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Monte Carlo study of the scaling of universal correlation lengths in three-dimensional
O„n… spin models

Martin Weigel* and Wolfhard Janke†
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Using an elaborate set of simulational tools and statistically optimized methods of data analysis, we inves-
tigate the scaling behavior of the correlation lengths of three-dimensional classicalO(n) spin models. Con-
sidering three-dimensional slabsS13S13R, the results over a wide range ofn indicate the validity of special
scaling relations involving universal amplitude ratios that are analogous to results of conformal field theory for
two-dimensional systems. A striking mismatch of then→` extrapolation of these simulations against analyti-
cal calculations is traced back to a breakdown of the identification of this limit with the spherical model.
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I. INTRODUCTION

The concept of scaling, the observation that singular
servables vary in a scale-free manner according to po
laws when the driving parameter of a transition~temperature,
magnetic field, etc.! is tuned towards a critical point, ha
since the first observations been a key ingredient of
theory of critical phenomena.1,2 Exploiting the symmetry of
scale invariance, forming the geometrical basis for
power-law behavior in the vicinity of a critical point, throug
the idea of real-space renormalization, scaling theory can
mapped on the behavior of finite systems near the trans
point of the bulk system in the limit of diverging syste
sizes, the thermodynamic limit. Thisfinite-size scaling3–5

~FSS! occurs with scaling exponents generically linked to t
exponents that govern scaling in the bulk system. Thus
apparent weakness of finite system size that hampers s
lational approaches actually turns out to be their intrin
strength, when exploring FSS means exploring therm
scaling.6,7

The significance of scaling theory for the understand
of critical phenomena becomes quite exposed in the con
of conformal field theory ~CFT! for two-dimensional
systems.8 In the course of exploiting the additional invar
ances of conformal symmetry one is able to split the criti
point partition function of a lattice system into a sum ov
contributions from all the scaling variables present in a s
cific model. Consider a critical system on aL3L8 lattice
with toroidal boundary conditions; then the partition functi
decomposes as9,10

Z~L,L8!5e2 f A1pcd/6(
n

e22pxnd, ~1!

wherec is the central charge of the considered theory,f the
bulk free energy per unit volume,d5L8/L, A5LL8, and the
sum runs over the whole content of scaling operators w
dimensionsxn . Thus, the knowledge of the operator conte
of a theory in connection with the corresponding scaling
mensions is equivalent to an ‘‘exact’’ solution of the mod
on finite lattices.
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-
er

e

e

be
n

e
u-

c
al

g
xt

l
r
-

h
t
-
l

Two dimensions

A particular example of a scaling relation in two dime
sions that can be derived assuming conformal invariance
critical point entities concerns the two-point function in th
limit of L8→`. It is generally sufficient to assume transl
tional, rotational, dilatational, and inversional invariance
imply conformal invariance;11 homogeneity, isotropy, and
scale invariance alone suffice to uniquely fix the critic
connected two-point function of an operatorf in the infinite
plane up to an overall normalization factor:

^f~z1 ,z̄1!f~z2 ,z̄2!&c5~z12z2!2x~ z̄12 z̄2!2x, ~2!

where z1 ,z2 are complex coordinates parametrizing t
plane. Then, one uses the logarithmic map

w5
L

2p
ln z, zPC ~3!

to wrap the complex plane around an infinite length cylind
S13R of circumferenceL with coordinatesw5u1 iv,
wherev measures the polar angle alongS1 andu the longi-
tudinal direction alongR. Assuming conformally covarian
transformation behavior of the~primary! operatorf, one ar-
rives at an expression for the two-point function on t
cylinder:12

^f~w1 ,w̄1!f~w2 ,w̄2!&c5S 2p

L D 2xS uz1z2u
uz12z2u2D x

5S 2p

L D 2xF2 cosh
2p

L
~u12u2!

22 cos
2p

L
~v12v2!G2x

. ~4!

In the limit of large longitudinal distancesuu12u2u@L and
v15v2 , one is left with a purely exponential drop with
correlation length

j i5
L

2px
. ~5!
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Thus, utilization of conformal invariance yields a finite-si
scaling relationincluding the amplitude, which is in contrast
to renormalization-group theory that usually gives the sc
ing exponents and only certain amplitude ratios, but not
amplitudes themselves. Since this result emerges from
field-theoretic description of statistical mechanics that d
not take into account the microscopical details of the syst
it is expected to beuniversal.13 Note, however, that this pro
posed universality goes beyond the usual notion of a uni
sal quantity and comprises three different aspects:~i! the
correlation length of a given operator should be the sa
within the associated universality class of models;~ii ! when
looking at different operators, on the other hand, the form
Eq. ~5! should be left unchanged, all operator-dependent
formation being condensed in the scaling dimensionx; ~iii !
finally, even when looking at models ofdifferentuniversality
classes, all that should change are the scaling dimens
~and the definition off!, the validity of Eq.~5! being un-
touched. Property~i! implies the ‘‘hyperuniversality’’ rela-
tion of Privman and Fisher.14 In the following, we will refer
to the whole extent of aspects~i!–~iii ! exceeding the usua
notion of universality with the term ‘‘hyperuniversal.’’ A
corollary that is of importance for transfer matrix calcul
tions that use an un-normalized~quantum! Hamiltonian re-
sults from taking the ratio of the correlation lengths of tw
primary operators, for example, the densities of magnet
tion and energy which are usually primary for spin mode

js

je
5

xe

xs
. ~6!

Because of the independence from the overall amplit
1/~2p! of Eq. ~5! this relation might still stay valid when
changing the geometry in a way such that only this ove
amplitude is altered. In terms of universality this constitu
a weaker form of the aspect~i! above, namely, universality
of amplitude ratios instead of amplitudes themselves; we
refer to this weaker property as (i8) in the following.

A suitable test bed for these general field-theory results
of course, given by the exactly solvable two-dimensio
Ising model. Using Eq.~5! and the generic relations betwee
scaling dimensions and the conventional critical exponen

xs5
b

n
, xe5

12a

n
, ~7!

giving xs5 1
8 and xe51 for the two-dimensional Ising

model, one arrives at a ratioxe /xs58. A direct evaluation of
the spin-spin correlation length in the Onsager-Kaufm
framework gives, as the leading term in the scaling ser

js54L/p[L/(2p 1
8 ), in agreement with the CFT

result.15–17 The same holds true for the leading scaling a
plitude of the energy-energy correlation function,18 je
5L/2p. Both amplitudes have also been evaluated num
cally to high precision in a Monte Carlo~MC! study,19 re-
sulting in perfect agreement with Eq.~5!.

A possible alteration of theS13R situation, namely,
changing the boundary conditions along theS1 direction
from periodic toantiperiodic, has also been treated withi
the CFT framework, exploiting the fact that in the case of
ferromagnetic nearest-neighbor Ising model the antiperio
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boundary corresponds to the insertion of a seam ofantifer-
romagneticbonds along this boundary line. This calculatio
yields20,21

js5
4

3p
L, je5

1

4p
L, ~8!

again in good agreement with Monte Carlo data.19 Note,
however, that this last relation, in contrast to Eq.~5!, is spe-
cific to the Ising modeland the special choice of the dens
ties of magnetization and energy as operators and thus is
‘‘hyperuniversal’’ in the sense of properties~ii ! and~iii ! pre-
sented above.

The amplitude-exponent relation Eq.~5! for two-
dimensional systems has been checked analytically or
merically and found valid for an impressive series of furth
models like the Potts model and its percolation limit,17 the
XY model,22 the symmetric eight-vertex model,18 and
quantum-spin models23 to name only the most prominent.

Three dimensions

On leaving the domain of two-dimensional systems
wards higher dimensions, the wealth of exact field theore
calculations is instantly reduced to severe scarcity. The c
formal group coincides with the set of holomorphic functio
in the special case of spatial dimensiond52 and is thus
infinite-dimensional as a group. Ford>3, unfortunately, it
reduces to a simple Lie group with dimensionD<(d
11)(d12)/2 for any Riemannian connected manifold. As
consequence, only in two dimensions the postulate of c
formal invariance is restrictive enough for a classification
the operator contents of the different universality classes
thus an exact solution of the critical theories within the lim
of field-theory assumptions. Ford>3, on the other hand, the
implications of the finite-dimensional conformal-group sym
metry reach hardly beyond the consequences of p
renormalization-group theory exploiting dilatational inva
ance. However, since inversional symmetry is still presen
transformation like Eq.~3! stays conformal in higher dimen
sions, now connecting the spacesRd andSd213R. Applied
to the two-point function one arrives at a scaling relati
analogous to Eq.~5!, namely,j i5R/x, cf. Ref. 24, which
contains thed52 result as a special case assumingL
52pR, R being the radius ofSd21. Since primarity of op-
erators isa priori not well defined ford>3, it is, however,
unclear for which operators this relation should hold. A n
merical analysis for this geometry, which has to cope w
the fact thatSd21 for d>3 is a truly curved space and thu
hard to regularize by discrete lattices, will be presented i
separate publication.25

On the other hand, the toroidal geometryS13¯3S1

3R, which is much more convenient for numerical simul
tions, is not conformally flat and thus no CFT predictio
exist for this case. In spite of this theoretically unfavorab
situation a transfer matrix calculation for the Hamiltonia
limit of the three-dimensional Ising model on the geome
S13S13R[T23R by Henkel26–28 rendered results stil
comparable to the situation for theSd213R geometry. For
the ratios of leading scaling amplitudes of correlation leng
for different boundary conditions~bc! he found
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js /je5H 3.62~7! for periodic bc

2.76~4! for antiperiodic bc.
~9!

A comparison with the~inverse! ratio of the corresponding
scaling dimensions,

xe /xs5
~12a!/n

b/n
5

2~nd21!

nd2g
52.7264~13!, ~10!

@cf. Table I and Eq.~7!# showed that even though the origin
expectation to possibly find agreement in the case of perio
boundary conditions as in the two-dimensional case was
met, the data are consistent with the relation~6! for the un-
orthodox case ofantiperiodicboundary conditions. Note tha
one has to compareratios in this case, because the quantu
Hamiltonian used in the calculation is defined only up to
overall normalization constant. This result is in qualitati
agreement with a Metropolis MC simulation by Weston29

who found ratiosjs /je of about 3.7 for periodic and 2.6 fo
antiperiodic boundary conditions, respectively. Consider
these striking observations it seems interesting to ch
whether this behavior is just a coincidence or special fea
of the Ising model or instead indicates a general property
critical models on this special three-dimensional geomet

The rest of the paper is organized as follows. In Sec. II
introduce the general class of models we want to exam
and present the way we are going to discretize the th
dimensional geometryT23R. We discuss simulation meth
ods, observables, estimators for measurement, and pa
eters of the simulations. In Sec. III we outline the statisti
tools used for the data analysis. It is quite hard to extr
high-precision information about correlation lengths fro
MC simulation data; we will thus discuss the special path
data analysis we are going to proceed along and presen
tails of the statistical tools used there. This tool set is ‘‘ca
brated’’ with simulations of thetwo-dimensional Ising
model, where exact results for comparison are available
Sec. IV we discuss the results for the correlation leng
ratios of our simulations for the Ising,XY, and~generalized!
Heisenberg models. Our results, already briefly announce
Ref. 30, confirm Henkel’s findings on a high level of acc
racy. Furthermore this behavior seems to carry through
the whole class ofO(n) spin models and is thus far from
being a ‘‘numerical accident.’’ In Sec. V we try to rank ou
numerical findings in the context of the classification of u

TABLE I. Literature estimates for the critical exponentsn andg
of the three-dimensional Ising model.

Method n g

g expansion~Ref. 31! 0.630 4~13! 1.239 6~13!

e expansion~Ref. 31! 0.630 5~25! 1.238 0~50!

Series~Ref. 32! 0.631 5~8! 1.238 8~10!

Series~Ref. 33! 0.630 02~23! 1.237 1~4!

MC ~Ref. 34! 0.628 9~8! 1.239~7!

MC ~Ref. 35! 0.630 1~8! 1.237~2!

MC ~Ref. 36! 0.630 3~6! 1.237 2~13!

MC ~Ref. 37! 0.629 8~5! 1.236 5~5!

Weighted mean 0.630 05~18! 1.237 17~28!
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versality presented above. The type of the model conside
enters not only via a variation of the scaling dimensions,
also influences the overall prefactor of Eq.~5!. Section VI is
devoted to the discussion of the relation of our finite-n re-
sults to the spherical model, which is connected to the li
n→` of the class ofO(n) spin models. The classic ident
fication of both models seems to break down as soon
~multipoint! correlation functions are considered. Section V
contains our conclusions.

II. MODELS AND SIMULATION

Throughout this paper we consider classical, ferrom
netic, zero-field, nearest-neighbor,O(n) symmetric spin-
models with Hamiltonian

H52J(̂
i j &

si•sj , siPSn21. ~11!

The underlying lattice is taken to be simple cubic with d
mensionsLx3Ly3Lz . Special cases of this class of mode
include the Ising (n51), XY (n52), and Heisenberg (n
53) models. This Hamiltonian has the advantage of rep
senting a whole class of models with critical points in thr
dimensions, tuned by the single parametern. According to
the T23R geometry we setLx5Ly and apply periodicor
antiperiodic boundary conditions in thex andy directions. In
both cases we use periodic boundary conditions in thez di-
rection to eliminate surface effects that are also absent in
Lz→` case assumed in Eq.~4!. To reduce effects of finite
size in thez direction one has to ensure thatLz@j i ; a con-
crete rule will be given below.

In view of the problem of critical slowing down, we us
the Wolff single cluster update algorithm38 for all O(n)
model simulations, cf. Ref. 30. The adaption of this upd
procedure to the case of antiperiodic boundary conditi
along the torus directions is straightforward if one explo
the above-mentioned equivalence of an antiperiodic bou
ary to the insertion of a seam of antiferromagnetic bon
along the boundary line for the case of nearest-neighbor
teractions. Considering the Ising model or, alternatively, e
bedded Ising spins forn.1 models,39 this means that adja
cent spins interacting antiferromagnetically are connec
with a bond obeying the Swendsen-Wang probabilityp51
2exp(22bJ) in the case ofoppositeorientation and are left
unbonded in the case of identical orientation. This rule
actly reflects the change in energy compared to the ferrom
netic case and thus trivially satisfies the detailed balance

The main observables of our simulations are the c
nected correlation functions of the densities of magnetiza
and energy:

Gs
c ~x1 ,x2!5^s~x1!•s~x2!&2^s&•^s&,

Ge
c~x1 ,x2!5^e~x1!e~x2!&2^e&^e&. ~12!

We define the energy density as a local sum over the nea
neighborhoodx8 of a spinx (x8 nn x):

e~x!52
J

2 (
x8 nn x

s~x!•s~x8!, ~13!

the factor1
2 ensuring thatE5(xe(x). It is straightforward to

construct a bias-reduced estimator for the case of~x2
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FIG. 1. Typical spin configurations for the two-dimensional Ising model on strips of size 203382.~a! Periodic boundary conditions;~b!
antiperiodic boundary conditions. Note that the visible geometric clusters differ from the stochastic clusters of the cluster update a
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2x1!iez , corresponding to the correlation lengthj5j i :
first, taking advantage of the translation invariance of
systems along thez axis established by a periodic boundar
one can average over the ‘‘layers’’i[uz22z1u5const. To
improve on that consider a ‘‘zero-mode projection,’’40 i.e.,
define layered variables

Ōt~z!5
1

LxLy
(

x8,z85z

Ot~x8!, ~14!

whereOt5st or e t denotes the times series of MC measu
ments, and consider the estimator

ĜO
c,i~ i !5

1

T (
t51

T
1

Lz
(

uz22z1u5 i
Ōt~z1!Ōt~z2!

2S 1

TLz
(
t51

T

(
z

Ōt~z!D 2

, ~15!

whereT denotes the length of the MC time series. This e
mator obviously does not directly measureGc,i, but inspect-
ing the continuum form Eq.~4! reveals that the deviation
stemming from transversal cross correlations entering the
timator declines exponentially with increasing longitudin
distancei and thus becomes irrelevant for the long-distan
behavior we are interested in. Numerical investigations c
firm that these considerations stay correct when passin
three dimensions.19 In the large-distance regime zero-mo
projection reduces the variance of correlation function e
mates by a factor inversely proportional to the layer volu
LxLy . Note that the given estimator for the disconnected p
^O&2 has a bias that vanishes as 1/T in the large-T limit.

As mentioned above, periodic boundary conditions in
z direction eliminate surface effects associated with this
rection, but still effects of finiteLz will trigger deviations
from the Lz→` limit assumed in Eq.~5!. Inspecting the
form of Eq. ~4! in the limit of distancesi @j i one expects
longitudinal correlations according to

Gc,i~ i !}e2 i /j i1e2~Lz2 i !/j i, ~16!

i.e., the exponential decay is superimposed by an expo
tially increasing part. Thus, using too small values ofLz
results in an effective underestimation of correlation lengt
In order to satisfyLz@j i in a systematic way, i.e., to kee
this effect away from the region of clear signal for measur
the correlation lengths, and assuming linear scaling of co
lation lengths according toj i5ALx , one has to keep the
ratio Lz /j i5Lz /ALx fixed and therefore has to scaleLz pro-
e
,

-

i-

s-
l
e
-
to

i-
e
rt

e
i-

n-

s.

g
e-

portionally to Lx . Simulations for the case of thetwo-
dimensionalIsing model show that these finite-size effec
are negligible compared to the statistical errors forLz /j i

*10 and lengths of time series of about 106– 107

measurements.19 Adding a safety margin the longitudina
system sizes for the simulations in three dimensions wh
chosen such thatLz /j i'15, the scaling amplitudeA being
estimated from a simulation of an ‘‘oversized’’ system
Sincejs.je for all models under consideration, the amp
tudeAs of the spin-spin correlation length scaling is signi
cant for the satisfaction of this condition. Note that from E
~15! increasingLz also has the positive side effect of impro
ing the statistics of the correlation function estimation.

In order to judge the efficiency of the used cluster upd
algorithm and to ensure reasonable usage of computer t
we evaluated integrated autocorrelation timest int , using a
binning technique.41 The strong asymmetry of the model la
tices reduces the average size of clusters and thus Wo
cluster update algorithm does not perform as good as
hypercubic lattices, resulting in increased autocorrelat
times. Since measurements ofĜc,i are computationally ex-
pensive compared to update steps, but the statistical
vanishes with increasingt int , measurements were done wi
frequencies of about 1/t int . Approaching the low-
temperature phase, antiperiodic boundary conditions in
torus directions produce a spatially stable boundary of
geometric clusters along the antiferromagnetic seam, wh
in turn enforces a second boundary along thez direction.
This results in a further reduction of the average cluster s
compared to the periodic boundary case. Figure 1 sh
typical configurations for the case of the~two-dimensional!
Ising model.

III. DATA ANALYSIS

Having sampled correlation functions according to E
~15! and assuming the functional formGc,i( i )
5a exp(2i/ji)1b, we refrain from using intrinsically un-
stable nonlinear three-parameter fits and resort to the foll
ing estimator instead:

ĵO~ i !5DF ln
ĜO

c,i~ i !2ĜO
c,i~ i 2D!

ĜO
c,i~ i 1D!2ĜO

c,i~ i !
G21

, ~17!

which eliminates the additive and multiplicative constantsa
and b above. Note that it is not allowed to assumeb50 a
priori for time series of finite length, cf. Ref. 30. Apart from
stability considerations this approach allows for compu
tional simplifications, since correlation functions can
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sampled irrespective of normalization and the biased esti
tion of the disconnected part^O&2 can be dropped. In addi
tion, Eq. ~17! simplifies the distinction of the long-distanc
part of the correlation function from the short-distance
gion: as the explicit two-dimensional expression Eq.~4! im-
plies, exponential decay will only occur asymptotically, b
with deviations decaying themselves exponentially; ap
from that, lattice artifacts that are not reflected in the co
tinuum expression Eq.~4! additionally distort the short-
distance behavior. Figure 2 shows an example plot of
spin-spin correlation length estimatesĵs( i ) for the Ising
model. The transition from the short-distance region t
should not be used for the final estimate to the purely ex
nential long-distance behavior is clearly visible. The para
eterD in Eq. ~17! can be used to tune the signal-noise ra
for the correlation-length estimate; increasingD dramatically
reduces the apparent statistical fluctuations inĵ( i ), cf. Fig. 2.
Note, however, that the reduction of variances for individ
distancesi is accompanied by an increase of cross corre
tions between estimates for adjacent estimates, so tha
error of anaverageover a region of distances becomes mi
mal for a valueD clearly below its allowed maximum. As
compromise, we useD'2je for both estimatorsĵs( i ) and
ĵ e( i ).

Naive estimates for the statistical errors~variances! of
complex, nonlinear combinations of observable measu
ments like the estimator Eq.~17! are extremely biased due t
two effects: even for quite sparse measurements with
quencies around 1/t int successive elements of the time ser
are still correlated, generically leading to systematic und
estimation of variances. This effect is being eliminated
the grouping together of measurements to subaverage
length m ~‘‘binning’’ !,41 which leads to an asymptoticall
uncorrelated time series of lengthT85T/m used in the fur-
ther process of error estimation. For the production-run ti
series the bin size was chosen to regularly include sev
thousand measurements, which is far in the asymptotica
gime. Second, the strong nonlinearity of estimators like
~17! forbids the use of the usual formula for the standa
deviation of a set of measurements. A common solution

FIG. 2. Correlation length estimates according to Eq.~17! and
O5s for a 3023382 Ising system with periodic boundary cond
tions for two choices of the typical distanceD. The plateau regimes
collapse if both ordinates are scaled identically.
a-

-

t
rt
-

e

t
-
-

l
-
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e-

e-
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y
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e
al
e-
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d
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this problem is the use of the Gaussian error propaga
formula, which, however, only uses a lowest-order Tay
series approximation to the functions and assumes Gaus
distribution of the mean values, i.e., long enough time se
for all observables. A far more general ansatz is given
resampling techniques such as the ‘‘jackknife’’42 that apply
to a quite general set of probability distributions and capt
function nonlinearities exactly. The jackknife variance a
bias estimators mimic the brute force error estimat
method of comparingk completely independent MC time
series of lengthsT8 and applying the naive estimates: remo
ing single elements~i.e., bins! of a single time series o
lengthT8 one by one results inT8 time series of lengthT8
21, e.g., for the correlation function estimates,

Ĝ~s!~ i !5
1

T821 (
tÞs

Ĝt~ i !, ~18!

resulting in jackknife-block estimates for the correlatio
length of

ĵ ~s!~ i !5DF ln
Ĝ~s!~ i !2Ĝ~s!~ i 2D!

Ĝ~s!~ i 1D!2Ĝs~ i !
G21

~19!

ĵ~• !~ i !5
1

T8 (s
ĵ ~s!~ i !.

Then the jackknife estimate of variance is given by

VAR̂„ĵ~ i !…5
T821

T8 (
s51

T8

@ ĵ~s!~ i !2 ĵ ~• !~ i !#2. ~20!

Note the missing factor of 1/(T821)2 as compared to the
usual variance estimate that accounts for the trivial corre
tion between theT8 jackknife-block estimates. One can sho
that this estimator, apart from the reweighting prefactor (T8
21)/T8, is strictly conservative, i.e., deviations from th
true variance are always positive.42 Similarly, the resampling
scheme provides an estimate for the bias of estimat
namely,

BIAŜ@ ĵ~ i !#5~T821!@ ĵ~• !~ i !2 ĵ~ i !#, ~21!

and thus offers a bias corrected correlation length estimat
j̃( i )5T8ĵ( i )2(T821)ĵ (•)( i ). Since in nonpathologica
cases the bias of an estimator vanishes with increasing le
of the time series, the jackknife bias estimate provide
good check for whether the considered series are l
enough to neglect bias. A jackknife error estimate for the
bias-corrected estimators is possible iterating the jackk
resampling scheme to second order.43

Since Eq.~17! gives a vector of estimators for the corr
lation length instead of only a single one, an improved fin
estimate can be achieved by an average over theĵ( i ). How-
ever, as, for example, Fig. 2 reveals, only a certain range
distancesi 5 i min , . . . ,i max is suited for this purpose, wher
the lower boundi min results mainly from small-distance de
viations as reflected by Eq.~4!, whereas the large distanc
boundi max cuts off the region where the signal of expone
tial fall-off drops below the size of statistical fluctuations,
that error estimates become inaccurate and eventually
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estimator Eq.~17! becomes maldefined due to negative arg
ments of the logarithm. Conventionally, averaging over
estimatesĵ( i ) for i 5 i min , . . . ,i max would be done with
weights a i}1/s2@ ĵ( i )# that minimize the theoretical vari
ance of the mean value. This prescription, however, negl
correlations between the individual estimates. Note that c
correlations between adjacent estimatesĵ( i ) are quite large,
not only because large-scale fluctuations of the correla
functions are dominant, but also since the used estimator
~17! explicitly introduces such correlations increasing
range with increasingD. As a simple variational calculation
shows, for the case of correlated variables to be avera
over, one has to choose the weights according to

ak5
( i~G21! ik

( i , j~G21! i j
, ~22!

in order to minimize the variance of the mean value. He
GPRp3p , p5 i max2imin11, denotes the covariance matr
of the ĵ( i ). G itself can be estimated within the jackknif
resampling scheme as

CORR̂i j [CORR̂„ĵ~ i !,ĵ~ j !…

5
T821

T8 (
s51

T8

@ ĵ~s!~ i !2 ĵ ~• !~ i !#@ ĵ~s!~ j !2 ĵ ~• !~ j !#.

~23!

FIG. 3. Sections ofx̂2/g( i min ,imax) for the spin correlation
length of an Ising system.~a! $x̂2/gu i min525%; ~b! $x̂2/gu i max

5110%. The ‘‘wavy’’ structure results fromD54 in Eq. ~17!.
-
e

ts
ss

n
q.

ed
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The fact that, considering Eq.~22!, variance and covarianc
estimates directly influence the final results for the corre
tion lengths, gave the motivation for the quite careful sta
tical treatment presented above.

Finally, the selection of the regimei 5 i min , . . . ,i max can,
besides the obvious eyeball method, also be done in a
based on statistical criteria. Interpreting the average over
ĵ( i ) as afit of the estimatedĵ( i ) values to the trivial func-
tion f ( ĵ)5 j̄5const, the systematic deviations from the p
teau regime for very small and very large distancesi should
be clearly reflected in quality-of-fit parameters. Thus, loo
ing at thex2 distribution,

x̂25 (
i , j 5 i min

i max

@ ĵ~ i !2 j̄ #~ Ĝ21! i j @ ĵ~ j !2 j̄ #, ~24!

will be a good criterion for judging the ‘‘flatness’’ of the
plateau regimei min , . . . ,i max included in the average. Again
as an estimatorĜ i j for the covariance matrix one can use t

jackknife expression CORRˆ
i j . Then finding the optimal re-

gion of distances for the average is equivalent to the opti
zation problemux̂2/g21u→min, with g5 i max2imin5p21
denoting the number of degrees of freedom of the fit. Ho
ever, this ansatz of optimization bears some uncertaint
minimizing the distance ofx̂2/g from 1 supposes that th
optimal choice includes estimatesĵ( i ) whose dispersion
aroundj̄ is exactly reflected by the estimated variances.
view of the jackknife’s tendency to overestimate errors
might be more favorable to minimizeux̂2/gu itself. Further-
more, considering the statistical nature of the data, the a
lute minimum ofux̂2/g21u or ux̂2/gu sometimes happens t
be an isolated fluctuation, far apart from the bulk of next-
optimal solutions. Finally, this optimization procedure ten
to result in minimal values for very small regime sizesp
since the fit becomes trivial for very small numbers
points; this, however, conflicts with another possible goal
optimization, namely, the minimization of the overall var
ance of the final result. To circumvent these problems
resort to considering the whole two-dimensional distributi

FIG. 4. Finite-size scaling of the energy-energy correlat
length of the three-dimensional Ising model with antiperiod
boundary conditions. The other scaling plots look similar; we sh
the worst case. The fit was done to the functional form Eq.~27!.
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FIG. 5. Scaling of the amplitudesj̄s/e /Lx for the Ising model. The solid lines show fits to the function Eq.~27!; ~a! and ~b! show
correlation lengths for the systems with periodic boundary conditions,~c! and~d! for the case of an antiperiodic boundary;~b! additionally
contains bias corrected estimates according to Eq.~21!.
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Eq.
x̂2/g( i min ,imax). It is characterized by a rather flat platea
regime for intermediate values ofi min and i max and steep
increases at the boundaries, cf. Fig. 3. A good recipe for
determination of bounds is then given by first choosing
preliminary i min well above the steep ascent for smalli; then
a plot like Fig. 3~a! allows us to determine the upper boun
i max. Finally, a plot of$x̂2/gu i max5const% determines the fi-
nal lower boundi min , cf. Fig. 3~b!.

To test the methods of data analysis described in this
tion we performed simulations of thetwo-dimensionalIsing
model. Using a series of systems withLx55, . . . ,20 and
finite-size scaling fits including an effective higher-order c
rection term of the formj(Lx)5ALx1BLx

k , we find for the
leading correlation lengths scaling amplitudesAs/e final es-
timates for the case of periodic boundary conditions ofAs

51.273 74(81) andAe50.1583(17), in excellent agreeme
with the exact resultsAs54/p'1.273 24 andAe51/2p
'0.159 15, cf. Eq.~5!. For the case of antiperiodic bounda
conditions we arrive at As50.424 10(30) and Ae
50.079 84(38), compared to CFT results ofAs54/3p
'0.424 41 andAe51/4p'0.079 58, cf. Eq.~8!.

IV. RESULTS: AMPLITUDE RATIOS

Let us now turn to the three-dimensional geome
T23R and the determination of amplitude ratios accord
e
a

c-

-

to Eq. ~6!. We report the results of simulations for theO(n)
spin models forn51, 2, 3, and 10.

Ising model

Simulations of the Ising model were done at an inve
temperature given by a high-precision MC estimate of
bulk critical coupling in three dimensions,44 bc
50.221 6544(3). We use atemperature reweighting tech
nique to check for the influence of the uncertainty ofbc on
the final results.45,46 We find it completely negligible com-
pared to the statistical errors for the case of the Ising mo
To enable a proper FSS analysis including subleading te
we performed simulations for transverse system sizesLx
54, 5, . . . , 20, 25, and 30,scalingLz accordingly. Adapting
the frequency of measurements to the autocorrelation tim
about 23106 and 83106 nearly independent measuremen
were recorded for the systems with periodic and with anti
riodic boundary conditions, respectively. Collecting the fin
estimatesj̄ for the correlation lengths one ends up with
scaling plot like that shown in Fig. 4. The scaling behavior
quite linear; however, as plots of the amplitudesj̄/Lx reveal,
corrections to the purely linear scaling behavior are clea
resolvable, cf. Fig. 5. As an aside, Fig. 5~b! additionally
shows jackknife-bias-corrected estimators according to
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TABLE II. Literature estimates for the inverse critical temperaturebc and the critical exponentsn andg
of the three-dimensionalXY (n52) and Heisenberg~n53! models.

n Method bc n g

2 e expansion~Ref. 31! 0.668 0~35! 1.311 0~70!

Series~Ref. 32! 0.454 19~3! 0.677~3! 1.327~4!

Series~Ref. 47! 0.671 66~55! 1.317 9~11!

Series~Ref. 48! 0.454 06~5!

Series~Ref. 49! 0.454 20~6!

MC ~Ref. 50! 0.454 2~1! 0.670~2! 1.319~2!

MC ~Ref. 51! 0.454 165~4! 0.672~1! 1.316~3!

MC ~Ref. 52! 0.672 3~11! 1.319 0~22!

MC ~Ref. 53! 0.454 21~8!

MC ~Ref. 54! 0.454 170~7!

Weighted mean 0.454 167~3! 0.671 79~42! 1.318 39~82!

3 e-expansion~Ref. 31! 0.704 5~55! 1.382 0~90!

Series~Ref. 55! 0.692 9~1! 0.712~10! 1.400~10!

Series~Ref. 32! 0.693 05~4! 0.716~2! 1.406~3!

MC ~Ref. 56! 0.692 9~1! 0.706~9! 1.390~23!

MC ~Ref. 57! 0.693 035~37! 0.703 6~23! 1.389 6~70!

MC ~Refs. 58 and 59! 0.693 0~1! 0.704~6! 1.389~14!

MC ~Ref. 51! 0.693 002~12! 0.712 8~14! 1.399~2!

Weighted mean 0.693 01~1! 0.711 29~98! 1.399 8~16!
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~21!; for the given length of time series bias effects of o
estimator Eq.~17! can clearly be neglected.

Returning to the two-dimensional case for a moment, i
easy to see the source for the leading correction term in
correlation length scaling. In the framework of conform
field theory the effect of lattice discretization as well as t
influence of nonlinearity of scaling fields that increase w
the distance from criticality,~i.e., the thermodynamic limit in
our case! can be included in considerations using conform
perturbation theory.11 A formal perturbation expression fo
the spin-spin correlation length including the effect of a p
turbing operator coupled with strengthak is to first order
given by

js
215

2p

L Fx12pak~C1k12C0k0!S 2p

L D xk22G , ~25!

where the perturbing operator has dimensionxk and the co-
efficients Cnkn result from the operator product expansi
~OPE!. One finds60 that to lowest order the only nonvanish
ing amplitude belongs to an operator that corresponds to
breaking of rotational symmetry by the square lattice as co
pared to the continuum solution. It has dimensionxk54
leading to 1/L2 corrections, in agreement with the first-ord
expansion of the exact result:16

js
21~L !5

2p

L F1

8
22p

1

768p S 2p

L D 2G . ~26!

A similar effect will be present in the three-dimension
systems, but the correction exponent can no longer be ev
ated analytically. Figure 5 shows that thesignof the leading
r
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e
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l

-

he
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correction term is unchanged in three dimensions for the s
tems with periodic boundary conditions, whereas it is
versed for the systems with antiperiodic boundary. This st
true for the otherO(n) spin models discussed below. T
account for corrections to scaling we fit the correlati
lengths data to the functional form

j~Lx!5ALx1BLx
k , ~27!

treating the correction exponentk as an additional fit param
eter. Due to the presence of higher-order corrections, h
ever, the resulting values ofk have to be taken as effectiv
exponents, which will in general differ from Wegner’s co
rection exponentv. Therefore, we decided to keepk as a
parameter, despite of existing field-theory estimates forv, cf.
Ref. 1. We take into account the effect of neglecting high
order correction terms by successively dropping points fr
the smallLx end while monitoring the quality-of-fit param
etersx2/g or Q to find a compromise between fit stabilit
and precision of the final amplitudesA. The range of sizesLx
used is indicated by the range of the solid lines in Fig. 5. O
results for the scaling amplitudes and their ratios as listed
Table III and the ratio of scaling dimensions according to E
~10! show precise agreement in the sense of Eq.~6! for the
case of antiperiodic boundary conditions and clear misma
for a periodic boundary. This is in agreement with the resu
of Henkel27 and Weston,29 but at a level of accuracy tha
makes a casual coincidence very unlikely.

XY model

The XY model is, as well as the Heisenberg models,
cessible to cluster update methods using the embedded
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ter representation,61 which we made use of. The simulation
were performed at the couplingbc50.454 167(3), which is
an average of recent literature estimates, cf. Table II. Us
the same transverse system sizesLx5Ly as for the Ising
model, but adjusting the lengthsLz according to the differen
correlation length amplitudes, we took between 13106 and
163106 measurements, using measurement frequen
around 1/t int as above. Figure 6 shows the amplitude scal
plot of the spin-spin correlation length for periodic bounda
conditions. The additional curves are results of a tempera
reweighting analysis, trying to judge the effect of critic
coupling uncertainties. The precision of the data is well
lustrated by the fact that, reweighting our results to the m
mum and maximum estimated critical couplings, resp
tively, cited in Table II, results in a variation of the scalin
curves far beyond the range covered by the remaining st
tical errors. Nevertheless, reweighting to the 1s-range in-
verse temperaturesbc2Db and bc1Db as given above
triggers deviations at most comparable to the error estim
of the statistical analysis. The intermediate maximum of
curve forbmin , however, might be an artifact indicating th
bmin is already too far away from the simulation temperatu
to allow for reliable reweighting. The effect of temperatu
variation is generally observed to be smaller for the anti
riodic boundary systems; furthermore, it is more importa
for the case of the spin-spin correlation length since h
statistical errors are clearly smaller than for the ener
energy correlation length estimates. Thus, Fig. 6 shows
largest effect observed. Fitting the final correlation leng
resultsj̄s/e to the functional form Eq.~27!, we arrive at the
final estimates for the leading amplitudes given in Table
Comparing these to the ratio of scaling dimensions resul
from the averaged critical exponent estimates of Table II
Eq. ~10!, we again find Eq.~6! confirmed for antiperiodic
boundary conditions only; this behavior is obviously not sp
cific to the Ising model.

Heisenberg model

Then53 Heisenberg model case is treated analogousl
theXYmodel. Table II gives the critical parameter estima

FIG. 6. Amplitude scaling of the spin-spin correlation length
theXYmodel with periodic boundary conditions. The spread cur
show results of temperature reweighting forbc2Db50.454 164,
bc1Db50.454 170,bmin50.454 06, andbmax50.454 21.
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used for the simulations and comparison. With statist
similar to that for then51 andn52 cases, the simulation
confirm the findings of the Ising andXYmodels, cf. Table III
for details. For the case of the energy-energy correlat
length of the systems with periodic boundary conditions
gathered statistics did not suffice for a stable nonlinear
including corrections according to Eq.~27!. We thus per-
formed a simple linear fit dropping the correction term. Th
however, results in an error estimate that is not quite reali
and, furthermore, induces a systematic underestimation
the amplitude since one expectsBe,0, cf. Fig. 5~b!. From
the results of the other models this effect is estimated to
about 2s–3s in magnitude.

O„10… model

To gain additional evidence and in order to facilitate co
siderations concerning then→` limit, giving a clear picture
of systematic dependencies on the parametern, we also
simulated then510 generalized Heisenberg model. Since,
course, in the past much less effort has gone into the inv
tigation of theO(n) model with n.4, there are quite few
estimates of the critical coupling. We thus, here, use a sin
high-temperature series estimate ofbc52.427 92(8).32 The
implementation of the Wolff cluster update algorithm has
cope with the technical intricacy of generating pseudor
dom numbers equally distributed on a hypersphere, see
pendix A for details. Due to this complication we only sim
lated systems up to a transversal size ofLx520 and reduced
the number of measurements to 23106. The critical expo-
nents for comparison, given by a plain average over so
recent estimates,62,32,63are

n50.8713~75!, g51.721~14!. ~28!

Table III shows again agreement between amplitude and
ponent ratios only for the case of antiperiodic boundari
Note that, as critical exponent estimates become rare w

s

TABLE III. FSS amplitudes of the correlation lengths ofO(n)
spin models on theT23R geometry.

Model Periodic bc Antiperiodic bc

As 0.818 3~32! 0.236 94~80!

Ae 0.223 2~16! 0.086 61~31!

Ising As /Ae 3.666~30! 2.736~13!

xe /xs 2.726 4~13!

As 0.754 09~59! 0.241 13~57!

Ae 0.189 9~15! 0.082 3~13!

XY As /Ae 3.971~32! 2.930~47!

xe /xs 2.913 6~38!

As 0.720 68~34! 0.244 62~51!

Ae 0.169 66~36! 0.079 3~20!

Heisenberg As /Ae 4.247 8~92! 3.085~78!

xe /xs 3.089 1~79!

As 0.671 107~59! 0.258 65~46!

Ae 0.135 0~23! 0.070 96~107!
n510 As /Ae 4.971~83! 3.645~55!

xe /xs 3.615~70!
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increasingn, the correlation length ratio estimate alrea
reaches the precision of the scaling dimension ratio estim
Checking the influence of the critical coupling uncertain
we find it only important compared to statistical errors in t
case of the spin-spin correlation length for periodic bound
systems; the results reweighted tob65bc6Db are As

2

50.670 805(56) andAs
150.671 432(65), respectively. This

however, does not noticeably influence the error of the ra
estimate, since here the error of the estimate ofAe , which is
much larger, is dominant.

We thus find the linear amplitude-exponent relation E
~6! confirmed for several spin models in three dimensio
with the peculiarity that one has to insert a seam of anti
romagnetic bonds along theT2 directions to restore the two
dimensional situation.

V. RESULTS: ‘‘META’’ AMPLITUDES

Comparing our results for the three-dimensional geome
S13S13R to the CFT conjecture for the case of two dime
sions, we are interested in the respective ranges of validit
terms of the classification of universality aspects given ab
in the Introduction. The fact that our simulations of the is
tropic lattice representation of theO(n) universality classes
give results in agreement with the strongly anisotropic qu
tum Hamiltonian representation used by Henkel in his tra
fer matrix calculations for the case of the Ising model,26–28

indicates that the considered amplituderatios are universal,
i.e., (i 8) holds. Apart from that, Henkel26 explicitly checked
for universality of amplitude ratios by the insertion of a
irrelevant perturbing operator and found it confirmed
both cases of boundary conditions. However, strictly spe
ing, there is no proof of universality for the casesn.1. The
universality aspect~i! above, i.e., universality of the ampl
tudes themselves, could not be checked in Henkel’s calc
tions, because the quantum Hamiltonian is only defined u
an overall normalization constant. Yurishchev64,65 consid-
ered the behavior of an anisotropic Ising model and fou
varying correlation length amplitudes on variation of the
tios of couplings in the different directions. This, however,
no argument against amplitude universality since anisotr
is represented by marginal instead of irrelevant operators
the other hand, amplituderatios stay universal even with
respect to those marginal perturbations, in consistency w
Henkel’s strongly anisotropic Hamiltonian limit calculation
In fact, it has been argued that for all systems below th
upper critical dimension correlation length scaling amp
tudes are universal quantities.14

Having found very good agreement in three dimensio
between ratios of correlation lengths and scaling dimens
according to Eq.~6! for the case of antiperiodic boundar
conditions, it is interesting to see what the overall, opera
independent, ‘‘meta’’ amplitudeA according to

js/e5As/eLx5
A

xs/e
Lx , ~29!

that wasA51/(2p) for two-dimensional periodic systems
cf. Eq. ~5!, becomes in three dimensions, in particu
whether it is again model independent. Since our results
the spin-spin correlation lengths are always more pre
te.
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than those for energy-energy correlation lengths, we usej̄s

to determineA. The estimates for the spin-spin scaling d
mensionxs resulting from the corresponding estimates
bulk critical exponentsn andg listed in Tables I and II and
Eq. ~28! are xs50.5182(4) ~Ising!, xs50.5188(9) ~XY!,
xs50.5160(17)~Heisenberg!, andxs50.512(12) (n510),
respectively. Thus, inserting our results forAs listed in Table
III, we obtain for the ‘‘meta’’ amplitudesA(n):

A5Asxs55
0.122 78~43! Ising

0.125 10~37! XY

0.126 22~49! Heisenberg

0.1325~30! n510 .

~30!

These values can additionally be compared with an a
lytical result that is available for the case of the spheri
model, which is commonly believed to be identical to t
n→` limit of the O(n) spin model.66 Again using the
Hamiltonian formulation, Henkel and Weston67,68 found that
the amplitude exponent relation Eq.~6! is valid for the
spherical model onS13S13R for both kinds of boundary
conditions, periodic and antiperiodic. This is due to the f
that the quantum Hamiltonian factorizes into a set of u
coupled harmonic oscillators. The amplitudeA for the case
of antiperiodic boundary conditions was found to beA
'0.136 24.68,69 Plotting this value together with the finite-n
results of Eq.~30! shows an apparently smooth variation
the meta amplitudes with the order parameter dimensionn,
the eyeball extrapolation of the finite-n values to 1/n→0
matching the spherical model result, cf. Fig. 7~a!. Facing this
variation, the hypothesis of a hyperuniversal amplitu
A(n)5A that does not depend onn, as was the case for th
two-dimensional systems, can be clearly ruled out. Th
type ~iii ! universality of the classification above gets brok
when passing from two to three dimensions. The matching
the finite-n values with the universal spherical model amp
tude, on the other hand, indicates universality also of
finite-n amplitudes and thus universality of type~i! above.

Even without a scaling law of the type Eq.~6! being valid
for the case of periodic boundary conditions, one can nev
theless plot the corresponding combinationAsxs for this
case also, as is illustrated in Fig. 7~b!. The values are:

Asxs55
0.4240~17! Ising

0.3912~7! XY

0.3719~12! Heisenberg

0.3439~78! n510 .

~31!

The corresponding value for the spherical model is given
Asxs'0.3307, cf. Refs. 70 and 68. The finite-n values again
run smoothly into the spherical model limit.

VI. THE LIMIT OF INFINITE SPIN DIMENSIONALITY

While the finite-n amplitudes of Fig. 7 fit well to the
spherical model result, this is not the case for the correla
length ratios themselves. From inspection of Fig. 8
smooth variation of correlation length ratios for finiten does
not fit at all to the spherical model result of Henkel a
Weston67,68 that gives a ratioAs /Ae52 for both, periodic
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and antiperiodic boundary conditions. By eyeball extrapo
tion one would instead expect the amplitude ratios to re
values around 4 for antiperiodic and around 16/3 for perio
boundary conditions in the limitn→`. And indeed, accept
ing the validity of a linear amplitude-exponent relation a
cording to Eq.~6! for the case of antiperiodic boundary co

FIG. 7. ~a! ‘‘Meta’’ amplitudes A for antiperiodic boundary
conditions according to Eq.~30! as a function of the order param
eter dimensionn; ~b! the same combinationAsxs for periodic
boundary conditions according to Eq.~31!.

FIG. 8. Correlation lengths ratios as function of the order
rameter dimensionn for periodic and antiperiodic boundary cond
tions.
-
h
c

-

ditions and using the usual relations for the connect
between scaling dimensions and bulk critical exponen
namely Eq.~7!, one would expectxs5 1

2 and xe52 since
b5 1

2 , n51, anda521 for the spherical model. The resul
ing ratioxe /xs54 perfectly agrees with the eyeball extrap
lation of our finite-n data. However, by inspection of th
energy-energy correlation function in the Hamiltonian lim
and using factorization arguments, Henkel67 conjecturedxe
51 instead, resulting in the ratioAs /Ae52, in contrast to
the relation Eq.~7!. Taking into account the obvious agre
ment of eyeball extrapolation and spherical model calcu
tion for the amplitudesA(n) that were calculated from the
spin-spin correlation length amplitude asA(n)5Asxs , cf.
Fig. 7, it becomes obvious that the mismatch is entirely d
to the behavior of the energy-energy correlations. Note a
that, since the specific heat is constant in the lo
temperature phase of the spherical model in three dim
sions, interpreting this as an effectively vanishing speci
heat exponenta850 leads to an effective energetic scalin
dimensionxe851. This, in fact, implies a violation of the
scaling relation Eq.~7!, which is of the hyperscaling type, fo
the case of the spherical model.

Puzzled by this striking mismatch, we performed
roughly explorative MC simulation directly in the spheric
model, which rendered results in qualitative agreement w
an amplitude ratio ofAs /Ae52 as suggested by the analyt
cal calculation. Then, it is natural to ask whether there i
contradiction with Stanley’s result on the equivalence of
n→` limit of the O(n) model and the spherical model,71

which has been, after some debate over mathema
subtleties,72 rigorously proven.73 The precise statement tha
can be proven is the identity of the partition functions o
equivalently, free energies of the two models in the therm
dynamic limit for the whole temperature range, even ind
pendent of the order of taking the limitsn→` and N→`
~the thermodynamic limit!. Since multipoint correlation
functions do not follow from the~source-free! partition func-
tion, this does not say anything about the behavior of th
functions in those two models. A direct calculation in th
spherical model, cf. Appendix B, results in a simple facto
ization property of the long-distance behavior of the co
nected energy-energy correlation function for all tempe
tures in one and two dimensions and in the high-tempera
phase down toTc in three dimensions. If the four-point func
tion of the spherical-model spins is denoted byCi jkl one has

Cii 11 j j 112Cii 11
2 5Ci j Ci 11 j 111Ci j 11Ci 11 j

→2Ci j
2 , u j 2 i u→`, ~32!

where Ci j are the corresponding two-point functions. Th
confirms Henkel’s results for the Hamiltonian formulation67

on more general grounds.
Considering then→` limit of the O(n) model, on the

other hand, reveals that the connected part of the ene
energy correlation functionvanishesin the first-order saddle-
point approximation that is being used for the comparison
the two models, cf. Appendix C. This is in agreement w
general considerations for the largen model by Brézin.70 For
the case of the one-dimensional spin chain, the conne
energy-energy correlation function even vanishes exactly

-
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all n, so that one can rule out an agreement of the two lim
to higher order of the steepest-descent expansion in this c
Thus the mismatch of finite-n extrapolations and spherica
model results of Fig. 8 has some well-defined mathemat
reason.

Starting from the observation that the curves of Fig. 8
the amplitude ratios seem to be quite parallel as a functio
~finite! n for the both kinds of boundary conditions, we al
plotted the collapsed ratio (As /Ae)/(xe /xs) that should be
unity if the amplitude-exponent relation Eq.~6! holds true.
Inspecting Fig. 9, this is, according to our above results
course the case for antiperiodic boundary conditions. Mo
over, anda priori somewhat unexpected, this ratio seems
be also quite constant for the case of a periodic bound
stabilizing around a value compatible with4

3 within statistical
errors. Note that the exceptionally small error of the va
for n53 ~the Heisenberg model! and its apparent deviatio
towards a larger ratio is due to the impossibility to fit then
53 energy-energy correlation lengths to a scaling law
cluding a correction term as mentioned in Sec. IV. Stati
cally, the data are consistent with a fit to a constantQ
50.08), and perfectly so when dropping then53 point
(Q50.4).

In view of this observation one might argue that t
asymptotic scaling relation Eq.~6! in three dimensions has t
be replaced by a generalized ansatz of the form

js

je
5R

xe

xs
, ~33!

with an overall, model independent factorR that depends
only on the boundary conditions and happens to be just 1
the case of an antiperiodic boundary. For the amplitude s
ing law this would lead to an asymptotic form

js/e~n!5R
A~n!

xs/e
Lx , ~34!

cf. Eq. ~5!. Accepting such a generalized ansatz, a lea
squares fit of the collapsed ratios of Fig. 9 to a constanR
gives R51.0037(45) for antiperiodic boundary condition
underlining the validity of the original amplitude-expone

FIG. 9. Matching of correlation lengths ratiosAs /Ae and in-
verse scaling dimension ratiosxe /xs for the two kinds of boundary
conditions as a function of the order parameter dimensionn. The
horizontal lines show fits to a constant as discussed in the text
s
se.

al

r
of

f
-

o
y,

e

-
i-

or
l-

t-

relation Eq.~6!, or alternatively Eq.~33! with R51, for this
case. For the periodic-boundary systems, on the other h
we arrive atR51.3546(76)~omitting the n53 point!, in-
deed statistically consistent with the conjectured value o4

3.
This somewhat diminishes the at first sight apparently

ceptional importance of choosing antiperiodic boundary c
ditions in three dimensions. Taking into account the smo
amplitude variation of Fig. 7~b! the same universality state
ments hold for periodic and for antiperiodic boundary co
ditions.

VII. CONCLUSIONS

We performed extensive MC simulations for several re
resentatives of the class ofO(n) spin models. Concentrating
on the geometry of three-dimensional slabsS13S13R we
found a simple inversely linear relation between the lead
scaling amplitudes of the correlation lengths of the magn
zation and energy densities and the corresponding sca
dimensions valid to high accuracy for the Ising (n51), XY
(n52), Heisenberg (n53), andn510 generalized Heisen
berg models forantiperiodicboundary conditions along th
torus directions. This is the analog of the CFT result in tw
dimensions with periodic boundary conditions applied. Th
is evidence for the universality not only of amplitude rati
@type (i8) of our classification in the Introduction#, but also
of scaling amplitudes themselves@type ~i!#. To definitely de-
cide the question whether universality in the sense~ii ! above,
i.e., condensation of all operator dependent information
the scaling dimensions, is present, further operators wo
have to be considered. Independence, apart from chang
the scaling dimension, of the scaling amplitudes from
model under consideration, i.e., type~iii ! universality, is ex-
plicitly broken for three dimensions as compared to the tw
dimensional case: we find a smooth variation of the ove
meta amplitudesA(n)5As(n)xs(n), depending on the
order-parameter dimensionn. It might be interesting to con-
sider further classes of models, such as, for example, P
models, to see whether any of these properties are specifi
the O(n) spin model class.

Considering the deviation of the periodic boundary cor
lation lengths ratios from the corresponding inverse sca
dimension ratios, the validity of a scaling law of the form E
~6! can be definitely ruled out for this case. Generalizing t
ansatz with an overall factorR depending on boundary con
ditions as in Eq.~33!, however, we find it fulfilled also for
the case of periodic boundaries with a factorR independent
from n and taking a value compatible with43. In view of that,
the fact thatR51 for the case of antiperiodic boundary co
ditions might be rather a coincidence than a ‘‘deep’’ physi
property. Taking into account that in two dimensions t
corresponding prefactors are specific to the operators con
ered, cf. Eq.~8!, makes it probable that a similar behavi
occurs in three dimensions, destroying type~ii ! universality.
It might be interesting to analyze the behavior of correlat
lengths in the four-dimensional geometryS13S13S13R to
check whether a scaling law of the generalized form Eq.~33!
can be retained and if so, how the factorR depends on the
dimensionality of the lattice.

Trying to match our finiten results with analytical calcu-
lations for the spherical model we found a striking misma
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of the data concerning energy-energy correlations. Inspec
the four-point functions directly in the spherical model a
the O(n→`) model limit we find that both results do no
match to first order of the saddle-point approximation in g
eral dimensions and to all orders in one dimension. Thus,
idea of equivalence of the two models has to be limited to
original extent, namely, the identity of partition functions
the thermodynamic limit. Quantities not directly related
the partition function, like multipoint correlation function
do not necessarily have to coincide. Further work has to
done to possibly evaluate exactly the correlation lengths
tios in then→` limit for both sorts of boundary conditions

Since, still, there is no explanation of the findings co
cerning the correlation lengths ratios for finiten in terms of a
field theoretic or otherwise exact approach, we would like
encourage further research in this direction.
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APPENDIX A: EQUAL DISTRIBUTION OF RANDOM
NUMBERS ON A HYPERSPHERE

Consider a probability density in polar coordinat
f (f,u) equally distributed on the 2-sphereS2, i.e.,

f ~f,u!df du

sinu df du
5const. ~A1!

Factorizing f (f,u)5p(f)q(u)5const3sinu, and taking
into account the normalization condition*dV f (f,u)51,
one finds

f ~f,u!5p~f!q~u!5
1

2p
3

1

2
sinu. ~A2!

Pseudorandom number generators usually generate num
equally distributed in the unit interval@0,1#. How does this
transform to an arbitrary distribution? Let a random varia
z be distributed with a densityg(z) and transform according
to z85v(z); the densityh(z8) then follows from the equa
tion

g~z!dz5h~z8!dz85h„v~z!…v8~z!dz. ~A3!

Thus, for random numbersz equally distributed in@0,1# the
transformationu5arccos (122z) gives the desired distribu
tion q(u)5 1

2 sinu. This form is being used for the simula
tions of then53 Heisenberg model. For general polar coo
dinates in Rn, x15r cosu1, x25r sinu1 cosu2, up to xn
5r sinu1¯ sinun21, where 0<u i<p, 0<un21,2p is un-
derstood, the volume element is given by

dV5r n21 sinn22 u1 sinn23u2¯sinun22dr )
i

du i ,

~A4!

so that one has for the factorsf ( i )(u i) of an equally distrib-
uted densityf (u1 ,...,un21)5P i f

( i )(u i):
ng

-
e

s

e
a-

-

o

l
-
h

ers

e

-

f ~ i !~u i !5
1

g~n2 i 21!
sinn2 i 21u i , i ,n21, ~A5!

f ~n21!~un21!5
1

2p
,

with normalization factorsg(k)5ApG(@k11#/2)/G(k/2
11). Thus, forzi equally distributed in@0, 1# the transfor-
mationszi(u i) are given by

zi~u i ![ int~u i !5
1

g~n2 i 21!
E du i sinn2 i 21u i , ~A6!

for i ,n21. The integrals can be evaluated analytically f
eachu i . There is, however, no closed form expression
the inversetransformationu i(zi) that is needed to generat
random vectors equally distributed on the hypersphereSn21.
The trivial workaround solution of sampling equally distrib
uted in the hypercubeLn5@21,1#3¯3@21,1#, discarding
the complementLn\Bn and projecting the remaining point
on the sphereSn21, suffers from asymptotically vanishing
efficiency, since the ratio of used to discarded volumes v
ishes with increasingn exponentially aspn/2/2nG(n/211).
We thus resorted to a numerical inversion ofzi(u i) using
interpolation between the precalculated points of a bin
tree.

APPENDIX B: ENERGY-ENERGY CORRELATION
FUNCTION IN THE SPHERICAL MODEL

Consider the spherical model of Berlin and Kac71 consist-
ing of ‘‘spins’’ e iPR with the constraint

(
i 51

N

e i
25N, ~B1!

where N denotes the number of lattice sites. For ease
reference we use the notation of the original paper here; t
the e i are not to be confused with the local energy densit
defined above in Eq.~13!. The Hamiltonian is

H52J(̂
i j &

e ie j . ~B2!

Using the Fourier representation of thed constraint Eq.~B1!
the partition function can be written as

ZN5
AN

21

2p i Ea02 i`

a01 i`

ds eNsE ¯E de1¯deN

3expS 2s(
i

e i
21K(̂

i j &
e ie j D , ~B3!

choosinga0 such that the singularities ins of the integrand
are excluded from the integration volume.AN ensures the
correct normalization of the integral measure andK5bJ de-
notes the coupling. Diagonalizing the quadratic for
(^ i j &e ie j with eigenvaluesl j via an orthogonal transforma
tion e i5( jVi j y j , the Gaussian integration over thee i can be
performed:
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E ¯E dy1¯dyN expF2(
j

~s2Kl j !yj
2G

5pN/2 expF2 1
2 (

j
ln~s2Kl j !G ~B4!

so that

ZN5AN
21pN/22Ke2~1/2!N ln 2K

1

2p i Ez02 i`

z01 i`

dz

3expFN2Kz2
1

2 (
j 51

N

lnS z2
1

2
l j D G , ~B5!

where s52Kz. This expression can be evaluated in t
saddle point limitN→` depending on the distribution of th
eigenvaluesl i for a given lattice. Now consider the two
point function,

Ci j [^e ie j&5(
r ,s

Vir Vjs^yrys&5(
r

Vir Vjr ^yr
2&, ~B6!

where the last equality follows from the symmetry of t
partition function Eq.~B3!. Compared to the Gaussian int
gration Eq.~B4! the insertion of a factoryr

2 in the integrand
gives an additional factor of

1

2~s2Kl r !
5

1

4K~z2 1
2 l r !

. ~B7!

The corresponding integral overz can also be evaluated i
the saddle point approximation.71 Now, analogously, con-
sider the four-point function:

Ci jkl [^e ie jeke l&5 (
r ,s,t,u

Vir VjsVktVlu^yrysytyu&.

~B8!

Here, again, only paired occurrences of theym survive due to
the inversion symmetry:

Ci jkl 5(
r

Vir Vjr VkrVlr ^yr
4&1(

rÞs
Vir Vjr VksVls^yr

2y2
2&

1(
rÞs

Vir VjsVkrVls^yr
2ys

2&1(
rÞs

Vir VjsVksVlr ^yr
2ys

2&.

~B9!

The insertion ofyr
4 under the Gaussian integral gives

additional factor of 3/@4(s2Kl r)
2#53/@16K2(z2l r /2)2#,

whereasyr
2ys

2 gives 1/@16K2(z2l r /2)(z2ls/2)#, so that the
diagonal terms left out in Eq.~B9! are reinserted:

Ci jkl 5(
r ,s

~Vir Vjr VksVls1Vir VjsVkrVls1Vir VjsVksVlr !

3^yr
2ys

2& ~B10!

Now performing thez integration of Eq.~B5! in the saddle-
point limit N→` is equivalent to just inserting the saddl
point valuez5zs for the factors given above, whenever
normal saddle point exists. As Berlin and Kac have sho
this is the case for all finite temperatures in one and t
,
o

dimensions and forT>Tc in three dimensions; in the low
temperature phase, the saddle point ‘‘sticks’’ to its value
T5Tc . Then, the four-point function simply factorizes, s
that, comparing Eq.~B10! to the expression Eq.~B6! for the
two-point function it is clear that

Ci jkl 5Ci j Ckl1CikCjl 1Cil Cjk , ~B11!

and, finally, considering the connected energy-energy co
lation function, one has

Cii 11 j j 112Cii 11
2 5Ci j Ci 11 j 111Ci j 11Ci 11 j

→2Ci j
2 , u j 2 i u→`, ~B12!

so that the energy-energy correlation function is trivially r
lated to the spin-spin correlation function. Note that E
~B11! would follow from Wicks’s lemma for the Gaussia
model. This especially confirms the factor-two relatio
xe /xs52 between the corresponding scaling dimensions
rived by Henkel using transfer matrices.67 The factorization
property can also be seen in the grand-canonical formula
of the spherical model, the ‘‘mean’’ spherical model,74

where the hard constraint Eq.~B1! is being replaced by its
thermodynamical average, so that one can leave out
problematicz integration above. There has been some deb
over the coincidence of the thermodynamic limit of the tw
models, which is now believed to be settled.75

APPENDIX C: ENERGY-ENERGY CORRELATION
FUNCTION IN THE LIMIT OF INFINITE SPIN

DIMENSIONALITY

The treatment of the partition function of theO(n) model
in the n→` limit is quite analogous to that of the spheric
model, cf. Ref. 66. For the comparison of then→` limit
with the spherical model the constraintsi•si51 of Eq.~11!
has to be replaced bysi•si5n. We write the partition func-
tion of the model as

ZN
~n!~K !5AN

~n!21E ¯E ds1
~1!
¯dsN

~n! )
j

d~n2sj
2!

3expFK(̂
i j &

(
n

s1
~n!s j

~n!G , ~C1!

whereAN
(n) ensures the correct normalization. Rewriting t

d constraints to the Fourier representation, one now ha
introduceN variables$t i%, arriving at

ZN
~n!~K !5AN

~n!21S K

2p i D
NE

2`

1`

¯E
2`

1`

ds1
~1!
¯dsN

~n!

3E
2 i`

1 i`

¯E
2 i`

1 i`

dt1¯dtN expS Kn(
i

t i D
3 )

n51

n

expF2K(
i

t is i
~n!2

1K(̂
i j &

s i
~n!s j

~n!G .
~C2!

Interchanging the order of integrations one is again left w
integrals of Gaussian type that are easily solved transform
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the spin variables orthogonally according tos i
(n)

5( jVi j uj
(n) . Note that the transformation is symmetric

the component indexn of the spins. The calculation is give
in more detail for the case of a one-dimensional chain bel
Here, we again consider the relation between two-point
four-point correlation functions. We take the two-point fun
tion to be

Ci j [
1

n
^si•sj&5^s i

~n!s j
~n!&, ~C3!

where the last equation for anyn51, . . . ,n follows from the
O(n) symmetry of the model in the unbroken, hig
temperature phase. Using the same arguments of Gau
integration as for the case of the spherical model, the fo
point function

Ci jkl [
1

n2 ^~si•sj !~sk•sl !& ~C4!

again decomposes in terms of the diagonal variablesyi
(n) as

Ci jkl 5
1

n2 (
r ,t,m,n

Vri Vr j VtkVtl^yr
~m!2

yt
~n!2

&

1
1

n2 (
r ,s,m

Vri Vs jVrkVsl^yr
~m!2

ys
~m!2

&

1
1

n2 (
r ,s,m

Vri Vs jVskVrl ^yr
~m!2

ys
~m!2

& . ~C5!

In the saddle-point limit, which now corresponds ton→`,
this expression factorizes in terms of two-point functions

Ci jkl 5Ci j Ckl1
1

n
CikCjl 1

1

n
Cil Cjk , ~C6!

so that the ‘‘mixed’’ terms are suppressed with 1/n. This
asymmetry results from the preset pairing of the spin co
ponent indicesm andn in the four-point function. As a con
sequence, the connected part of the energy-energy cor
tion function,

Cii 11 j j 112Cii 11
2 5

1

n
Ci j Ci 11 j 111

1

n
Ci j 11Cji 11 ,

~C7!

vanishes in the first-order saddle-point approximation. Th
any nonvanishing contributions that are to be expected f
our numerical results have to come from subleading term
the steepest-descent expansion. The correspondence o
n→` limit to the spherical model seems only to hold
leading order of the saddle-point approximation.

In the broken, low-temperature phase Eq.~C3! has to be
replaced by

Ci j 5
1

n
^si•sj&<max

n
^s i

~n!s j
~n!&[Ci j

max, ~C8!

so that the factorization property of the four-point functi
Eq. ~C6! becomes
.
d

ian
r-

s

-

la-

s,
m
in
the

Ci jkl <Ci j Ckl1
1

n
Cik

maxCjl
max1

1

n
Cil

maxCjk
max, ~C9!

and again the connected part of the energy-energy correla
function isO(1/n), vanishing in the first-order saddle-poin
limit.

For the case of an one-dimensional lattice the first-or
saddle-point approximation is exact as can be checked
explicit calculation. Consider an open chain ofO(n) spins.78

The partition function is given by the general expression E
~C1! with the nearest-neighbor sum(^ i j &si•sj replaced by
the one-dimensional expression( isi•si 11 . Following
Stanley,76 we factor out the integration over the last spinsN ,
which has the form

Z~n!~K !5
K

2p i E ¯E ds~1!
¯ds~n!E

2`

1`

du

3 expFuKS n2(
n

s~n!2D GexpFK(
n

cns~n!G ,
~C10!

where cn[sN21
(n) . Inserting the unity factor exp@Ka0(n

2(ns
(n)2)# and choosinga0 sufficiently large to exclude the

singularities, one has

Z~n!~K !5
K

2p i Es02 i`

s01 i`

dv evKn)
n
E ds~n!

3exp@2K~vs~n!2
2cns~n!!#, ~C11!

wherev[u1a0 . Square completion and a change of va
ablesw52v gives

Z~n!~K !5S 2p

K D n/2 K

4p i E2a02 i`

2a01 i`

dw

3expF1

2
nK~w11/w!Gw2n/2

5 1
2 K~2p/K !n/2I n/221~nK!, ~C12!

which is an integral representation of the modified Bes
function of the first kind. Thus, the spin integrations can
done successively, the full partition function being given

ZN
~n!~K !5@~nK/2!12n/2G~n/2!I n/221~nK!#N21,

~C13!

where theG function enters through the normalization fact

AN
(n)21

and the last integration, which corresponds
Z(n)(0). Considering the two-point function, an addition
factor si•sj , i , j , is inserted in the integrand of Eq.~C1!.
Again starting the integration with the last spinsN , the first
N2 j integrations are unaltered. The integration oversj
gives additional factors ofcn/2v from the Gaussian integra
tion Eq.~C12!, where nowcn[s j 21

(n) , so that one is left with

Z̃~n!~K !5
1

2
KS 2p

K D n/2

I n/2~nK!(
n

s i
~n!cn , ~C14!
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and the form of the integrand for the next integrations
unchanged. The integration oversi adds a factor ofn since
cn above becomess i

(n) and(ns i
(n)s i

(n)5n, followed by an-
other i 21 integrations of the partition-function type. Wit
u[u(nK)5I n/2(nK) and v[v(nK)5I n/221(nK) one ar-
rives at

1

n
^si•sj&5

vN211 i 2 juj 2 i

vN21 5~u/v ! j 2 i . ~C15!

From this it is straightforward to derive the form of the fou
point function by analogy:

1

n2 ^~si•sj !~sk•sl !&5vN2 lul 2kvk2 juj 2 iv i 21v12N

5~u/v !~ l 2k!1~ j 2 i !, ~C16!
a

swhere i , j ,k, l is understood. For the special case
energy-energy correlations one has

1

n2 ^~si•si 11!~sj•sj 11!&5~u/v !2, ~C17!

which does not depend on the distanceu j 2 i u. Hence the
connected energy-energy correlation function vanishes
actly even for finiten in one dimension. Then→` limit of
this expression, is given by

1

n2 ^~si•si 11!~sj•sj 11!&5
4K2

@11A11~2K !2#2
.

~C18!
v.

g

v.
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Muñoz Sudupe, Phys. Lett. B387, 125 ~1996!.
52M. Hasenbusch and T. To¨rök, J. Phys. A32, 6361~1999!.
53M. Hasenbusch and S. Meyer, Phys. Lett. B241, 238 ~1990!.
54A. P. Gottlob and M. Hasenbusch, Physica A201, 593 ~1993!.
55J. Adler, C. Holm, and W. Janke, Physica A201, 581 ~1993!.
56P. Peczak, A. M. Ferrenberg, and D. P. Landau, Phys. Rev. B43,

6087 ~1991!.



a

f.
dy-

PRB 62 6359MONTE CARLO STUDY OF THE SCALING OF . . .
57K. Chen, A. M. Ferrenberg, and D. P. Landau, Phys. Rev. B48,
3249 ~1993!.

58C. Holm and W. Janke, Phys. Rev. B48, 936 ~1993!.
59C. Holm and W. Janke, Phys. Lett. A173, 8 ~1993!.
60P. Reinicke, J. Phys. A20, 4501~1987!; 20, 5325~1987!.
61W. Janke, inComputational Physics, edited by K. H. Hoffmann

and M. Schreiber~Springer, Berlin, 1996!, p. 10.
62S. A. Antonenko and A. I. Sokolov, Phys. Rev. E51, 1894

~1995!.
63H. Kleinert, Phys. Rev. D60, 085 001~1999!.
64M. A. Yurishchev, Phys. Rev. B50, 13 533~1994!.
65M. A. Yurishchev, Phys. Rev. E55, 3915~1997!.
66H. E. Stanley, Phys. Rev.176, 718 ~1968!.
67M. Henkel, J. Phys. A21, L227 ~1988!.
68M. Henkel and R. A. Weston, J. Phys. A25, L207 ~1992!.
69S. Allen and R. K. Pathria, J. Phys. A26, 5173~1993!.
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