variables:

∆rcm =
1

2

~Fcm
M

(∆t)2

∆ϕ =
1

2

Tcm
I

(∆t)2

(4.5)

This method requires a sufficiently small time step, still large enough to avoid
long computational times. The exactness of the final configuration depends on the
convergence criterion. It seems natural to consider either the change in energy
per time step as a parameter for convergence, or to choose the mean force which
approaches zero at an energy minimum. In terms of computational costs the
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state
gradient

Figure 4.1: The energy minimization can be considered as a motion downhill the
phase space potential landscape.

latter is more convenient, because in this case the calculation of the energy may
be omitted.

4.2 Monte Carlo simulation

Markov chain Monte Carlo simulations are suited to solve statistical problems nu-
merically, which might be hard or even impossible to solve analytically. In physi-
cal literature they are often simply referred to as Monte Carlo (MC) simulations,
which in general includes simple sampling as well. The basis is a Markov process,
generating state n + 1 stochastically from state n without having any knowledge
of the previous states. This stands in contrast to random sampling, where each
state is generated independently of each other with a given probability. Thus a
MC algorithm has to make sure that the desired probability distribution is asymp-
totically obtained for large n, which may be achieved by importance sampling, as
discussed below.

When using MC simulations some problems may arise. Due to the direct de-
pendence on the previous state, the subsequent configurations become correlated,
which has to be considered in the error analysis. Furthermore in the case of con-
tinuous systems, more error sources arise, for example rounding errors, resolution
restrictions of the random number generator and histogram discretization errors.

An introduction to Markov chain Monte Carlo simulations for discrete and con-
tinuous systems is given in [34].

4.2.1 Canonical ensemble

The canonical ensemble, sometimes also referred to as Gibbs or Boltzmann ensem-
ble, is a set of states of the system, each being a possible state in which the real
system may reside. These states are Boltzmann distributed, which means that the
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probability for a given state i is

pi =
1

Z
e−βEi , (4.6)

where Ei is the energy of the state, β = (kT )−1 the inverse temperature and Z
the partition function. The partition function is defined as the sum of Boltzmann
factors over all possible states {i}

Z =
∑
{i}

e−βEi . (4.7)

The canonical ensemble is suitable for calculations of observables at a fixed
temperature, where the energy is allowed to fluctuate. For a discrete system with
N possible states the expectation value of an observable O is given by

〈O〉 =
1

Z

N∑
i=1

Oie
−βEi . (4.8)

4.2.2 Importance sampling

The idea of importance sampling is to generate states according to their proba-
bility. This way states that contribute less to the expectation value (4.8) are not
generated as often as those that contribute more.

For practically any interesting system the number of possible states diverges.
In case the configurations are generated with their Boltzmann weight e−βEi , the
expectation value (4.8) is calculated as the arithmetic average over the number of
measurements N

〈O〉 = lim
N→∞

1

N

N∑
i=1

Oi. (4.9)

Since the number of measurements is always finite, it is only possible to obtain
the estimator of the expectation value

Ō =
1

N

N∑
i=1

Oi. (4.10)

It is important to point out that normally it is not possible to generate Boltzmann
distributed configurations. This is the reason for the implementation of Markov
chains, where a new configuration is generated from an existing one. As a result
a time series of configurations is obtained.

Assume the system is in a configuration k, out of which it shall transit to config-
uration l with probability W lk = W [k → l]. The set of all transition probabilities
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defines the transition matrix, characterizing the Markov process,

W =
(
W lk

)
(4.11)

with the following properties:

1. Ergodicity:
pk > 0 ∧ pl > 0 =⇒ ∃n > 0 s.t. (W n)lk > 0
i.e. every point in phase space is reachable

2. Normalization:∑
lW

lk = 1

3. Balance:∑
kW

lkpk = pl

3’. Detailed balance:
W lkpk = W klpl

where 3’ is a stronger condition than 3. It reproduces the property of balance,
when the sum over l is taken and property 2 is used.

The resulting time series of Boltzmann weighted configurations replaces the
canonical ensemble average with a time average over the Markov chain, as long as
the corresponding transfer matrix satisfies the above conditions.

4.2.3 Metropolis algorithm

The condition of detailed balance can be satisfied by a number of transition matri-
ces. A common choice is the Metropolis algorithm [35]. It only requires to calculate
the energy of the configuration, providing a general and simple algorithm.

Consider the system to be in a configuration k and by some update a configu-
ration l is proposed. The new configuration is accepted with the probability wlk,
determined by the ratio of the Boltzmann probabilities (4.6). This ratio may be
larger than one, in which case the probability is set to 1

wlk = min

[
1,
pl
pk

]
=

{
1 for El < Ek

e−β(El−Ek) for El > Ek
. (4.12)

If the proposed configuration is rejected the previous configuration k is kept and
the process is started over again. An acceptance rate can be defined by the ratio
of accepted proposals over total proposals.

Probably the most crucial point is to choose appropriate update techniques to
propose a new configuration. This new configuration is proposed with a certain
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probability f(l, k) normalized such that
∑

l f(l, k) = 1, depending on the update
procedure. Thus the transition probability for l 6= k is given by

W lk = f(l, k)wlk, (4.13)

The requirement of detailed balance leads to

W lk

W kl
=
f(l, k)

f(k, l)
e−β(El−Ek) !

= e−β(El−Ek). (4.14)

This results in the condition

f(l, k) = f(k, l). (4.15)

It is important that the updates used in a Metropolis MC simulation ensure the
detailed balance and ergodicity (f(l, k) > 0) criterion, which sometimes can be
less obvious.

4.2.4 Updates

The discussion above shows the importance of appropriate updates, generating
subsequent Markov chain elements. Below two suitable update techniques are
presented and one update method that violates detailed balance.

In praxis the Metropolis acceptance step is always the same. A given molecule’s
configuration is saved and afterwards the molecule is updated. The new energy is
calculated, which in the case of long-range interaction may cost some computation
time, and related to the old molecules energy. According to the Metropolis prob-
ability the new configuration is then accepted or denied, while in the latter case
the given molecule’s change is reversed by returning to the saved configuration.

Rotation update

The rotation update, as the name suggests, rotates a random molecule. It is re-
alized by generating a random rotation axis in spherical coordinates by drawing
a random azimuthal and polar angle. This way the rotation axis is equally dis-
tributed in spherical coordinates. Furthermore a random angle out of a given
update range is drawn by which the molecule is rotated.

The update requires at least four random numbers and the probability to propose
a rotation from configuration k to l is the same as vice versa, satisfying detailed
balance.
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Figure 4.2: Possible Monte Carlo updates include the rotation about an arbitrary
axis (left) and translation in an arbitrary direction (right).

Translation update

Again the name of the update reveals the function, the objective is to move a
random molecule in space. To this extent a random direction, equally distributed
on a unit sphere, is generated and a translation length is determined randomly.
The translation length is restricted to a chosen range in order to improve the
acceptance rate by omitting unlikely new configurations.

Thus the update requires at least four random numbers. Detailed balance is
fulfilled since the probability to propose a translation in direction ~a is the same as
proposing a translation along −~a.

When simulating water in and near the ice phase, the previously explained ice
Ih structure is very unstable. In order to preserve the structure, the transla-
tion update needs to be restricted further. Considering the indistinguishability
of the water molecules, a possible solution would be the restriction of each water
molecule to a confined region about its initial position, assuming a molecule travel-
ing far away from its position is replaced by another. Thus the position of a single
molecules “oscillates” about its minimum position, requiring a precise knowledge
of the structure. This is possible in the canonical ensemble, where volume and
particle number, and thus the density, are constant. As indicated above, this up-
date is not suitable for Monte Carlo simulations in the liquid phase but rather in
the near ice and ice phase.

Rotation update depending on the torque

In order to obtain better acceptance rates the idea comes to mind to propose a
rotation update about the axis in direction of the torque (see Sec. 2.1.2). This way
the molecule will move in the direction it would tend to naturally, which is not
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random. However, this violates detailed balance. Once the molecule is rotated the
acting forces change and the previous configuration can possibly not be proposed
again. Biasing may be a strategy to preserve detailed balance [36], in which case
the acceptance probability additionally depends on the proposal densities.

4.3 Error estimation

Error estimation is an important part of any statistical analysis, since it reveals
the quality of the results [37]. Often used as an estimation is the simple arithmetic
mean, for example in the case of importance sampling MC simulations. The exact
expectation value 〈O〉 is thereby approximated by the expression

O =
1

N

N∑
i=0

Oi, (4.16)

where Oi are the individual measurements. The inexactness of this estimation can
be expressed by the variance

ε2
O

= σ2
O

=
〈(
O − 〈O〉

)2
〉

= 〈O2〉 − 〈O〉2. (4.17)

Inserting (4.16) into this expression, considering linearity of the expectation value,
yields

σ2
O

=
1

N2

N∑
i,j=1

〈OiOj〉 −
1

N2

N∑
i,j=1

〈Oi〉〈Oj〉. (4.18)

This can be sorted into terms with the same and those with different indices

σ2
O

=
1

N2

N∑
i=1

(
〈O2

i 〉 − 〈Oi〉2
)

+
1

N2

N∑
i 6=j

(〈OiOj〉 − 〈Oi〉〈Oj〉) . (4.19)

The first term is proportional to the variance of the individual measurements. The
second term is symmetric in Oi and Oj, which can be used to rewrite the sum into

2
∑N

i=0

∑
j=i+1. Furthermore the time translation invariance of the measurements

results in an invariant expectation value 〈Oi〉 = 〈Oi+n〉, as well as an invariant
correlation 〈OiOj〉 = 〈Oi+nOj+n〉 for any n ∈ N. Collecting with respect to k =
|i− j| and applying the above arguments finally yields

σ2
O

=
1

N

[
σ2
Oi

+ 2
N∑
k=1

(〈O1O1+k〉 − 〈O1〉〈O1+k〉)
(

1− k

N

)]
, (4.20)
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where the additional factor appears since for any k exactly N − k correlations are
possible.

In case of N uncorrelated measurements the second term in (4.20) vanishes and
the variance of the mean value reduces to σ2

O
= 1

N
σ2
Oi

.

4.3.1 Integrated autocorrelation time

For correlated measurements, the variance of the arithmetic mean (4.20) strongly
depends on the second term. It can be written as

σ2
O

=
σ2
Oi

N
2τ ′O,int, (4.21)

by introducing the (proper) integrated autocorrelation time τ ′O,int

τ ′O,int =
1

2
+

N∑
k=1

A(k)

(
1− k

N

)
, (4.22)

as the sum over the normalized autocorrelation function (A(0) = 1)

A(k) =
〈OiOi+k〉 − 〈Oi〉〈Oi+k〉

〈O2
i 〉 − 〈Oi〉2

. (4.23)

For sufficiently large k the correlation vanishes and as a consequence the autocorre-
lation function approaches zero. Thus, for (meaningful) simulations with N � k,
the correction term in (4.22) can be safely neglected [37]. The resulting integrated
autocorrelation time is then

τO,int =
1

2
+

N∑
k=1

A(k). (4.24)

From (4.21) it is evident that the statistical error is increased by the square root
of the integrated autocorrelation time

εO =
√
σ2
O
∝
√

2τO,int√
N

. (4.25)

This emphasizes the importance of large N with respect to the integrated autocor-
relation time in order to reduce the statistical error. Moreover, serious simulations
should provide an estimate of the autocorrelation times.

Furthermore, the expectation value of observables derived from measured ob-
servables gets biased for large integrated autocorrelation times. One example is
the specific heat C = β2V (〈e2〉 − 〈e〉2), where e is the mean energy and V the
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volume, with the following expectation value (see [37])

〈Ĉ〉 = C

(
1− 2τe,int

N

)
. (4.26)

Thus, for large correlations the heat capacity is underestimated. This effect also
exists in the uncorrelated case, when the integrated autocorrelation time of the
uncorrelated case is defined as τe,int = 1

2
. Usually the bias-corrected estimator is

therefore introduced

Ĉcorr =
N

N − 1
Ĉ. (4.27)

Numerical estimation

Ironically, the parameter ensuring the quality of a statistical estimation has to be
estimated itself. When estimating the autocorrelation function, the expectation
values in (4.23) are replaced with mean values. Remembering the time translation
invariance, the unnormalized estimator of the (biased) autocorrelation function
can be obtained as

Â′(k) = OiOi+k −Oi ·Oi+k = (Oi −Oi)(Oi+k −Oi), (4.28)

where Â′(0) is the normalization factor. As discussed previously, the correlation
is supposed to vanish with increasing k, resulting in a “running estimator” of the
integrated autocorrelation time

τ̂O,int(kmax) =
1

2
+

kmax∑
k=1

Â′(k)

Â′(0)
. (4.29)

With large k the running estimator approaches τO,int, but at the same time the
statistical error increases as less data points are available. Experience has shown
that it is reasonable to self-consistently compute the running estimator until k ≥
6τ̂O,int(kmax).

The obtained information allows an estimation of the quality of the results. It
is of great interest to find MC updates with low autocorrelation times. If this
is not possible, short MC simulations may be performed in advance in order to
adjust the number of sweeps in between measurements, such that the correlations
between measurements minimize.

4.3.2 Binning and Jackknife error estimation

In order to reduce the effects of possible correlations in the error estimation, it is
possible to consider only the mean values calculated from subsets of measurements.
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Binning Jackknife

Figure 4.3: Scheme of the binning (left) and jackknife (right) blocking.

Consider N more or less correlated measurements Oi and divide this set into NB

subsets of size k (see Fig. 4.3 (left)), such that N = NBk. The mean values OB,n

of the subsets are uncorrelated, if the blocks are chosen large enough (k � τ).
Then the statistical error can be obtained from the variance of the mean values
σ2
B with the bias-corrected estimator

ε2
O

= σ2
B/NB =

1

NB(NB − 1)

NB∑
n=1

(
OB,n −O

)2
. (4.30)

This approach is called the binning method.
The Jackknife method reduces the bias problem for non-linear combinations of

basic variables. Consider NB large, overlapping “Jackknife” blocks, each contain-
ing all data except for one binning block, i.e. N−k elements (see Fig. 4.3 (right)).
The mean value of such a Jackknife block OJ,n can thus be computed by

OJ,n =
NO − kOB,n

N − k
. (4.31)

These mean values are trivially correlated since the same data enters NB − 1
different blocks and consequently the variance will be much smaller than in the
binning case. For example in the case of NB = N the variance of OJ,n is very
small, as all the mean values are practically the same. This correlation can be
corrected by multiplying the variance with (NB − 1)2, yielding

ε2
O

=
NB − 1

NB

NB∑
n=1

(
OJ,n −OJ

)2
, (4.32)

where OJ is the mean value of the OJ,n.
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5.1 Parallelization with graphics processing units

The use of general purpose graphics processing units (GPGPU) in science has
recently been of large interest. A variety of different applications have been inves-
tigated. For many applications large speed up factors could be gained. Considered
among others are molecular dynamics [38, 39, 40], fluid dynamics [41] as well as
general boundary value problems [42] to name only a few. Furthermore, the com-
bination of GPUs to a cluster [43] provides large performance improvement at
relatively low cost.

The dynamic minimization technique, used in this work, is well suited for par-
allelization with graphics processing units (GPUs) using OpenGL, as all molecules
are handled in the same manner at the same time. In this case, it is not necessary
to manage the GPU or the data transfer within the graphics card. In principle,
graphics cards are composed of several so-called shading units, which access the
same memory and can be parallelized by the driver. This can be used by rewriting
the core functions of the simulation in a way the driver understands. Before this
can be discussed, some basics need to be explained.

5.1.1 Basic working principle of GPUs

The main purpose graphics cards are designed for, is to generate output to a dis-
play. This includes the translation of 3D images, for example from a simulation,
into 2D images represented by pixels. Because the original purpose is the presen-
tation of images visible to the human eye, the processes in the GPU are designed
for single precision floating-point calculations. The advantage of graphics cards
lies in their large number of processing units (shading units), allowing the original
purpose of 3D rendering operations, image processing, etc., performing the same
computations on a large volume of data.

On a GPU the data is stored in textures, which can be understood as 2D-arrays
of 4-component vectors (see Fig. 5.2). They were originally designed to store the
color channels RGBA.

A general graphics task on a GPU involves several steps; it runs through the
graphics hardware pipeline, see Fig. 5.1. At specific stages in the pipeline small
programs, so called shaders, are executed on the shading units and perform the
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Figure 5.1: Simplified illustration of the GPU pipeline.

necessary work. The driver translates the program code, written for example in
OpenGL, into commands that the GPU Front End can understand and sends all
necessary data to the GPU. This data transfer between the RAM and the GPU
is the largest bottleneck in many GPU computations. On the GPU the 3D input
is then transformed into a 2D representation by interpreting a 3D scene from a
certain position and reducing it to the vertices visible in a 2D picture. This is
done by the programmable vertex shader. Afterwards these vertices are grouped
into new primitives and converted to a set of fragments in screen space, which is
referred to as compilation of vertices in the figure. In these fragments the state
information of the screen pixels are stored. The pixel or fragment shader then
assigns a color to each pixel, which is based on pixel values from one or more
textures. This may include mathematical operations, in order to determine the
right color by interpolations, etc. At last, the GPU checks the output’s depth and
alpha channel to determine whether a certain pixel in the frame buffer is updated
or not. In the end, the result is send to the framebuffer, from where it can be
displayed.

5.1.2 Parallelization of the minimization algorithm with
OpenGL

The GPU pipeline may be used for parallelized processes, where the same operation
is performed on every point of the system. This is the case for molecular dynamics
simulations of particle systems, or the minimization technique used in this work,
as all particles are updated simultaneously, requiring the whole information of the
previous system state. MC simulations including single particle updates are more
problematic, because the updates need to be performed consecutively.
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Figure 5.2: With the help of shaders, data stored on textures can be processed
and directed to an output texture.

The energy minimization is parallelized in the following way: First, the molecule
system is initialized by the CPU and stored into the RAM, according to the previ-
ously described geometry and algorithms (see Chap. 3). The data of the system is
stored in one-dimensional arrays and then uploaded from the RAM to the GPU into
the corresponding 2D textures. The textures are only composed of 3-component
vectors, because the important information can be reduced to the 3D position of
the atoms (→position texture) and the charge, mass and molecule identification
number (→static information texture).

For each operational step a separate shader (composed of vertex and fragment
shader) is executed, directing its output into a single texture, see Fig. 5.2. In each
case, the vertex shader obtains the texture coordinates that need to be updated.
As for the minimization the whole texture needs to be updated, the shader draws
an imaginary, filled rectangle over the whole virtual screen. This way the GPU gets
the information that the fragment operations need to be applied on every texture
element. At this level the optimized parallelization takes place, since the GPU
driver is developed to autonomously distribute the tasks onto the shading units
as efficient as possible. The fragment shader thus continues in parallel with the
actual physical computation. Each minimization step requires the current gradient
of the energy. Thus, one shader calculates the force acting on every atom via a
loop over all other texture elements, except for the ones belonging to the same
molecule. The force is then stored in an additional texture. With the help of the
calculated forces the integration step is performed by the next shader, calculating
the center of mass forces, the moment of inertia, and the torque before translating
and rotating the molecules. The result is stored in a texture that is eventually
swapped with the position texture. Yet another shader calculates the energy in
the same manner as the force and stores it in a further texture.
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Parameter Time (103s) Factor

AMD Opteron Dual-Core 2.6GHz (single) 74.664 1
Intel core2Quad 2.4GHz (single) 62.053 1.2
ATI Radeon 4870 0.978 76

Table 5.1: Performance comparison of GPU/CPU via 5000 minimization steps
(∆t = 0.2fs) with 4713 molecules (17 layers).

The data transfer within the graphics card is very fast. On the other hand, the
transfer between the RAM and the graphics card is very slow. Thus, it is necessary
that the measurements are not performed in every step, but with an appropriate
step interval. In case of the minimization method, this means that the mean center
of mass force of the system, or alternatively the mean energy, is calculated after
prefixed intervals. Otherwise, the performance drops drastically as too much time
is spend on the slow data transfer. For system sizes of interest an interval of at
least 20 time steps is required. Then the time spent on the data transfer from
the GPU is below the order of the computational time spent on the interval of
minimization steps. This effect can be observed for small systems, where the GPU
cannot show its real power because the actual computation is very fast but the
data transfer happens too often.

The parallel simulation on the GPU may be compared to the non-parallelized
CPU simulations performed so far. These were executed on the working station
at hand, an Intel core2Quad 2.4GHz, and the ITP Leipzig computation cluster
grawp equipped with AMD Opteron Dual-Core processors. Since OpenGL is, in
principle, independent of the graphics cards manufacturer, the OpenGL program
was tested on an Nvidia Tesla1 and an ATI Radeon 4870 card. For a system of
4713 molecules the minimization routine was executed on both GPUs and CPUs
and compared (see Tab.5.1). The improvement factor has to be considered care-
fully. For one the CPUs and GPUs were not produced in the same years and in
addition the GPUs did perform the operations with single precision, whereas the
CPU computations were performed with double precision. The latter point is only
of importance, if double precision is required, in which case the GPU performance
drops strongly. Simulations with single precision on CPUs, on the other hand,
do not significantly improve the performance. In Fig. 5.3 the somewhat unfair
comparison of a single CPU core and the ATI graphics card (with 800 shading
units) is shown, in order to demonstrate the power of GPU simulations. The com-
putational time is plotted versus the system size in number of molecules. Above a
size of about 5000 molecules the simulation times on the CPU become very large,

1The Nvidia card actually presented some unresolved difficulty for larger systems, which might
be due to unwanted optimizations of the Nvidia driver. Because of this it does not appear in
the performance comparison.
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as long as no cutoff is introduced. The computational time on the graphics card
increases much slower. This is due to the fact that on a CPU each molecule is
considered one at a time, performing a loop over all other molecules, while on the
GPU many molecules can be processed in parallel from the same shared memory.
Thus, simulations using a GPGPU are a good and generally cheap alternative to
small CPU clusters, especially considering their weak increase of simulation time
with system size. In the end, it is important to notice that graphics cards produce
a lot of heat, which has to be taken into account for a suited location.
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Figure 5.3: Computation time dependence on system size of CPU and GPU.

5.2 Multihit Metropolis algorithm

One of the limitations in the Monte Carlo simulation of a water system in the
ice Ih configuration is the rapidly increasing integrated autocorrelation time τint
with decreasing temperature. As described in Sec. 4.3.1, large integrated auto-
correlation times lead to an increased statistical error as well as a bias in the
estimation of observables. The problem lies in the low acceptance rate at low
temperatures. It cannot be avoided by choosing a smaller update range, because
this again would results in larger correlations between subsequent states. Increas-
ing the number of sweeps in between measurements would reduce the correlation,
but would drastically increases the computation time. Therefore a solution that
reduces the integrated autocorrelation time, while increasing the simulation time
mildly, is of great interest.

One solution is the multihit Metropolis algorithm [34]. The idea is to consider a
given Metropolis update multiple (n) times in order to provide the possibility for
any molecule to reach lower energy states. Updating each molecule n times offers
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Figure 5.4: τint (left) and τint · tCPU (right) versus number of multihits for different
inverse temperatures β. The mean product of τint and simulation time is shown
as thick line. The relative errors for the right plot are omitted for clarity.

the advantage that each resulting energy can be passed into the multihit routine
as the old energy again. That way the most expensive part of the update has been
reduced by almost a factor of two, as in each multihit routine there are now n+ 1,
instead of 2n, calculations of the energy.

The multihit Metropolis algorithm was tested for a system of 128 particles with
cutoff 4Å at different inverse temperatures. It can be seen in Fig. 5.4 (left) that the
integrated autocorrelation time decreases with larger multihit number approaching
a limit specific to the temperature. At the same time, the acceptance rate increases
along with the simulation time. The optimal multihit number n is determined by a
low integrated autocorrelation time and a low simulation time. It is thus obtained
at the minimum of the product of both quantities. In Fig. 5.4 (right) this product
is plotted versus the multihit number. The relative errors from the integrated
autocorrelation time are of the order of 10%, which explains the fluctuations in
the plot. For inverse temperatures below 0.50 and nearest neighbor interaction,
a multihit n = 6 is optimal producing small integrated autocorrelation times at
reasonable computation time.

This method proves very effective in reducing the integrated autocorrelation
time. The appropriate multihit number depends strongly on the temperature
range and the energy calculation method. For the given system a performance
factor of almost two was achieved at low temperatures with the multihit Metropolis
algorithm.
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In this chapter, the numerical results are presented. The study of the structure of
Tip4p parameterizations in the ice Ih configuration begins with the investigation
of the interaction between two water molecules with their minimal energy config-
uration. Afterwards, random spherical ice systems are considered with the help of
the minimization technique introduced in Sec. 4.1.
In the end, the influence of the results on Monte Carlo simulations is investigated
and discussed.

6.1 Local energy minimum of the Tip4p water
model in the ice Ih phase

In order to understand the energy minimum of the solid ice phase, it is helpful to
understand the basic interaction between two isolated water molecules first.

6.1.1 Interaction between two water molecules

Consider an initial configuration with two molecules A and B. Due to symmetry
reasons, a minimal energy configuration requires both molecular planes to be per-
pendicular (see Fig. 6.1). In addition, the dipole of B lies along the connecting
line of the two oxygen atoms. This way the hydrogen atoms of B are at the same
distance from each hydrogen atom of A. As a consequence, the components of the

A B

Figure 6.1: Perpendicular molecular planes allow a symmetric arrangement of the
hydrogen atoms, resulting in a minimal energy contribution of the hydrogen atoms.
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Figure 6.2: Angular energy distributions for two water molecules (Tip4p), with
perpendicular molecular planes, at different distances. The distribution is normal-
ized such that the energy at 52.27◦ is -1.

acting forces, perpendicular to the molecular plane of A, cancel. B shall be fixed
for the moment. The three rotational degrees of freedom of the variable molecule
A reduce to one. For this degree of freedom, the angular energy distribution is ob-
tained by small rotations of A, measuring the interaction energy at each step (see
Fig. 6.2). For large distances the energy minimum is reached when the dipole of A
is parallel to the dipole of B, while an anti-parallel dipole arrangement maximizes
the energy. Reducing the distance between A and B results in two local minima,
which approach the angles 0◦ and 104.52◦ with decreasing distance.

The symmetry breaking (see Fig. 6.3) begins at d0 and is caused by the Coulomb
interaction, since the Lennard Jones interaction (only between oxygen atoms) is
independent of the angle. The critical distance depends on the model and param-
eterization used. It is almost identical for the Tip4p/2005 and Tip4p/Ice param-
eterization, while it deviates largely in the case of the Tip3p model. Nonetheless,
the qualitative behavior is the same for all models considered.

It can be argued that for large distances the Coulomb interactions of the hydro-
gen atoms are almost equal, such that a symmetric configuration becomes favor-
able. At short distances, however, the attractive interaction between a hydrogen
charge and a foreign oxygen charge is larger than the repulsion from the foreign
hydrogen charges. This is due to the 1/x behavior of the Coulomb energy, resulting
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Figure 6.3: Minimal energy angle corresponding to Fig. 6.2 versus distance be-
tween the oxygen atoms. At d0 a single minimum (symmetric configuration) splits
into two minima (h-bond configuration).

in a larger contribution of a given ∆x at small distances. The resulting minimum
configurations at close distance are those, where one of both hydrogen atoms of A
are directed towards the oxygen atom of B, forming the well known hydrogen bond
(h-bond).

In the field of dynamical systems, such an effect is called bifurcation, where a
small smooth change in a parameter (in this case the distance) causes a sudden
change in behavior (in this case the orientation of the molecule). The single mini-
mum splits into two perfectly symmetric minima at the bifurcation point d0. This
is called pitchfork bifurcation [44]. Bifurcation theory predicts that the behavior
near d0 is proportional to (d0 − d)α. For the different parameterizations the fol-
lowing exponents were obtained near the bifurcation point with a nonlinear fit:

αT ip3p = 0.496± 0.001

αT ip4p = 0.495± 0.001

αT ip4p2005 = 0.497± 0.001

αT ip4pIce = 0.497± 0.001

(6.1)

This indicates a general square-root-like behavior (α ≈ 0.5) near d0 for all param-
eterizations considered.
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The bifurcation points, as result of the same fit, on the other hand differ:

d0,T ip3p = (5.202± 0.001)Å

d0,T ip4p = (6.242± 0.001)Å

d0,T ip4p2005 = (6.290± 0.001)Å

d0,T ip4pIce = (6.290± 0.001)Å

(6.2)

This distance is larger than the distance between neighboring molecules in and near
the ice phase, which is of order 3Å [25]. Especially the next nearest neighbors, but
also the nearest neighbors, will influence each molecule’s orientation depending
on the distance, thus resulting in possibly different lattice constants for different
models. It is clearly visible that there exist significant differences between the
Tip3p and Tip4p model.

Consider now the favorable hydrogen bond pair configuration with molecule
B variable and molecule A fixed. Again, two rotational degrees of freedom can
be eliminated, such that the forces acting on the hydrogen atoms of B are equal.
This results in a lower net torque and consequently a lower interaction energy. The
angular dependence of the interaction energy on the remaining degree of freedom is
shown in Fig. 6.4, where the distance between A and B is minimized for each angle.
For the Tip4p parameterizations the following angles were found to minimize the
energy:

βT ip3p = −(27.2± 0.01)◦

βT ip4p = −(34.7± 0.01)◦

βT ip4p2005 = −(34.5± 0.02)◦

βT ip4pIce = −(32.9± 0.02)◦

(6.3)

It is interesting to notice that these configurations are similar to only one of the pos-
sible water molecule arrangements, within the boat configuration (see Sec. 2.2.1)
of the ideal ice Ih (also called c-trans configuration [29]). The corresponding angle
may be calculated as β = arctan( dy

2dz
) = −54.74◦ (see (3.4)). For these energeti-

cally favorable configurations the oxygen-oxygen distances di take the following
values:

dT ip3p = (2.745± 0.001)Å

dT ip4p = (2.701± 0.001)Å

dT ip4p2005 = (2.721± 0.001)Å

dT ip4pIce = (2.767± 0.001)Å

(6.4)

This already shows that the structure of the minimal ice Ih configuration will
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Figure 6.4: Energy distribution for two water molecules in the favorable h-bond
pair configuration. The distance was chosen for each angle such that the energy is
minimized.

probably depend on the parameterization used. Also, the specific energy levels
and minima vary with the parameterization.

6.1.2 Local energy minimum in an ice Ih configuration

The minimizations were performed with a time step of ∆t = 0.2 fs, in order to
provide only small spatial displacements and to keep the system stable. This
time step is smaller than in usual molecular dynamics simulations, for example
concerned with the melting point of ice Ih, where often the time steps are of order
1fs (for example [45]). With the given order of force parameters the initial spatial
update range per time step is of the order 10−6Å, sufficiently small for the simple
time integration method. As criterion for convergence of the minimization the
mean center of mass force was required to be reduced to 1/100 of the standard
initial values for the given time step.

The initial configurations of the minimizations were spherical ice Ih structures
as described in Sec. 3.1 with lattice constant a = 2.764Å [2]. In order to obtain
representative results, 100 different realizations of the ice rules (Sec. 2.2.1) were
constructed by a random hydrogen arrangement (Sec. 3.3). For the investigation
of unit cell distances and angles, only up to 12 molecules from the central core of
the system were considered in order to avoid boundary effects as much as possible.
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Figure 6.5: Mean deviation (of set with r < cutoff) from the limiting energy
(r = cutoff) and the corresponding sample standard deviation.

Long range interaction

The Coulomb interaction is effective on a large range. This can be seen in Fig. 6.5,
where the energy contribution per cutoff sphere is shown. For a set of 100 different
spherical systems in a random ice Ih configuration (with 9997 molecules), the
initial contribution to the energy of the central molecule from within a sphere of
a given cutoff radius was calculated. All molecules were restricted to their initial
configurations. Because different random configurations have slightly different
energies, the energy with cutoff at 50Å was taken as reference. Then the deviations
from the reference energy were averaged. The error-bars in Fig. 6.5 are the sample
standard deviations. This shows that the approach of nearest neighbor interaction
(r < 3Å) is not suitable for the simulation of water molecules. For acceptable
energies in the minimization, the cutoff should be chosen to be at least 25Å.
The findings in this work correspond to previous discussions about the long-range
interactions in molecular dynamic simulations of water models [46, 47, 48].Some
of the previous works suggest that the use of cutoffs may not allow for a correct
description of mesoscopic and macroscopic properties.

Size Scaling

The minimization was performed for a set of 100 random configurations at different
sizes. On the CPU, all-molecule interactions were only possible up to a spherical
system with 17 layers (4713 molecules). For larger simulations a cutoff of 25Å
was introduced, which was tested to provide the same results in the range of the
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Figure 6.6: Mean energy per molecule of the Tip4p parameterization before and
after minimization depending on system size in number of molecules.

statistical error and is therefore suitable for the minimization. In Fig. 6.6 the
scaling behavior of the mean energy per molecule is presented. With increasing
system size the mean energy decreases and approaches an asymptotic value for the
initial as well as the minimized mean energy. Interpolating the available data with
a power law, the minimized mean energy for the infinite system was estimated to
be −(57.3± 0.1)kJ/mol for the Tip4p model.

The strong dependence on the system size is clearly due to the long range effect
of the interaction potentials, especially the Coulomb potential. As can be seen in
Fig. 6.5, the interaction energy of a single molecule increases with larger cutoff, and
consequently the calculated potential energy is overestimated for systems smaller
than the range of the interaction. Furthermore, for larger systems, the boundary
effects on the mean energy are suppressed, such that the mean value approaches
the value for a system of infinite size.

Also, the mean angles and distances in the unit cell vary with size, though for
large systems the deviations are smaller. The best estimation obtained in this
work is given later.

Minimal violation of ground state energy degeneration

Throughout this study the energy degeneration of ground states, described in
Sec. 2.2.2 and responsible for the residual entropy, was found to be not exact but
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Figure 6.7: (left) Gauss like distribution of local energy minima (1726 molecules)
with original Tip4p parameters. (right) For off-bond hydrogen atoms the distances
to interacting off-bond hydrogen atoms may differ.

to fluctuate slightly (see Fig. 6.7 (left)). This histogram with an energy width of
0.01kJ/mol, was obtained by minimization of 1000 clusters with 1726 Tip4p water
molecules each. Defining the i-th moment about the mean µi = 1

n

∑n
j=1 (xj − x)i

allows to classify the distribution of measurements, where µ2 = σ2 is the variance.
The skewness g1 = µ3

σ3 and the kurtosis g2 = µ4

σ4 − 3 have to vanish in case of
a normal distribution. In fact the distribution of energies of local minima may
be approximated by a gaussian distribution (g2 = 0.16) with a small positive
skew (g1 = 0.19), such that the mass is shifted slightly to the left. A finite-size
dependence is not evident, also due to less data for larger systems.

It may be said that the energy degeneration is lifted already for the Tip4p
model. As a consequence, there does exist a global minimum (see Fig. 6.7 (left)).
This is not due to quantum effects, but is caused by the model itself. The origi-
nal argument for energy degeneration assumes the hydrogen atoms in the central
point of each oxygen bond, which is not fulfilled in the present models. Consider
the pair interaction between two molecules with one distinct bond of interest (see
Fig. 6.7 (right)). The energy contribution from the hydrogen-hydrogen interaction
with one hydrogen on-bond and the foreign counterpart off-bond remains symmet-
ric, because the distances are identical by definition of the tetrahedral structure.
In case both hydrogen atoms are off-bond the possible interaction distances differ.
This is enhanced by the fact that the water angle differs from the tetrahedral an-
gle. Thus, the total energy depends on the individual orientation of the molecules.
Considering long-range interactions this effect increases. For example, the energy
of a molecule also depends on the the orientations of the next-nearest neighbors.
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Figure 6.8: The specific minimized ground state energy deviates slightly for dif-
ferent initial conditions (3953 molecules), satisfying the ice rules.

Thus the total interaction potential of a molecule is not isotropic, leading to
small differences in energy for different random hydrogen arrangements. This is
observable for all parameterizations, plotting the minimal energies of 100 random
samples with 3953 molecules each (see Fig. 6.8), satisfying the ice rules. The dif-
ferent energy levels are consistent with the two molecule minimal energy levels (see
Fig. 6.4). While the mean energy is clearly depending on the specific parameter-
ization, the deviations from the mean are consistently less than 1% of each mean
value.

In nature, deviations are measured between the local minima and the global
minimum of ice XI. The differences, however, are so small that they can only
be experimentally distinguished at low temperatures [49]. Thus, it is possible in
practice to freeze the orientation of a water system below 100K in a local minimum,
which is reproduced by the present zero temperature minimizations, preventing the
achievement of the global minimum [31].

The present data, which is only a very small subset of ground states, shows that
the degeneration of energy ground states is already lifted for all parameterizations
at hand, but within a range of less than 1%. These small deviations, however,
are only of importance at very low temperatures, where the system might actually
freeze in one particular ground state, which is not necessarily the global minimum.
Thus, for the subset of ground states considered, this rather supports the assump-
tion of degenerate ground states. Furthermore, this can be interpreted as a hint
that the considered parameterizations of the Tip4p water model present a residual
entropy in the continuous space.
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Unit cell structure

One important basis for the discussion of the unit cell of ice Ih is the assumption
of a regular structure. In the simulations the water models exhibit stable local
minimum configurations. In order to obtain qualitative results about the mean ice
Ih structure, the results of 100 random configurations satisfying the ice rules, were
averaged. The elements of a unit cell show the same parameterizations within their
statistical errors. In the literature the unit cell elements of ice are characterized
by four principle parameters. For one, there are the distances to the neighbors
in the hexagonal plane ah and the distance to the nearest neighbor in z-direction
(along the c-axis) ac. In addition, there are the angles between the neighbor
along the c-axis and the neighbors in the hexagonal plane θc as well as the angles
between neighbors within the hexagonal plane θh. A scheme of a tetrahedral
unit cell element is shown in Fig. 6.9, and results of the minimization of different
parameterizations are presented in Tab. 6.1.

O

O

O

O

O

θ c

θh

ac

ah

Figure 6.9: Structure parameters of the hexagonal unit cell elements

Tip3p Tip4p Tip4p/2005 Tip4p/Ice

ac (Å) 2.728(2) 0.016 2.713(1) 0.003 2.734(1) 0.003 2.776(1) 0.003
ah (Å) 2.726(2) 0.016 2.712(1) 0.003 2.733(1) 0.003 2.775(1) 0.003
θc (deg) 109.4(5) 5.0 109.5(3) 2.7 109.5(3) 2.7 109.4(3) 2.6
θh (deg) 109.3(5) 4.9 109.4(3) 2.7 109.4(3) 2.6 109.4(3) 2.6

Table 6.1: Structure parameters of the hexagonal unit cell elements (see Fig. 6.9)
as result of the energy minimization and their standard deviations.

The elements of the unit cell are arranged with angles around 109.4◦ within the
hexagonal plane and from the c-axis. These mean angles (see Tab. 6.1) are close
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6 Numerical Results

to the tetrahedral angle 109.47◦ but show variances of order 2%. Thus, the unit
cell elements are arranged in principle tetrahedral with small deviations. For all
parameterizations the distance to the nearest neighbor along the c-axis is larger
than within the hexagonal plane, but the differences remain within the standard
deviation. The mean lattice constants, on the other hand, show distinct differences
for different parameterizations but are of the same order as the energy minimum
distances obtained for the two body energy minimum (see (6.4)). For the Tip3p
model the variances are larger than for the rest of the Tip4p parameterizations.
This suggests that the Tip3p model presents a less regular ice structure in com-
parison to the considered Tip4p parameterizations.

The general results can be compared with the data of Röttger et al. [25], who
investigated the dependence of the lattice constant of H2O on temperature with
synchrotron radiation. All of the considered parameterizations, except Tip4p/Ice,
present a smaller lattice constant than obtained in the experimental measurements
ac,exp > 2.741Å. Moreover, the c/b ratio (see Sec. 2.2.1) was experimentally con-
firmed to be smaller than the theoretical value. This was identified as a result of
θh being larger than θc. This is clearly not the case for the parameterizations con-
sidered in this analysis. For example, the original Tip4p parameterization results
in a ratio (c/b)T ip4p = 1.634 & 1.633 + (c/b)theo within statistical errors.

The discussion about the structure of the Tip4p parameterizations and the Tip3p
model may be summarized as follows: The mean structure of the oxygen atoms in
the ice Ih phase is shown to be in principle tetrahedral for all parameterizations.
It can be observed that the angles within the hexagonal plane seem to be slightly
smaller on average than the angles from the c-axis, but the values are still within
the statistical error. As expected from the investigation of two molecules, the
lattice constants for an energetic minimum differ for the parameterizations consid-
ered. All of the lattice constants in the hexagonal plane are within the variance of
the lattice constant along the c-axis. The values are presented in Tab. 6.1.

57



6 Numerical Results

 0

 1

 2

 3

 4

 0.2  0.4  0.6  0.8

C
V

β

2.670Å
2.710Å
2.712Å
2.764Å

−9

−6

−3

 0

 3

 0.2  0.4  0.6  0.8

<
E

>

β

2.670Å
2.710Å
2.712Å
2.764Å

Figure 6.10: Influence of selected lattice constants on the heat capacity (left) and
the mean energy (right) of 128 water molecules with fixed oxygen positions.

6.2 Monte Carlo simulations

Monte Carlo simulations are performed on a periodic hexagonal lattice for the orig-
inal Tip4p parameterization only. The previous section suggests that all considered
parameterizations show a similar qualitative behavior. Observables of interest are
the mean energy per molecule 〈e〉 and the heat capacity CV = β2V (〈e2〉 − 〈e〉2).
All simulations are performed with lowest possible integrated autocorrelation times.
This is achieved by first performing short simulations in order to determine the
integrated autocorrelation times, which are then used as the number of sweeps
between measurements. The random numbers are generated by the Mersenne
Twister (MT19937) generator from the Boost library. For the error estimation
the Jackknife method (see Sec. 4.3.2) is applied with 32 bins, each containing
1024 measurements. The energy units used in the simulations are kcal/mol, which
are the units of the original parameterization (see Tab. 2.1). As a consequence,
the inverse temperature is given in units of mol/kcal, and a conversion to Kelvin is
possible via T = 503.35K/β.

Influence of the lattice constant

The effect of the lattice constant on MC results is investigated. In order to keep the
lattice constant fixed, only rotation updates are considered. The investigated sys-
tem is composed of 128 molecules with nearest neighbor interactions only. In this
case the lattice constant does influence the heat capacity and the mean energy, as
can be seen in Fig. 6.10, where both are plotted against the inverse temperature.
Neither the heat capacity nor the mean energy differ in their basic temperature
behavior for different lattice constants. It can be seen in Fig. 6.10 (right), that for
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Figure 6.11: Location of the heat capacity maximum in dependence on the lattice
constant of a system with 128 molecules and fixed oxygen position.

small β the mean energy increases with decreasing lattice constant. This results
from the potential energy, which is inverse in the distance, because at short dis-
tances the possible differences in energies are larger. Only for larger β the minimal
mean energies are obtained with the lattice constants from the minimization, even
though the differences are very small. The maximal heat capacity is approximately
the same for all lattice constants investigated in the interval [2.670Å, 2.764Å]. On
the other hand, the inverse temperature βmax, at which the heat capacity has its
maximum, increases monotonically with the lattice constant within the investi-
gated interval (see Fig. 6.11).

Influence of the energy cutoff

In contrast to the lattice constant, the choice of the energy cutoff strongly influ-
ences the value of the mean energy and the maximum heat capacity (see Fig. 6.12).
Furthermore, the inverse temperature βmax at which the maximum heat capacity
is reached shifts for different cutoffs. It varies from βmax,4 ≈ 0.61, for the nearest
neighbor interaction, to βmax,9 ≈ 0.44, for an energy cutoff at 9Å. It is important
to notice that the behavior of the heat capacity and the mean energy converge for
larger cutoffs. As mentioned, the simulations were performed with fixed oxygen
positions, considering only rotations. In the figure it can be seen that the differ-
ence between a cutoff of 8Å and 9Å is already very small. This is consistent with
usual truncation of the real part of the interaction potentials at 8.5Å in molecular
dynamics and Monte Carlo simulations (see for example [45]), keeping in mind that
the present simulations do not include translations. It can be said that, for MC
simulations with rotations only, a minimal cutoff at 8Å is necessary for meaningful
simulations.
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Figure 6.12: Influence of different cutoffs on the heat capacity (left) and the mean
energy (right) of 128 water molecules with fixed oxygen positions.

Investigation of the translation update

The translation update is investigated in the same interval, where the rotation
update presents a peak in the heat capacity. According to the previous results, the
simulations are carried out with an energy cutoff at 9Å. For the translation update
alone, the initialized hydrogen orientations do not change. Thus, a combination
of both updates seems interesting. In this case, one of both updates is randomly
selected for each Monte Carlo update. A comparison of the rotation update, the
translation update, and a combination of both is shown in Fig. 6.13.
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Figure 6.13: Heat capacity and mean energy from simulations with a combination
of rotation and translation updates for 128 molecules with energy cutoff at 9Å.

It can be seen that the individual updates cause a peak in the heat capacity,
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Figure 6.14: Heat capacity and mean energy from simulations with a combina-
tion of rotation and translation updates for 128 molecules with nearest neighbor
interaction.

even though the peaks do not appear at the same temperature. At the beginning
and at the end of the temperature interval, the heat capacities of both updates are
in principle the same. A combination of both updates, on the other hand, does
not show any peak but a monotonic increase of the heat capacity (Fig. 6.13 (left)).
The differences are reflected in the behavior of the mean energy (Fig. 6.13 (right)).
At large temperatures, the mean energy for the rotation update is larger than for
the translation update but drops down fast, such that it turns out to be smaller at
smaller temperatures. The mean energy of the combined update is larger than for
the other cases, and decreases less with increasing β. This is understandable, as
more degrees of freedom mean that the water molecules can actually carry more
energy. The differences between the rotation update and the translation update
can be explained by the fact that the rotation update allows the system to change
between different ground states with a fixed lattice constant. The translation
update, on the other hand, starts with a given ground state and a correspond-
ing hydrogen arrangement, which cannot be changed without a rotation of the
molecules. An isolated translation update is in any case of little use.

Still, the question about the monotonic increase of the heat capacity from the
combined update remains. Thus, the behavior of the heat capacity and mean
energy for larger inverse temperatures is of great interest. Due to large integrated
autocorrelation times and consequently large computation times, the simulations
are performed with nearest neighbor interactions only. Therefore, the results may
only give an idea about what might happen. Fig. 6.14 shows the heat capacity
and the mean energy of the combined update. For large β the correlations are very
strong, but the peak in the heat capacity at about β = 1.57 is significant. Thus,
the heat capacity has its peak at a much smaller temperature for the combined
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update, than for either one of the single updates. It seems that the reduction to a
subset of degrees of freedom changes the system qualitatively.

The results for the combined update might indicate a divergence in the heat
capacity and a further investigation with finite-size scaling seems promising. In
this case, new update techniques should be considered in order to handle the
otherwise large correlations.
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7 Conclusion

Based upon the results from the previous chapters, the following conclusions may
be drawn.

The investigation of systems with two molecules showed that the interaction
potentials exhibit the same properties for the Tip3p, Tip4p, Tip4p/2005 and
Tip4p/Ice parameterization. At large distances the interaction is symmetric, with
a single minimum configuration satisfied by aligned dipoles. When the distances
are below the bifurcation distance, the energy minimum splits up into two sym-
metric energy minima. The resulting configurations at short distance reproduce
the well known hydrogen bonds.

It was possible to show that it is not justified to assume only nearest-neighbor
interactions in the presence of long-range potentials, such as the Coulomb inter-
action, which is dominating in the water interaction. Restricting the degrees of
freedom to rotations only, there are significant differences in the qualitative results
of Monte Carlo simulations, in this case the mean energy and the heat capacity,
for interaction cutoffs smaller than 9Å. This is consistent with the truncation of
the Coulomb and Lennard-Jones interactions at 8.5Å in previous works. If the
precision of the energy is of more importance, the cutoff has to be larger.

Including long-range interactions, the simulations revealed that the Tip3p, Tip4p,
Tip4p/2005, and the Tip4p/Ice water model have a stable ice Ih structure with
tetrahedral oxygen arrangement. Only the Tip3p model shows relatively large
deviations from a regular structure. As expected, the hydrogen atoms form hy-
drogen bonds with small deviations from the oxygen-oxygen bonds. None of the
considered models reproduces the experimentally measured deviation of ice from
the tetrahedral structure [25]. Furthermore, the obtained lattice constants as well
as the energy levels of the specific parameterizations show noticeable differences.
This also effects Monte Carlo results even though not as strongly as the energy
cutoff. As a consequence, the maximum of the heat capacity depends linearly on
the lattice constant within the considered interval. Therefore, before simulating in
the ice phase, it is important to know the lattice constant of the employed model.
As a rather technical remark, it can be said that graphics cards are a powerful
option for deterministic simulations, such as the minimization technique. They are
restricted to single precision, but allow many parallel computations at the same
time with shared memory.

Throughout the minimization, it was found that the energy minima of the se-
lected ground states are varying within a range of < 1%. The energy degenera-
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tion is lifted as a consequence of the Tip4p models with long-range interactions.
Still, the energy of ground states is degenerated to some extend in the continuous
space, allowing the ice to cross between ground states. This basic disorder implies
a residual entropy. Because of the lifting of the degeneracy, however, the thermal
fluctuations may become smaller than these energy differences. In this case the
entropy would become lower than the one calculated in Sec. 2.2.2, which deserves
further investigations [50].

Including translations heavily influences the behavior of the heat capacity and
the mean energy. In this case, the heat capacity seems to have a peak at a much
lower temperature, indicating a possible phase transition between the liquid and
the solid phase. A finite-size analysis of this behavior is a promising approach in
the discussion about phase transitions of the water model. Also a finite-size investi-
gation of the rotational degree of freedom on a hexagonal lattice with the obtained
minimal energy lattice constant and appropriate energy cutoff remains open. In
addition, a variable density would be of great interest for further investigations.

In the end, water continues to be a fascinating molecule with many still unre-
solved questions. Even though the Tip4p models do not reproduce every property
of water, they seem to be a good choice for further research in and near the ordinary
ice phase.
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Selected Program Code

In the following, selected program code is presented and briefly explained. The
code is reduced to the essential elements, omitting visualization, etc. The program
is organized in classes (atom, molecule, system, ...), including their own functions.
For example, the energy, force and torque are calculated on the atomic level and
merely processed in the molecule class and higher hierarchies.

Program Code 1: Periodic hexagonal lattice

1 /∗ . . . I n i t i a l i z a t i o n . . . ∗/
2
3 // d e v i a t i o n from hexagona l p l ane and d i s t a n c e between two p l ane s
4 dFromPlane = aReal /6 ;
5 dplanes = aReal+2∗dFromPlane ;
6
7 a = sq r t ( aReal∗aReal−4∗dFromPlane∗dFromPlane ) ; // a xy
8
9 dZ=0; dX=0; dY=0;

10 for ( int k=0; k<nz ; k++){ // l oop over p l an e s
11 dZ=k∗dplanes ;
12 s e l e c t=k%2; // d i s t i n g u i s h even /odd p l ane s
13 for ( int i =0; i<nx ; i++){ // l oop in x d i r e c t i o n
14 dX=0+i ∗ sq r t (3)∗ a ;
15 for ( int j =0; j<ny ; j++){ //”worm”
16 i f ( j==0) {dY=0; countY=0; dZ=k∗dplanes+dFromPlane−2∗ s e l e c t ∗dFromPlane ;}
17 i f ( countY==1) {dY+=a ; dZ=dZ−2∗dFromPlane+2∗2∗ s e l e c t ∗dFromPlane ;}
18 i f ( countY==2) {dY+=a /2 ; dX+=(sq r t (3)/2)∗ a ; dZ=dZ+2∗dFromPlane−2∗2∗ s e l e c t ∗dFromPlane ;}
19 i f ( countY==3) {dY+=a ; dZ=dZ−2∗dFromPlane+2∗2∗ s e l e c t ∗dFromPlane ;}
20 i f ( countY==4) {dY+=a /2 ; dX−=(sq r t (3)/2)∗ a ; dZ=dZ+2∗dFromPlane−2∗2∗ s e l e c t ∗dFromPlane ;}
21
22 x [ i+nx∗ j+nx∗ny∗k]=dX;
23 y [ i+nx∗ j+nx∗ny∗k]=dY;
24 z [ i+nx∗ j+nx∗ny∗k]=dZ ;
25
26 setNextNeighbors ( i+nx∗ j+nx∗ny∗k ) ; // a s s i g n n ea r e s t n e i g h b o r s
27
28 countY+=1;
29 i f ( countY==5) countY=1;
30 }
31 }
32 }

The periodic hexagonal lattice is constructed one plane after another. In each
layer, nx “worms” are started in y-direction that construct lattice cites slightly
above and below the layer, thus forming the desired hexagonal lattice. The required
constants are defined in Sec. 3.1 (aReal=a, a=axy). Afterwards, the hydrogen
atoms are positioned, such that the molecule angles are centered in the proper
tetrahedral angles. While the corresponding code is straight forward, it is too long
to be posted here.
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Program Code 2: Spherical system

1 /∗ . . . Create a r e f e r e n c e p e r i o d i c l a t t i c e w i th s u i t a b l e dimension l a r g e r than the sphe re . . . ∗/
2
3 /∗ . . . S e l e c t a c e n t r a l l a t t i c e po i n t from the r e f e r e n c e l a t t i c e : indexOr ig inHexa . . . ∗/
4
5 mo lecu l eL i s t . push back ( indexOriginHexa ) ; // l i s t o f i n d i c e s in r e f e r e n c e l a t t i c e
6 molecu leLayerL i s t . push back ( 0 ) ; // l i s t o f l a y e r s mo l e cu l e s g e t in
7
8 // brea th− f i r s t a l g o r i t hm : add mo l e cu l e s from r e f e r e n c e to s p h e r i c a l sys tem
9 runningIndex=0;

10 while ( layer<=numLayers ){
11 w[ runningIndex ] = systemHexa−>w[ mo lecu l eL i s t [ runningIndex ] ] ;
12 //Add ne i g ho r s to t h e l i s t
13 for ( int n=0; n<4; n++){
14 for ( int mol=0; mol<molecu l eL i s t . s i z e ( ) ; mol++){
15 i f (w[ runningIndex]−>nearestNeighbor [ n]−> i ndexLat t i c e == molecu l eL i s t [ mol ] ) b i a s = 1 ;
16 }
17 i f ( b ia s !=1){
18 i f ( l ay e r+1<=numLayers ){
19 mo lecu l eL i s t . push back (w[ runningIndex]−>nearestNeighbor [ n]−> i ndexLat t i c e ) ;
20 }
21 molecu leLayerL i s t . push back ( l ay e r +1);
22 }
23 b ia s = 0 ;
24 }
25 runningIndex+=1;
26 l ay e r = molecu leLayerL i s t [ runningIndex ] ;
27 }
28
29 //Open boundary c on d i t i o n s : s e t boundary n e i g h b o r s to NULL
30 for ( int index=0; index<molecu l eL i s t . s i z e ( ) ; index++) w[ index]−> i ndexLat t i c e = −1;
31 for ( int index=0; index<molecu l eL i s t . s i z e ( ) ; index++){
32 for ( int n=0; n<4; n++){
33 i f (w[ index]−>nearestNeighbor [ n]−> i ndexLat t i c e != −1) w[ index]−>nearestNeighbor [ n ] = NULL;
34 }
35 for ( int n=0; n<numNeighbors ; n++){
36 i f (w[ index]−>neighbor [ n]−> i ndexLat t i c e != −1) w[ index]−>neighbor [ n ] = NULL;
37 }
38 }
39 for ( int mol=0; mol<systemHexa−>numMolecules ; mol++){
40 i f ( systemHexa−>w[ mol]−> i ndexLat t i c e != −1 ){
41 delete systemHexa−>w[ mol ] ;
42 systemHexa−>w[ mol]=NULL;
43 }
44 }
45 for ( int index=0; index<molecu l eL i s t . s i z e ( ) ; index++) w[ index]−> i ndexLat t i c e = index ;
46 numMolecules = molecu l eL i s t . s i z e ( ) ;

The spherical system is constructed according to Sec. 3.2 with the help of the
breadth-first algorithm. To achieve this, a periodic reference system of appropriate
size (smallest side length > diameter) is created first. Both reference and spherical
system are lists of pointers, including only the addresses of the molecule objects.
Thus, the molecules need to be stored only once and the pointers may be quickly
copied and rearranged. In order to obtain open boundary conditions, all neighbors
that do not belong to the spherical system are set to “NULL”. That way they are
not considered in other functions.
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Program Code 3: Minimization

1 /∗ . . . I n i t i a l i z a t i o n . . . ∗/
2
3 while (meanForce>forceConvergence ){
4
5 // Minimiza t ion Step :
6 calcForcesOpen ( ) ; // c a l c u l a t e f o r c e s a c t i n g on eve ry atom
7
8 for ( int mol=0; mol<numMolecules ; mol++){
9 // Vec t o r add i t i on o f atomic f o r c e s

10 for ( int coord=0; coord <3; coord++){
11 w[ mol]−>cmForce [ coord ] = w[ mol]−>O. Force [ coord ] + w[ mol]−>Ocharge . Force [ coord ]
12 + w[ mol]−>H1 . Force [ coord ] + w[ mol]−>H2 . Force [ coord ] ;
13 }
14 // Ca l c u l a t e a l l t o r q u e s about c en t e r o f mass and s t o r e in atom c l a s s
15 O. calcTorque ( centerMass [ 0 ] , centerMass [ 1 ] , centerMass [ 2 ] ) ;
16 Ocharge . calcTorque ( centerMass [ 0 ] , centerMass [ 1 ] , centerMass [ 2 ] ) ;
17 H1 . calcTorque ( centerMass [ 0 ] , centerMass [ 1 ] , centerMass [ 2 ] ) ;
18 H2 . calcTorque ( centerMass [ 0 ] , centerMass [ 1 ] , centerMass [ 2 ] ) ;
19 // Vec t o r add i t i on o f atomic t o r q u e s
20 for ( int coord=0; coord <3; coord++){
21 w[ mol]−>Torque [ coord ] = w[ mol]−>O. Torque [ coord ] + w[ mol]−>Ocharge . Torque [ coord ]
22 + w[ mol]−>H1 . Torque [ coord ] + w[ mol]−>H2 . Torque [ coord ] ;
23 }
24 }
25
26 // t r a n s l a t i o n o f a l l mo l e cu l e s
27 for ( int mol=0; mol<numMolecules ; mol++){
28 for ( int coord=0; coord <3; coord++){
29 t r a n s l a t i o n [ coord ] = ( cmForce [ coord ] / tota lMass )∗ timeStep∗ timeStep /2 ;
30 }
31 w[ mol]−> t r a n s l a t e ( t r a n s l a t i o n [ 0 ] , t r a n s l a t i o n [ 1 ] , t r a n s l a t i o n [ 2 ] ) ;
32 }
33
34 // r o t a t i o n o f a l l mo l e cu l e s
35 for ( int mol=0; mol<numMolecules ; mol++){ // r o t a t i o n
36 w[ mol]−>calcMomentInert ia ( centerMass [ 0 ] , centerMass [ 1 ] , centerMass [ 2 ] ) ;
37 /∗ . . . ∗/
38 torqueValue =0.0
39 for ( int coord=0; coord <3; coord++) torqueValue += Torque [ coord ]∗Torque [ coord ] ;
40 torqueValue = sq r t ( torqueValue ) ;
41 angularStep = ( torqueValue /momentInertia )∗ timeStep∗ timeStep /2 ;
42 for ( int coord=0; coord <3; coord++) torqueNorm [ coord ] = Torque [ coord ] / torqueValue ;
43 w[ mol]−> r o t a t e ( centerMass , torqueNorm , angularStep ) ;
44 }
45
46 meanForce = calcMeanForce ( ) ; //Sum a l l c en t e r o f mass f o r c e s and do mean
47
48 /∗ . . . Output a f t e r de l t aMeasure . . . ∗/
49 }
50
51 /∗ . . . Po s t p r o c e s s i n g . . . ∗/

The minimization is an Euler time-integration without any memory of the ve-
locities, as explained in Sec. 4.1. While the mean center of mass force is above a
threshold, the known Coulomb and Lennard-Jones forces acting on every atom are
calculated and stored within the atom class. Afterwards the center of mass force
on each molecule (w[mol]) is calculated as the sum of all belonging atomic forces
and the overall torque on each molecule is calculated as the sum of the torques
on the individual atoms. Now each molecule is translated and rotated according
to (4.5) with the corresponding time step. In the end the mean center of mass
force is calculated in order to compare to the minimization threshold and possible
output is generated after “deltaMeasure” steps.
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Program Code 4: Metropolis updates

1 void iceSystemMC : : mcUpdateRotation ( )
2 {
3 /∗ . . . I n i t i a l i z a t i o n . . . ∗/
4
5 system−>calcEnergy ( system−>w[ randMol ] ) ;
6
7 //MULTIHIT
8 for ( int h i t =0; hit<mul t ih i t ; h i t++){
9 system−>w[ randMol]−> l o ck ( ) ; // Save cu r r en t s t a t e

10 zCoord = −1 + 2∗ rng ( ) ; //Random r o t a t i o n d i r e c t i o n
11 phi = rng ()∗2∗M PI ;
12 sinTheta = sq r t (1−zCoord∗zCoord ) ;
13 ro ta t i onAx i s [ 0 ] = sinTheta∗ cos ( phi ) ;
14 ro ta t i onAx i s [ 1 ] = sinTheta∗ s i n ( phi ) ;
15 ro ta t i onAx i s [ 2 ] = zCoord ; //∗/
16 randAngle = −angleLimit+rng ()∗ angleLimit ∗2 ; //Random ang l e
17 system−>w[ randMol]−> r o t a t e ( rotat ionPo int , rotat ionAxis , randAngle ) ;
18 system−>calcEnergy ( system−>w[ randMol ] ) ;
19 mcMetropolis ( randMol ,&counterCheck ) ;
20 }
21 i f ( counterCheck !=0){ acceptCountRotation +=1; }
22 tota lCountRotat ion+=1;
23 }
24
25 /∗ . . . ∗/
26
27 void iceSystemMC : : mcUpdateOsci l lat ion ( )
28 {
29 /∗ . . . I n i t i a l i s a t i o n . . . ∗/
30
31 system−>calcEnergy ( system−>w[ randMol ] ) ;
32
33 //MULTIHIT
34 double d i r e c t i o n [ 3 ] , d ev i a t i on [ 3 ] , dE=0;
35 for ( int h i t =0; hit<mul t ih i t ; h i t++){
36 system−>w[ randMol]−> l o ck ( ) ; // Save cu r r en t s t a t e
37 for ( int coord=0; coord <3; coord++){ //random t r a n s l a t i o n
38 dev i a t i on [ coord ] = system−>w[ randMol]−>O. getCoord ( coord ) − system−>w[ randMol]−>O. g e t I n i t i a lCoo rd ( coord ) ;
39 d i r e c t i o n [ coord ] = −osciRange + 2∗ osciRange∗ rng ( ) − dev i a t i on [ coord ] ;
40 }
41 system−>w[ randMol]−> t r a n s l a t e ( d i r e c t i o n [ 0 ] , d i r e c t i o n [ 1 ] , d i r e c t i o n [ 2 ] ) ;
42 system−>calcEnergy ( system−>w[ randMol ] ) ;
43 mcMetropolis ( randMol ,&counterCheck ) ;
44 }
45 i f ( counterCheck !=0) acceptCountOsc i l l a t i on += 1 ;
46 t o t a lCoun tOsc i l l a t i on+=1;
47 }
48
49 / ∗ . . . ∗/
50
51 void iceSystemMC : : mcMetropolis ( int molecule , int ∗ counter )
52 {
53 double dE = system−>w[ molecule]−>energy − system−>w[ molecule]−>energyLock ;
54 i f (dE<0){
55 system−>systemEnergy+=dE ;
56 ∗ counter+=1;
57 }
58 else {
59 i f ( rng ( ) < exp(−beta∗dE)){
60 system−>systemEnergy+=dE ;
61 ∗ counter+=1;
62 }
63 else system−>w[ molecule]−>undo ( ) ; // r e t u rn to saved s t a t e ( by l o c k )
64 }
65 }

The Metropolis MC updates are described in Sec. 4.2.4. In the selected code
also the multihit optimization (see Sec. 5.2) is included. It can be seen that
the old energy of the molecule is calculated before the loop over the n-hits is
performed. In general, updates are performed by saving the initial configuration
of the molecule, then updating it and calculating its energy, and afterwards passing
it to the Metropolis function. If the update gets rejected, the initial configuration
is simply restored.
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Parameterfiles

In order to specify the parameters in the simulations, a parameterfile class was
introduced. Any variable, double or string, has to be identified with a unique name,
followed by the “=” sign and the corresponding content. It has to be terminated by
either a Semicolon (;), a comment (/) or a newline (\n). In addition, strings have
to be surrounded by quotes (”). Below, the fundamental variables of the routines
are explained. In order to direct the output, an existing file path (FilePath) has to
be specified up to the final “/”, in which the program will create its own directories.
The energy cutoff (neighborCutoff) may be only given in integers up to now. The
all-molecule interaction (neighborCutoff= −1) option is only advised for the open
spherical system, where for the periodic lattice the cutoff should be smaller than
one half of the shortest side length up to now.

Parameterfile 1: Tip4p

Molecule Parameters : distHydrogen =0.9572;
chargeHydrogen =0.52;
massHydrogen =1.008;
massOxygen =15.9994;
angleHydrogen =104.52;

Oxygen : d istCharge =0.15;
Force Parameters : tipA =600000.0; tipC =610.0

kCoulomb =332.064;

The water molecule class needs the distance between the oxygen and the hy-
drogen atoms (distHydrogen), the distance between the oxygen and the negative
charges (distCharge), the molecule angle (angleHydrogen), the masses (massHy-
drogen, massOxygen), and a charge factor (chargeHydrogen) as fraction of the
electron charge. For the interaction the Lennard-Jones parameters (tipA, tipC)
and the Coulomb constant (kCoulomb) are necessary. This file is the only one to
be modified for different Tip4p parameterization.

Parameterfile 2: Minimization

L a t t i c e d i s t a n c e s : c L a t t i c e =2.764;
Next Neighbors : ne ighborCuto f f=−1;
Crysta l L a t t i c e Layers : Layers = 17 ;

SystemNumberMolecules = 4317 ;
Fi lePath=” . . . / output /” ;
EnergyMinimisation : deltaMeasure = 100 ;

t imeStep = 0 . 2 ;
forceConvergence = 0 . 0 1 ;
RandomHydrogenSeed = 1000 ;
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For the minimization routine the following variables need to be specified:
The lattice constant (cLattice) and the number of layers (Layers) are necessary
for the construction of the spherical system. For the analysis also the number of
molecules (SystemNumberMolecules) is required, which is obtained in the mini-
mization. The actual minimization only needs the steps between measurements
(deltaMeasure), the time step in fs, the threshold of the mean center of mass
force (forceConvergence), and a seed for the initial random hydrogen arrangement
(RandomHydrogenSeed).

Parameterfile 3: Monte Carlo Simulations

L a t t i c e dimensions : nx=4; ny=8; nz=4;
L a t t i c e d i s t a n c e s : c L a t t i c e =2.712;
I c e : ne ighborCuto f f =09;
Fi lePath=” . . . / output /” ;
MonteCarlo Parameters : seed =1000;

InverseTemperature =0.10;
Mul t ih i t =6;
Osc i l l a t i onRange =0.4 ;
RotAngleRange =1;
Thermal i sat ion =1024;
NumberSweeps =302;
NumberMeasurements=32768;

Jackkn i f e : JackBins =32;

For the Monte Carlo simulations the following variables are necessary:
The periodic hexagonal system is constructed from the lattice constant (cLattice)
and the lattice dimensions (nx, ny, nz). In this case nx has to be a multiple of
1, ny of 4 and nz of 2. The actual MC simulation needs an initial seed (seed),
the inverse temperature (InverseTemperature), the number of multihits (Multihit),
the number of measurements for thermalisation (Thermalisation), the number of
sweeps between measurements (NumberSweeps) and the number of actual mea-
surements (NumberMeasurements). For the analysis the number of Jackknife bins
has to be specified (JackBins) and it desired that NumberMeasurements is a mul-
tiple of JackBins. The MC updates may be influenced by restricting the rotation
range (RotAngleRange ≤ 1) or the range of translations about the initial oxygen
position (OscillationRange) as a fraction of the lattice constant a.
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