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Using an elaborate set of simulational tools and statistically optimized methods of data analysis, we inves-
tigate the scaling behavior of the correlation lengths of three-dimensional cla@gicglspin models. Con-
sidering three-dimensional slaBsx S'x R, the results over a wide range oindicate the validity of special
scaling relations involving universal amplitude ratios that are analogous to results of conformal field theory for
two-dimensional systems. A striking mismatch of the- extrapolation of these simulations against analyti-
cal calculations is traced back to a breakdown of the identification of this limit with the spherical model.

I. INTRODUCTION Two dimensions

) ) . A particular example of a scaling relation in two dimen-
The concept of scaling, the observation that singular obgjgns that can be derived assuming conformal invariance of
servables vary in a scale-free manner according t0 pPOW€kitical point entities concerns the two-point function in the
laws when the driving parameter of a transitiéemperature, |imit of L’ . It is generally sufficient to assume transla-
magnetic field, etg.is tuned towards a critical point, has {jonal, rotational, dilatational, and inversional invariance to
since the first observations been a key ingredient of the,ammy conformal invariancé! homogeneity, isotropy, and
theory of critical phenoment’: Exploiting the symmetry of  gcaie invariance alone suffice to uniquely fix the critical,

scale invariance, forming the geometrical basis for the,nnected two-point function of an operatiin the infinite
power-law behavior in the vicinity of a critical point, through plane up to an overall normalization factor:

the idea of real-space renormalization, scaling theory can be

mapped on the behavior of finite systems near the transition 2 TV(20 )= (21— 2.) X7 —Z5) X 2
point of the bulk system in the limit of diverging system ($(202)4(22.22))c= (217 2) HZ=2) % ()
sizes, the thermodynamic limit. Thiinite-size scaling™®  \here z,,z, are complex coordinates parametrizing the
(FSS occurs with scaling exponents generically linked to thepjane. Then, one uses the logarithmic map

exponents that govern scaling in the bulk system. Thus the

apparent weakness of finite system size that hampers simu-

lational approaches actually turns out to be their intrinsic w=2—ln z, ze( (€]
strength, when exploring FSS means exploring thermal g
scaling®”’

N : . to wrap the complex plane around an infinite length cylinder
The significance of scaling theory for the understandin 1% R of circumferencelL with coordinatesw=u+iv,

of critical phenomena becomes quite exposed in the contexti arer measures the polar angle alo8§andu the longi-

of tcon;gorlm?:] field theofry (ClF-.?. fotrh twc()j-(;j_{menls[onall tudinal direction alongR. Assuming conformally covariant
system f n fe colurse 0 pr orting b? a; ! ICI)'??h '”V?‘tT" Itransformation behavior of th@rimary) operatore, one ar-
ances ot conlormal Symmetry one IS abié 1o Splitthe critical;yag gt gn expression for the two-point function on the
point partition function of a lattice system into a sum Overcylinderlz
contributions from all the scaling variables present in a spe- |
cific model. Consider a critical system onlLaxL’ lattice 2 |z2,25] \*

) . Lo o . _ _ 1Z
with toroidal boundary conditions; then the partition function <¢(W1,W1)¢(W2-Wz)>c:( ) (m)

T 2Xx
(2]
2
-2 cosT(vl—vz)
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wherec is the central charge of the considered thedrhe . - .
bulk free energy per unit volumé=L'/L, A=LL’, and the In the limit of large longitudinal dlstancdal_— u,|>L and
sum runs over the whole content of scaling operators wittf1=V2, One is left with a purely exponential drop with a
dimensionsx, . Thus, the knowledge of the operator contentCOrrelation length

of a theory in connection with the corresponding scaling di-

mensions is equivalent to an “exact” solution of the model £= L
on finite lattices. " 2mx
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Thus, utilization of conformal invariance yields a finite-size boundary corresponds to the insertion of a searantifer-
scaling relatiorincluding the amplitudewhich is in contrast romagneticbonds along this boundary line. This calculation
to renormalization-group theory that usually gives the scalyields®?

ing exponents and only certain amplitude ratios, but not the

amplitudes themselves. Since this result emerges from a 4 1

field-theoretic description of statistical mechanics that does So=3-L f=p-L ®)
not take into account the microscopical details of the system,

it is expected to beniversal'® Note, however, that this pro- again in good agreement with Monte Carlo ditaNote
posed universality goes beyond the usual notion of & univerp gy ever, that this last relation, in contrast to ), is spe-

sal quantity and comprises three different aspe@isthe cific to the Ising modebnd the special choice of the densi-
correlation length of a given operator should be the samggg of magnetization and energy as operators and thus is not
W|th|_n the a;souated universality class of modéiig; when “hyperuniversal” in the sense of propertiéis) and iii ) pre-
looking at different operators, on the other hand, the form of.ieq above.

Eq. (5)_shoulq be left unchanged, all operato_r-depganq§nt - The amplitude-exponent relation Eq5) for two-
formation being condensed in the scaling dimensipfiii)  4imensional systems has been checked analytically or nu-
finally, even when looking at models dffferentu_mvergahty ._merically and found valid for an impressive series of further
classes, all that should change are the scaling dimensiong,qes Jike the Potts model and its percolation litfithe
(and the definition of¢), the validity of Eq.(5) being un- vy model?? the symmetric eight-vertex modHl, and

t_ouched. 'Propertﬁ) implies the “hyperqniversality” rela- quantum-spin model$ to name only the most prominent.
tion of Privman and Fishéf: In the following, we will refer

to the whole extent of aspects—(iii) exceeding the usual
notion of universality with the term “hyperuniversal.” A Three dimensions
corollary that is of importance for transfer matrix calcula-  On leaving the domain of two-dimensional systems to-
tions that use an un-normalizéduantum Hamiltonian re-  \ards higher dimensions, the wealth of exact field theoretic
sults from taking the ratio of the correlation lengths of two calculations is instantly reduced to severe scarcity. The con-
primary operators, for example, the densities of magnetizaformal group coincides with the set of holomorphic functions
tion and energy which are usually primary for spin models:in the special case of spatial dimensidrs2 and is thus
infinite-dimensional as a group. Foe=3, unfortunately, it
&Z Xe ©6) reduces to a simple Lie group with dimensidh<(d
Eo Xy +1)(d+2)/2 for any Riemannian connected manifold. As a
] ~consequence, only in two dimensions the postulate of con-
Because of the independence from the overall amplitudgsymal invariance is restrictive enough for a classification of
1/(2m) of Eq. (5) this relation might still stay valid when the operator contents of the different universality classes and
changing the geometry in a way such that only this overalihys an exact solution of the critical theories within the limits
amplitude is altered. In terms of universality this constitutesyy field-theory assumptions. Fd=3, on the other hand, the
a weaker form of the aspe@t above, namely, universality impjications of the finite-dimensional conformal-group sym-
of amplitude ratios instead of amplitudes themselves; we W'Wnetry reach hardly beyond the consequences of plain
refer to this weaker property as')iin the following. _renormalization-group theory exploiting dilatational invari-
A suitable test bed for these general field-theory results isynce. However, since inversional symmetry is still present, a
of course, given by the exactly solvable two-dimensionalansformation like Eq(3) stays conformal in higher dimen-
Ising model. Using Eq(5) and the generic relations between sions, now connecting the spadeé$and S~ *x R. Applied
scaling dimensions and the conventional critical exponentsiy the two-point function one arrives at a scaling relation
analogous to Eq(5), namely, §,=R/x, cf. Ref. 24, which
B 1-a @) contains thed=2 result as a special case assuming
v v =27R, R being the radius 08"~ . Since primarity of op-

. N . ) ) erators isa priori not well defined ford=3, it is, however,
giving x,=3 and x.=1 for the two-dimensional Ising ynclear for which operators this relation should hold. A nu-
model, one arrives at a ratiq/x,= 8. A direct evaluation of  merical analysis for this geometry, which has to cope with
the spin-spin correlation length in the Onsager-Kaufmanne fact thatS'~* for d=3 is a truly curved space and thus
framework gives, as the leading term in the scaling seriesyarq to regularize by discrete lattices, will be presented in a
¢,=4L/m=L/(2mg), in agreement with the CFT separate publicatiofr.
result’®1" The same holds true for the leading scaling am- On the other hand, the toroidal geomet®yx---x St
plitude of the energy-energy correlation functidn,é, X R, which is much more convenient for numerical simula-
=L/27. Both amplitudes have also been evaluated numeritions, is not conformally flat and thus no CFT predictions
cally to high precision in a Monte CarlMC) study® re-  exist for this case. In spite of this theoretically unfavorable
sulting in perfect agreement with E(p). situation a transfer matrix calculation for the Hamiltonian

A possible alteration of theS'XR situation, namely, limit of the three-dimensional Ising model on the geometry
changing the boundary conditions along tB& direction S'XS'XR=T2?xR by Henkef®~?® rendered results still
from periodic toantiperiodic has also been treated within comparable to the situation for tH& xR geometry. For
the CFT framework, exploiting the fact that in the case of thethe ratios of leading scaling amplitudes of correlation lengths
ferromagnetic nearest-neighbor Ising model the antiperiodifor different boundary conditiongbc) he found




PRB 62 MONTE CARLO STUDY OF THE SCALING @ . .. 6345

TABLE I. Literature estimates for the critical exponemtandy  versality presented above. The type of the model considered

of the three-dimensional Ising model. enters not only via a variation of the scaling dimensions, but
also influences the overall prefactor of Ef). Section VI is
Method v b devoted to the discussion of the relation of our fimtee-
. ; sults to the spherical model, which is connected to the limit
g expansion(Ref. 3] 0.630413) 1.239613) n—o of the class of0(n) spin models. The classic identi-
€ expansion(Ref. 31 0.630%25) 1.238 50) fication of both models seems to break down as soon as
Series(Ref. 32 0.63158) 1.238810) (multipoint) correlation functions are considered. Section VIl
Series(Ref. 33 0.630 0223) 1.237 14) contains our conclusions.
MC (Ref. 39 0.628 98) 1.239(7)
MC (Ref. 35 0.630 18) 1.237(2) Il. MODELS AND SIMULATION
MC (Ref. 36 0.630 36) 1.237213 Throughout this paper we consider classical, ferromag-
MC (Ref. 37 0.629 85) 1.236 85) netic, zero-field, nearest-neighbo®(n) symmetric spin-
Weighted mean 0.630 0B9) 1.2371728) models with Hamiltonian
) 3.627) for periodic bc 9
§olée= 2.764) for antiperiodic bc. ©® H=—J<2> o0, oS (11)
ij
A comparison with thginverse ratio of the corresponding The underlying lattice is taken to be simple cubic with di-
scaling dimensions, mensions., XL, XL,. Special cases of this class of models
include the Ising §=1), XY (n=2), and Heisenbergn(
(1-a)lv 2(vd—1) =3) models. This Hamiltonian has the advantage of repre-
XelXo= By vd—y =2.726413), (100  senting a whole class of models with critical points in three

dimensions, tuned by the single parameateAccording to
[cf. Table | and Eq(7)] showed that even though the original the T>< R geometry we set,=L, and apply periodicor
expectation to possibly find agreement in the case of periodigntiperiodic boundary conditions in tixeandy directions. In
boundary conditions as in the two-dimensional case was ndtoth cases we use periodic boundary conditions inztte
met, the data are consistent with the relatinfor the un- ~ rection to eliminate surface effects that are also absent_ln the
orthodox case ofntiperiodicboundary conditions. Note that Lz— case assumed in E¢4). To reduce effects of finite
one has to comparetios in this case, because the quantumSiZ€ in thez direction one has to ensure tHag> ¢, ; a con-
Hamiltonian used in the calculation is defined only up to anCréte rule will be given below. .
overall normalization constant. This result is in qualitative N View of the problem of critical slowing down, we use
agreement with a Metropolis MC simulation by Westgn, the Wolff single cluster update algoritfifnfor all O(n)
R i o a7 ot proa om0 oy 7o0e Sltor, ot 30 e gaptn of i e
?hnetlspeens?ﬂ;finzolj)rg(iaerr{/aiic:)mdsltl3n2égransgei(r:1tt|(\a/re£'tir?gontcsnld(?rrmgc long the torus directions is straightforward if one exploits

hether this behavior is i incid il § e above-mentioned equivalence of an antiperiodic bound-
whether this behavior Is just a coincidence or special featurg,y 1, the insertion of a seam of antiferromagnetic bonds

of the Ising model or instead indicates a general property Objong the boundary line for the case of nearest-neighbor in-

critical models on this special three-dimensional geometry. teractions. Considering the Ising model or, alternatively, em-
The rest of the paper is organized as follows. In Sec. Il Weyeqded Ising spins fan>1 models®® this means that adja-

introduce the general class of models we want to examingent spins interacting antiferromagnetically are connected

and present the way we are going to discretize the threeyith a bond obeying the Swendsen-Wang probabitity 1

dimensional geometry?x R. We discuss simulation meth- —exp(—24J) in the case obppositeorientation and are left

ods, observables, estimators for measurement, and parammbonded in the case of identical orientation. This rule ex-

eters of the simulations. In Sec. lll we outline the statisticalactly reflects the change in energy compared to the ferromag-

tools used for the data analysis. It is quite hard to extrachetic case and thus trivially satisfies the detailed balance.

high-precision information about correlation lengths from The main observables of our simulations are the con-

MC simulation data; we will thus discuss the special path ofnected correlation functions of the densities of magnetization

data analysis we are going to proceed along and present dand energy:

tails of the statistical tools used there. This tool set is “cali- GC(xX1,%0) = ((Xy) - F(Xo)) — () - (@)

brated” with simulations of thetwo-dimensionallsing AN ! 2 ’

model, where exact results for comparison are available. In G(X1,Xz) = { €(X1) €(Xo)) — (€} €). (12)

Sec. IV we discuss the results for the correlation lengths ) )

ratios of our simulations for the IsingY, and(generalizedl We; define the energy d_enS|ty as a local sum over the nearest

Heisenberg models. Our results, already briefly announced iféighborhoodk’ of a spinx (x" nn x):

Ref. 30, confirm Henkel's findings on a high level of accu- J

racy. Furthermore this behavior seems to carry through for e(X)=— > o(X)-o(x"), (13

the whole class ofO(n) spin models and is thus far from x' nnx

being a “numerical accident.” In Sec. V we try to rank our the factor; ensuring thaE=3,e(x). It is straightforward to

numerical findings in the context of the classification of uni-construct a bias-reduced estimator for the case(x#
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(b)

FIG. 1. Typical spin configurations for the two-dimensional Ising model on strips of sixe20. (a) Periodic boundary conditiongh)
antiperiodic boundary conditions. Note that the visible geometric clusters differ from the stochastic clusters of the cluster update algorithm.

—x1)llez, corresponding to the correlation lengfks ¢, : portionally to L,. Simulations for the case of thavo-
first, taking advantage of the translation invariance of thedimensionallsing model show that these finite-size effects
systems along the axis established by a periodic boundary, are negligible compared to the statistical errors lQr ¢
one can average over the “layers’=|z,—z;|=const. To =10 and lengths of time series of about 5100

improve on that consider a “zero-mode projectiof®i.e., MeasurementS. Adding a safety margin the longitudinal
define layered variables system sizes for the simulations in three dimensions where

chosen such thdt,/¢~15, the scaling amplitudé being

_ 1 estimated from a simulation of an “oversized” system.

QD=1 > O(x), (14 Since¢,> ¢, for all models under consideration, the ampli-
Y2 =z tude A, of the spin-spin correlation length scaling is signifi-

where,= o or ¢, denotes the times series of MC measure-cant for the satisfaction of this condition. Note that from Eqg.
ments, and consider the estimator (15) increasing-, also has the positive side effect of improv-

ing the statistics of the correlation function estimation.
R 171 _ _ In order to judge the efficiency of the used cluster update
Gg'(i)= ftZl 0 2‘ - O(z1) Oy(27) algorithm and to ensure reasonable usage of computer time,
= z|zo—z4|=i

we evaluated integrated autocorrelation timgs, using a

1 T 2 binning techniqué! The strong asymmetry of the model lat-
> (’)t(z)) , (15)  tices reduces the average size of clusters and thus Wolff's
TL =177 cluster update algorithm does not perform as good as on

whereT denotes the length of the MC time series. This esti-nypercubic lattices, resultinq in increased autocorrelation
mator obviously does not directly meas@é', but inspect- times. Since measurements @f'' are computationally ex-
ing the continuum form Eq(4) reveals that the deviation pensive compared to update steps, but the statistical gain
stemming from transversal cross correlations entering the eyanishes with increasing,,, measurements were done with
timator declines exponentially with increasing longitudinal frequencies of about %/;. Approaching the Ilow-
distancei and thus becomes irrelevant for the long-distancgemperature phase, antiperiodic boundary conditions in the
behavior we are interested in. Numerical investigations contorus directions produce a spatially stable boundary of the
firm that these considerations stay correct when passing t@eometric clusters along the antiferromagnetic seam, which
three dimension¥’ In the large-distance regime zero-modein turn enforces a second boundary along theirection.
projection reduces the variance of correlation function esti-This results in a further reduction of the average cluster size
mates by a factor inversely proportional to the layer volumecompared to the periodic boundary case. Figure 1 shows
LXL¥. Note that the given estimator for the disconnected partypical configurations for the case of tiievo-dimensional
(0)* has a bias that vanishes a3 i the largeT limit. Ising model.

As mentioned above, periodic boundary conditions in the
z direction eliminate surface effects associated with this di- IIl. DATA ANALYSIS

rection, but still effects of finite, will trigger deviations Having sampled correlation functions according to Eg.
from the Lzﬂoo_ limit a_ss_umed_in Eq.(_5). Inspecting the (15 and assuming the functional formG®!(i)
form of Eq. (4) in the limit of distances > &, one expects —aexp(-i/g)+b, we refrain from using intrinsically un-
longitudinal correlations according to stable nonlinear three-parameter fits and resort to the follow-

GC,H(i)xefi/gl\—l—e*(l—z’i)/fu’ (16) Ing estimator instead:

i.e., the exponential decay is superimposed by an exponen- A G5'(i)-G&'(i—A)

tially increasing part. Thus, using too small values Lof €o(i)=AlIn acll 2l ' (17)
results in an effective underestimation of correlation lengths. Go(i+4)=Gg(1)

In order to satisfyL,> ¢, in a systematic way, i.e., to keep which eliminates the additive and multiplicative constaats
this effect away from the region of clear signal for measuringand b above. Note that it is not allowed to assuime O a

the correlation lengths, and assuming linear scaling of correpriori for time series of finite length, cf. Ref. 30. Apart from
lation lengths according t&,=AL,, one has to keep the stability considerations this approach allows for computa-
ratioL,/& =L,/AL, fixed and therefore has to scdle pro-  tional simplifications, since correlation functions can be
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K i E A S S I I p— this problem is the use of the Gaussian error propagation
| o A=1(leftscale) | formula, which, however, only uses a lowest-order Taylor
. series approximation to the functions and assumes Gaussian
o A=15 (right scale) NN . . .
30+ —35 distribution of the mean values, i.e., long enough time series

for all observables. A far more general ansatz is given by
resampling techniques such as the “jackknifé’that apply
. §§H }%} { {_ 0 to a quite general set of probability distributions and capture
”da“.d"u"“’m Q‘iﬁﬁiﬁégﬁiﬁ 3 H}ﬁ}{ function nonlinearities exactly. The jackknife variance and
{' bias estimators mimic the brute force error estimation
I os method of comparingk completely independent MC time
. o series of length3’ and applying the naive estimates: remov-
e ¢ 1 ing single elementgi.e., bing of a single time series of
N length T’ one by one results if’ time series of lengti’’
o 10 20 30 40 50 60 70 20 -1, e.g., for the correlation function estimates,

gD
T

~ . 1 A
FIG. 2. Correlation length estimates according to B) and Gg(i)= mE Gy(i), (18)
O= o for a 30X 382 Ising system with periodic boundary condi- t7s

tions for two choices of the typical distande The plateau regimes  resulting in jackknife-block estimates for the correlation
collapse if both ordinates are scaled identically. length of

-1

tion of the disconnected paf)? can be dropped. In addi- Eg(1)=A] In— ~
tion, Eq.(17) simplifies the distinction of the long-distance Gg)(i +A) = Gg(i)

part of the correlation function from the short-distance re- (19
gion: as the explicit two-dimensional expression E.im- - o1 E .

plies, exponential decay will only occur asymptotically, but &)= T 4 §o(1)-

with deviations decaying themselves exponentially; apart ) ) ) ) o

from that, lattice artifacts that are not reflected in the con-Then the jackknife estimate of variance is given by
tinuum expression Eq(4) additionally distort the short- ) T
distance behavior. Figure 2 shows an example plot of the m(%(i)): T-1 2 [Zo()— ()2 (20)
spin-spin correlation length estimatéfg(i) for the Ising T & ) '
model. The transition from. the short-distance region thal‘NOte the missing factor of 117 — 1) as compared to the
should not be used for the final estimate to the purely €XP9%sual variance estimate that accounts for the trivial correla-

nential long-distance behavior is clearly visible. The param-. L ; :
eterA in Eq. (17) can be used to tune the signal-noise ratiolion between th&” jackknife-block estimates. One can show

for the correlation-length estimate; increasihgliramatically that this estimator, apart from the reweighting prefacior (

L A i —1)/T', is strictly conservative, i.e., deviations from the
reduces the apparent statistical fluctuation&(in), cf. Fig. 2. e variance are always positi¢&Similarly, the resampling
Note, however, that the reduction of variances for individual

. o . ) scheme provides an estimate for the bias of estimators,
distanced is accompanied by an increase of cross correlas

. : . . namely,
tions between estimates for adjacent estimates, so that the
error of anaverageover a region of distances becomes mini- RIAGr 2 NT— (T AN E (i\_ 2
mal for a valueA clearly below its allowed maximum. As a BIASLE(D]=(T"= DL (1)=&, @)
compromise, we usd~2¢, for both estimators:,(i) and and thus offers a bias corrected correlation length estimate as
2.(3i). E()=T'&(i)—(T'~1)§(,(i). Since in nonpathological
Naive estimates for the statistical errofgariances of  Cases the bias of an estimator vanishes with increasing length
complex, nonlinear combinations of observable measuredf the time series, the jackknife bias estimate provides a
ments like the estimator EL7) are extremely biased due to 900d check for whether the considered series are long
two effects: even for quite sparse measurements with fre€nough to neglect bias. A jackknife error estimate for these
quencies around %/, successive elements of the time seriesPias-corrected estimators is possible iterating the jackknife
are still correlated, generically leading to systematic underfesampling scheme to second orffer.
estimation of variances. This effect is being eliminated by Since Eq.(17) gives a vector of estimators for the corre-
the grouping together of measurements to subaverages Bition length instead of only a single one, an Jmproved final
length » (“binning” ),** which leads to an asymptotically estimate can be achieved by an average ovegthe How-
uncorrelated time series of lengii=T/u used in the fur- ever, as, for example, Fig. 2 reveals, only a certain range of
ther process of error estimation. For the production-run timedistances =i, - . . ,imax iS suited for this purpose, where
series the bin size was chosen to regularly include severdhe lower bound ,;, results mainly from small-distance de-
thousand measurements, which is far in the asymptotical redations as reflected by Ed@4), whereas the large distance
gime. Second, the strong nonlinearity of estimators like Eqboundi,, cuts off the region where the signal of exponen-
(17) forbids the use of the usual formula for the standardtial fall-off drops below the size of statistical fluctuations, so
deviation of a set of measurements. A common solution tdhat error estimates become inaccurate and eventually the

sampled irrespective of normalization and the biased estima- é‘(s)(i)_é(s)(i —A)
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30— —— T —— — ——] antiperiodic bc
: ] 3.0+ T
251 @ = ¢ simulation ]
20F . b 1
N o 1 2.0 J
151 T
L o - &51'5__ 3 ]
T ——— - :
L ] 1.0_— _
05F ] E
5 0.5F .
[ [ e
pol— L 11 1 I 1
40 60 80 100 120 140 00-. Loy by b e b e ey 1
i T s 10 15 20 25 30
L

30p———— 7 7 T 1T T T T 1T T T T T ] *
» FIG. 4. Finite-size scaling of the energy-energy correlation

2.5 ® . length of the three-dimensional Ising model with antiperiodic
b boundary conditions. The other scaling plots look similar; we show
20F . the worst case. The fit was done to the functional form @@).
S50 3 The fact that, considering E¢22), variance and covariance
=1 ] estimates directly influence the final results for the correla-
TOE  eorrrrsssrenams ] tion lengths, gave the motivation for the quite careful statis-
[ et ] tical treatment presented above.
0.53_ ] Finally, the selection of the regime=i ., - . - ,imax CaN,
r PR besides the obvious eyeball method, also be done in a way
0.03, ] based on statistical criteria. Interpreting the average over the

(i) as afit of the estimated:(i) values to the trivial func-
tion f(&) =E= const, the systematic deviations from the pla-
FIG. 3. Sections of§2/g(imn.ima fOr the spin correlation teau regime for very small and very large distancskould
length of an Ising system@ {%2/glimn=25); (b) {¥¥glin D€ Clearly reflected in quality-of-fit parameters. Thus, look-

=110. The “wavy” structure results fromd =4 in Eq. (17). ing at they? distribution,

estimator Eq(17) becomes maldefined due to negative argu- i max _ _

ments of the logarithm. Conventionally, averaging over the 2= 2 [&(i)—g](f*l)”[g(j)—g], (24)
estimatesZ(i) for i=imin, .. ..imax Would be done with H 1= min

weights ;> 1/¢?[ £(i)] that minimize the theoretical vari- Will be a good criterion for judging the “flatness” of the
ance of the mean value. This prescription, however, neglectglateau regimey,,, . . . Jimaxincluded in the average. Again,

correlations between the individual estimates. Note that crosgs an estimator’; j for the covariance matrix one can use the

correlations between adjacent estimagé§ are quite large, jackknife expression CORR Then finding the optimal re-
not only because large-scale fluctuations of the c_orrelatlogion of distances for the average is equivalent to the optimi-
functions are dominant, but also since the used estimator E¢+ion problem|¥%/g—1|—min, With g=1 na—imn=p—1

1 max min

(17) explicitly introduces such correlations increasing in yenqting the number of degrees of freedom of the fit. How-
range with increasing. As a simple variational calculation ever, this ansatz of optimization bears some uncertainties:

shows, for the case of correlated variables to be averaged. .’ . . : 2
over, one has to choose the weights according to r%m.lmlzmg the d.|stance ok /.g froAm. 1 suppose§ that.the
. optimal choice includes estimategi) whose dispersion
a :L)ik (22) around¢ is exactly reflected by the estimated variances. In
KR TThy view of the jackknife’s tendency to overestimate errors it

in order to minimize the variance of the mean value. HereMight be more favorable to minimizlé(2/g| itself. Further-
T'eRpxp, P=imam—imnt1, denotes the covariance matrix MOre, considering the statistical nature of the data, the abso-

A i 20N 22 ;
of the &(i). T itself can be estimated within the jackknife 'Ute minimum of| ¥*/g—1| or |y*/g| sometimes happens to
resamoli be an isolated fluctuation, far apart from the bulk of next-to-

pling scheme as ; . . ) IR

optimal solutions. Finally, this optimization procedure tends

mjzﬁgg(i),g(j)) to result in minimal values for very small regime sizgs
since the fit becomes trivial for very small numbers of
T -1 T . . . ~ points; this, however, conflicts with another possible goal of
= ?321 [£) (1)=& [Es(1) =& )()]. optimization, namely, the minimization of the overall vari-

ance of the final result. To circumvent these problems we
(23 resort to considering the whole two-dimensional distribution
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FIG. 5. Scaling of the amplitudes,,. /L, for the Ising model. The solid lines show fits to the function E2{9); (a) and (b) show
correlation lengths for the systems with periodic boundary conditimsnd (d) for the case of an antiperiodic boundatl) additionally
contains bias corrected estimates according to(ZH.

%%19(i minsima)- It is characterized by a rather flat plateau to Eq.(6). We report the results of simulations for tgn)
regime for intermediate values of;, and i, and steep spin models fom=1, 2, 3, and 10.

increases at the boundaries, cf. Fig. 3. A good recipe for the

determination of bounds is then given by first choosing a

preliminaryi ,, well above the steep ascent for smialhen Ising model

a plot like Fig. 3a) allows us to determine the upper bound  gjmjations of the Ising model were done at an inverse

| ma. Finally, a plot of{ ¥%/g]imac=cons} determines the fi- temperature given by a high-precision MC estimate of the
nal lower bound iy, cf. Fig. 3b). , . pulk critcal coupling in three dimensiofd$, B,

To test the methods of data analysis described in this sec- 554 654 (3). We use demperature reweighting tech-
tion we performed s]mulatlons of thwq-dmensmnalsmg nique to check for the influence of the uncertainty@&fon
model. Using a series of systems with=5,...,20 and 4 fina) resultd>6 We find it completely negligible com-
finite-size scaling fits including an effective higher-order cor-pareq 1o the statistical errors for the case of the Ising model.
rection term of the forng(L,) =AL,+BL;, we find for the 14 enaple a proper FSS analysis including subleading terms
leading correlation lengths scaling amplitudgg, final es- e performed simulations for transverse system sizgs
timates for the case of periodic boundary conditionsAgf  —4 5 20 25 and 3@calingL, accordingly. Adapting
=1.27374(81) and\.=0.1583(17), in excellent agreement he frequency of measurements to the autocorrelation times,
with the exact resultsA,=4/m~1.27324 andA.=1/2m  apout 2<10f and 8x 10F nearly independent measurements
~0.15915, cf. Eq(5). For the case of antiperiodic boundary were recorded for the systems with periodic and with antipe-
conditions  we arrive at A,=0.42410(30) and A riodic boundary conditions, respectively. Collecting the final

jgg;iiiBSzA Eolr}llpaieg Ot7% 508FTf résulsts 8i,=4f3m estimates¢ for the correlation lengths one ends up with a
e an@e=/am=10. . of. Eq(8). scaling plot like that shown in Fig. 4. The scaling behavior is

quite linear; however, as plots of the amplitudék, reveal,

corrections to the purely linear scaling behavior are clearly
Let us now turn to the three-dimensional geometryresolvable, cf. Fig. 5. As an aside, Fig(bb additionally

T2x R and the determination of amplitude ratios accordingshows jackknife-bias-corrected estimators according to Eq.

IV. RESULTS: AMPLITUDE RATIOS
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TABLE II. Literature estimates for the inverse critical temperatdgeand the critical exponentsand y
of the three-dimensiona{Y (n=2) and Heisenber¢n=3) models.

n Method Be v y

2 € expansionRef. 31 0.668 035) 1.311 G70
Series(Ref. 32 0.454193) 0.677(3) 1.327(4)
Series(Ref. 47 0.671 6655) 1.317 911
Series(Ref. 48 0.454 065)
Series(Ref. 49 0.454 2(@6)
MC (Ref. 50 0.454 21) 0.6702) 1.3192)
MC (Ref. 5)) 0.454 16%4) 0.672(1) 1.3163)
MC (Ref. 52 0.672 311) 1.319G22)
MC (Ref. 53 0.454 218)
MC (Ref. 54 0.454170Q7)
Weighted mean 0.454163) 0.6717942) 1.318 3982

3 e-expansionRef. 31 0.704 555) 1.382 @90)
Series(Ref. 55 0.69291) 0.712(10 1.400(10)
Series(Ref. 32 0.693 0%4) 0.7162) 1.406(3)
MC (Ref. 56 0.692 91) 0.706(9) 1.390(23)
MC (Ref. 57 0.693 03%37) 0.703 623) 1.389 §70)
MC (Refs. 58 and 59 0.693 Q1) 0.704(6) 1.389(14)
MC (Ref. 5 0.693 00212 0.712 814) 1.399(2)
Weighted mean 0.693 (D) 0.711 2998) 1.399 §16)

(21); for the given length of time series bias effects of ourcorrection term is unchanged in three dimensions for the sys-

estimator Eq(17) can clearly be neglected. tems with periodic boundary conditions, whereas it is re-
Returning to the two-dimensional case for a moment, it isversed for the systems with antiperiodic boundary. This stays

easy to see the source for the leading correction term in thigue for the otherO(n) spin models discussed below. To

correlation length scaling. In the framework of conformal account for corrections to scaling we fit the correlation

field theory the effect of lattice discretization as well as thelengths data to the functional form

influence of nonlinearity of scaling fields that increase with

the distance from criticality(i.e., the thermodynamic limit in §(Ly) =AL,+BLy, (27

our casg can be included in considerations using Conformaltreating the correction exponertas an additional fit param-

perturbation theory® A formal perturbation expression for eter. Due to the presence of higher-order corrections, how-

the spin-spin correlation length including the effect of a Perever, the resulting values af have to be taken as effective

turbing operator coupled with strengty is to first order  gyhonents, which will in general differ from Wegner’s cor-

given by rection exponent. Therefore, we decided to keepas a

parameter, despite of existing field-theory estimatesofaf.

(25) Ref. 1. We take into account the effect of neglecting higher-

order correction terms by successively dropping points from

the smallL, end while monitoring the quality-of-fit param-

etersy?/g or Q to find a compromise between fit stability

_, 27 2| X2
&, =T X+ 2may(Cqx1 — Coxo) T

where the perturbing operator has dimensk@rand the co-
efficients C,,,, result from the operator product expansion - . . .
nkn P P P and precision of the final amplitudés The range of sizeks,

(OPB. One find&° that to lowest order the only nonvanish- dis indicated by th f the solid lines in i
ing amplitude belongs to an operator that corresponds to thigsed Is Indicate yt €range o the sol Jnes in F'g'.5' qu
results for the scaling amplitudes and their ratios as listed in

breaking of rotational symmetry by the square lattice as com: ) ) : . .
pared to the continuum solution. It has dimensiqe-4 Table Il and the ratio of scaling dimensions according to Eqg.

leading to 1L? corrections, in agreement with the first-order (10) show prec_ise. agreement in thg.sense of (B for t_he
; fi- case of antiperiodic boundary conditions and clear mismatch
expansion of the exact resuft: - SR .
for a periodic boundary. This is in agreement with the results
. oml1 1 (242 of Henkef” and Westorf? but at a level of accuracy that
& (L)= T{§—2wE<T) } (26) makes a casual coincidence very unlikely.
A similar effect will be present in the three-dimensional XY model
systems, but the correction exponent can no longer be evalu- The XY model is, as well as the Heisenberg models, ac-
ated analytically. Figure 5 shows that thign of the leading  cessible to cluster update methods using the embedded clus-
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periodic bc TABLE lll. FSS amplitudes of the correlation lengths ©fn)
077 e spin models on th&2x R geometry.
076 - ETEXAB Model Periodic bc Antiperiodic bc
_____ e ] A,  0.818332 0.236 9480)
075k - S A, 0.223216) 0.086 6131)
oy - Ising A, /A, 3.666(30) 2.736(13)
s X X, 2.726 413
074
A,  0.7540959) 0.241 1357)
o7l A, 01899415 0.082 313)
XY AIA, 3.971(32) 2.93047)
X, /X, 2.913639)
0.72|||“‘I||“I||“I||‘|I||||I
S 10 15 . 2 % 30 A, 07206834 0.244 6251)
* A, 0.169 6636) 0.079 320
FIG. 6. Amplitude scaling of the spin-spin correlation length of Heisenberg A, /A, 4.247 8§92) 3.08%78)
the XY model with periodic boundary conditions. The spread curves XXy 3.089 179
show refults of tempera_ture reweighting fe_ng,8=0.454 164, A, 0.67110759) 0.258 6546)
B.+AB=0.454170,8,,,,=0.454 06, and3,,=0.454 21. A 0.135 423) 0.070 96107
ter representatiot, which we made use of. The simulations n=10 A, lA, 4.971(83 3.645(55)
were performed at the coupling,=0.454 1673), which is XXy 3.615(70)

an average of recent literature estimates, cf. Table Il. Using
the same transverse system sitgs=L, as for the Ising i i ) ) -
model, but adjusting the lengths according to the different u_se_d for the simulations and comparison. W!th sta}tlstlcs
correlation length amplitudes, we took betweer I0° and S|m|I.ar to tha_lt fgr then=1 andn=2 cases, the simulations
16x 1P measurements, using measurement frequencie%onf”m t.he findings of the Ising andY models, cf. Table llI _
around 1#;, as above. Figure 6 shows the amplitude scaling{Or details. For the case of the energy-energy correlation
plot of the spin-spin correlation length for periodic boundary!€ngth of the systems with periodic boundary conditions the
conditions. The additional curves are results of a temperaturg@thered statistics did not suffice for a stable nonlinear fit
reweighting analysis, trying to judge the effect of critical Including corrections according to Eq7). We thus per-
coupling uncertainties. The precision of the data is well il-formed a simple linear fit dropping the correction term. This,
lustrated by the fact that, reweighting our results to the mininowever, results in an error estimate thgt is not quite reallstlc
mum and maximum estimated critical couplings, respec-and- furthermor_e, induces a systematic L!nderestlmat|on of
tively, cited in Table II, results in a variation of the scaling the amplitude since one expeds<0, cf. Fig. 3b). From
curves far beyond the range covered by the remaining statidhe results of the othgr models this effect is estimated to be
tical errors. Nevertheless, reweighting to the-range in- aPout =3¢ in magnitude.
verse temperature8.—AB and B.+AB as given above
triggers deviations at most comparable to the error estimates O(10) model
of the statistical analysis. The intermediate maximum of the T, gain additional evidence and in order to facilitate con-
curve for B, however, might be an artifact indicating that gigerations concerning the—c limit, giving a clear picture
Bmin is already too far away from the simulation temperaturegs systematic dependencies on the parametewe also
to allow for reliable reweighting. The effect of temperature gjmylated then= 10 generalized Heisenberg model. Since, of
variation is generally observed to be smaller for the antipe¢qyrse, in the past much less effort has gone into the inves-
riodic boundary systems; fu_rthermore,_ it is more i_mporta”ttigation of theO(n) model withn>4, there are quite few
for the case of the spin-spin correlation length since hergstimates of the critical coupling. We thus, here, use a single
statistical errors are clearly smaller than for the energynigh-temperature series estimate &f=2.427 928).32 The
energy correlation length estimates. Thus, Fig. 6 shows thg,plementation of the Wolff cluster update algorithm has to
Iargest_ effect observed. Fitting the final correlation IengthCope with the technical intricacy of generating pseudoran-
resultsé,, to the functional form Eq(27), we arrive at the  dom numbers equally distributed on a hypersphere, see Ap-
final estimates for the leading amplitudes given in Table Ill.pendix A for details. Due to this complication we only simu-
Comparing these to the ratio of scaling dimensions resultingated systems up to a transversal sizé gf 20 and reduced
from the averaged critical exponent estimates of Table Il anghe number of measurements tex20°. The critical expo-
Eqg. (10), we again find Eq(6) confirmed for antiperiodic nents for comparison, given by a plain average over some
boundary conditions only; this behavior is obviously not sperecent estimate®:32%3are
cific to the Ising model.

»y=0.871375), y=1.72114). (28)

Table Il shows again agreement between amplitude and ex-
Then=23 Heisenberg model case is treated analogously tponent ratios only for the case of antiperiodic boundaries.
the XY model. Table Il gives the critical parameter estimatesNote that, as critical exponent estimates become rare with

Heisenberg model
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increasingn, the.c.orrelation Iength rgtio e;timatg already than those for energy-energy correlation lengths, weéyse
reaches the precision of the scaling dimension ratio estimatgm determineA. The estimates for the spin-spin scaling di-
Checking the influence of the critical coupling uncertainty mensionx,, resulting from the corresponding estimates of
we find it only important compared to statistical errors in thepy|k critical exponentss and y listed in Tables | and Il and
case of the spin-spin correlation length for periodic boundary=q. (28) are x,=0.5182(4) (Ising), x,=0.5188(9) (XY),
systems; the results+reweighted B.=p.+AB are A, x =0.5160(17)(Heisenbery andx,=0.512(12) (i=10),
=0.670805(56) and, =0.671 432(65), respectively. This, respectively. Thus, inserting our results fy listed in Table
however, does not noticeably influence the error of the ratiqll, we obtain for the “meta” amplitudes4(n):

estimate, since here the error of the estimaté gf which is

much larger, is dominant. 0.1227843) Ising

We thus find the linear amplitude-exponent relation Eg. 0.1251037) XY
(6) confirmed for several spin models in three dimensions A=A X,= . (30
with the peculiarity that one has to insert a seam of antifer- 0.1262249) Heisenberg
romagnetic bonds along the directions to restore the two- 0.132%5300 n=10.

dimensional situation. N )
These values can additionally be compared with an ana-

lytical result that is available for the case of the spherical
model, which is commonly believed to be identical to the
Comparing our results for the three-dimensional geometryi— limit of the O(n) spin modef® Again using the
S'x SIX R to the CFT conjecture for the case of two dimen- Hamiltonian formulation, Henkel and West81i® found that
sions, we are interested in the respective ranges of validity ithe amplitude exponent relation E¢6) is valid for the
terms of the classification of universality aspects given abovépherical model ors'x S'XR for both kinds of boundary
in the Introduction. The fact that our simulations of the iso-conditions, periodic and antiperiodic. This is due to the fact
tropic lattice representation of th@(n) universality classes that the quantum Hamiltonian factorizes into a set of un-
give results in agreement with the strongly anisotropic quancoupled harmonic oscillators. The amplitudefor the case
tum Hamiltonian representation used by Henkel in his transof antiperiodic boundary conditions was found to be
fer matrix calculations for the case of the Ising motfef®  ~0.136 242%%° Plotting this value together with the finite-
indicates that the considered amplitudgios are universal, results of Eq.(30) shows an apparently smooth variation of
i.e., (i) holds. Apart from that, Henk& explicitly checked the meta amplitudes with the order parameter dimensjon
for universality of amplitude ratios by the insertion of an the eyeball extrapolation of the finitevalues to 1h—0
irrelevant perturbing operator and found it confirmed formatching the spherical model result, cf. Figa)7 Facing this
both cases of boundary conditions. However, strictly speakvariation, the hypothesis of a hyperuniversal amplitude
ing, there is no proof of universality for the cases 1. The  .A(n)=.A that does not depend on as was the case for the
universality aspecti) above, i.e., universality of the ampli- two-dimensional systems, can be clearly ruled out. Thus,
tudes themselves, could not be checked in Henkel’s calculdype (iii) universality of the classification above gets broken
tions, because the quantum Hamiltonian is only defined up t&hen passing from two to three dimensions. The matching of
an overall normalization constant. Yurishcfig% consid-  the finiten values with the universal spherical model ampli-
ered the behavior of an anisotropic Ising model and foundude, on the other hand, indicates universality also of the
varying correlation length amplitudes on variation of the ra-finite-n amplitudes and thus universality of tyge above.
tios of couplings in the different directions. This, however, is ~ Even without a scaling law of the type E@) being valid
no argument against amplitude universality since anisotrop§or the case of periodic boundary conditions, one can never-
is represented by marginal instead of irrelevant operators. Otfieless plot the corresponding combinatidpx,, for this
the other hand, amplitudeatios stay universal even with case also, as is illustrated in Figly. The values are:
respect to those marginal perturbations, in consistency with )
Henkel's strongly anisotropic Hamiltonian limit calculations. 0.424Q17) Ising

V. RESULTS: “META” AMPLITUDES

In fact, it has been argued that for all systems below their 0.39127) XY
" ) . : ) - Ax = _
upper crmca_l dimension _c_orrelatlon length scaling ampli oXo 0.371912) Heisenberg (32)
tudes are universal quantiti&s.
Having found very good agreement in three dimensions 0.343978 n=10.

between ratios of correfation lengths and scaling dimensiongpe o rresponding value for the spherical model is given by
according to Eq(6) for the case of antiperiodic boundary A_x,~0.3307, cf. Refs. 70 and 68. The finitevalues again
conditions, it is interesting to see what the overall, operator—ru"n gmoothly i’nto the spherical model limit

independent, “meta” amplitudel according to
VI. THE LIMIT OF INFINITE SPIN DIMENSIONALITY

A
Ly, (29

ole

Sote= Aotk x= While the finiten amplitudes of Fig. 7 fit well to the

spherical model result, this is not the case for the correlation
that was A= 1/(27) for two-dimensional periodic systems, length ratios themselves. From inspection of Fig. 8 the
cf. Eqg. (5), becomes in three dimensions, in particularsmooth variation of correlation length ratios for finiteloes
whether it is again model independent. Since our results fonot fit at all to the spherical model result of Henkel and
the spin-spin correlation lengths are always more precis&Vesto?’®® that gives a ratioA, /A, =2 for both periodic
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antiperiodic bc ditions and using the usual relations for the connection
YlB—— ' ' ' between scaling dimensions and bulk critical exponents,
&) T namely Eq.(7), one would expeck,=3 andx.=2 since
0.140 . B=3, v=1, anda= —1 for the spherical model. The result-
] ing ratiox./x,=4 perfectly agrees with the eyeball extrapo-
sagsl | lation of our finiten data. However, by inspection of the
o energy-energy correlation function in the Hamiltonian limit
< | ] and using factorization arguments, Herfkedonjecturedx,
0.130F 7 =1 instead, resulting in the ratid,/A.=2, in contrast to
the relation Eq(7). Taking into account the obvious agree-
04251 i i i ment of eyeball extrapolation and spherical model calcula-
i tion for the amplitudesA(n) that were calculated from the
spin-spin correlation length amplitude agn)=A,x,, cf.
0.120 LI L L L : . . . : .
0 1/10 13 1/2 1 Fig. 7, it becomes obvious that the mismatch is entirely due
1/n to the behavior of the energy-energy correlations. Note also
periodic bc that, since the specific heat is constant in the low-
0.44—1—— I I I temperature phase of the spherical model in three dimen-
- sions, interpreting this as an effectively vanishing specific-
042 ® - heat exponent’ =0 leads to an effective energetic scaling
dimensionx.=1. This, in fact, implies a violation of the
0.40- - scaling relation Eq(7), which is of the hyperscaling type, for
. - - . the case of the spherical model.
o 0381 . Puzzled by this striking mismatch, we performed a
- ' T roughly explorative MC simulation directly in the spherical
0.36 . model, which rendered results in qualitative agreement with
. an amplitude ratio oA, /A .=2 as suggested by the analyti-
0.34 . cal calculation. Then, it is natural to ask whether there is a
- 1 contradiction with Stanley’s result on the equivalence of the
688 —F—ls 5 ; n—oo limit of the O(n) model and the spherical modél,
1n which has been, after some debate over mathematical

subtleties’? rigorously proverf3 The precise statement that
FIG. 7. (8 “Meta” amplitudes A for antiperiodic boundary ~C€an be proven is the identity of the partition functions or,

conditions according to Eq30) as a function of the order param- €quivalently, free energies of the two models in the thermo-
eter dimensionn; (b) the same combinatiom,x, for periodic ~ dynamic limit for the whole temperature range, even inde-
boundary conditions according to E@1). pendent of the order of taking the limits—c and N—«

(the thermodynamic limjt Since multipoint correlation
and antiperiodic boundary conditions. By eyeball extrapolafunctions do not follow from thésource-fregpartition func-
tion one would instead expect the amplitude ratios to reaction, this does not say anything about the behavior of these
values around 4 for antiperiodic and around 16/3 for periodidunctions in those two models. A direct calculation in the
boundary conditions in the limit—. And indeed, accept- spherical model, cf. Appendix B, results in a simple factor-
ing the validity of a linear amplitude-exponent relation ac-ization property of the long-distance behavior of the con-
cording to Eq.(6) for the case of antiperiodic boundary con- nected energy-energy correlation function for all tempera-

tures in one and two dimensions and in the high-temperature

6 T T ' s phase down td . in three dimensions. If the four-point func-
ssk a—a periodic be ] tion of the spherical-model spins is denoted®y,, one has
l o—o antiperiodic bc
sk _
. ] Cii+1jj+1~ Ci+1=CijCit1j+1+ Cij+1Cisy;
45k —

Rl | _>2¢i2j, [j—i|—ce, (32
sk ] where C;; are the corresponding two-point functions. This
g 1 confirms Henkel's results for the Hamiltonian formulafibn

r 7 on more general grounds.
25k _ Considering then—oo limit of the O(n) model, on the
g 1 other hand, reveals that the connected part of the energy-
2_

PR 5 17 — energy corre_latio_n functio_mani_shesin the first-order sad_dle-
n point approximation that is being used for the comparison of
the two models, cf. Appendix C. This is in agreement with
FIG. 8. Correlation lengths ratios as function of the order pa-general considerations for the langenodel by Brein.”® For
rameter dimension for periodic and antiperiodic boundary condi- the case of the one-dimensional spin chain, the connected
tions. energy-energy correlation function even vanishes exactly for
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1.6F T T T = relation Eq.(6), or alternatively Eq(33) with R=1, for this
a periodic be | case. For the periodic-boundary systems, on the other hand,
o antiperiodic bc we arrive atR=1.3546(76)(omitting then=3 poind, in-

4= 7 - - — deed statistically consistent with the conjectured valué. of

5 This somewhat diminishes the at first sight apparently ex-
ceptional importance of choosing antiperiodic boundary con-
ditions in three dimensions. Taking into account the smooth
amplitude variation of Fig. (b) the same universality state-
ments hold for periodic and for antiperiodic boundary con-
= ditions.
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We performed extensive MC simulations for several rep-
resentatives of the class @f(n) spin models. Concentrating
FIG. 9. Matching of correlation lengths rati@s,/A, and in-  on the geometry of three-dimensional sla®ls< S'X R we
verse scaling dimension ratias/x,, for the two kinds of boundary found a simple inversely linear relation between the leading
conditions as a function of the order parameter dimensiomhe  scaling amplitudes of the correlation lengths of the magneti-
horizontal lines show fits to a constant as discussed in the text. zation and energy densities and the corresponding scaling
dimensions valid to high accuracy for the Ising=1), XY
all n, so that one can rule out an agreement of the two limityn=2), Heisenbergr{=3), andn=10 generalized Heisen-
to higher order of the steepest-descent expansion in this casgerg models fomntiperiodic boundary conditions along the
Thus the mismatch of finite-extrapolations and spherical torus directions. This is the analog of the CFT result in two
model results of Fig. 8 has some well-defined mathematicafimensions with periodic boundary conditions applied. There
reason. is evidence for the universality not only of amplitude ratios
Starting from the observation that the curves of Flg 8 for[type (|’) of our classification in the |ntr0ducti@nbut also
the amplitude ratios seem to be quite parallel as a function adf scaling amplitudes themselvigpe (i)]. To definitely de-
(finite) n for the both kinds of boundary conditions, we also ¢jde the question whether universality in the sefigeabove,
plotted the collapsed ratioA(;/A.)/(X./x;) that should be je. condensation of all operator dependent information in
unity if the amplitude-exponent relation E¢6) holds true.  the scaling dimensions, is present, further operators would
Inspecting Fig. 9, this is, according to our above results, ohave to be considered. Independence, apart from changes in
course the case for antiperiodic boundary conditions. Morethe scaling dimension, of the scaling amplitudes from the
over, anda priori somewhat unexpected, this ratio seems tomodel under consideration, i.e., tyfi#) universality, is ex-
be also quite constant for the case of a periodic boundanyiicitly broken for three dimensions as compared to the two-
stabilizing around a value compatible wilwithin statistical  dimensional case: we find a smooth variation of the overall
errors. Note that the exceptionally small error of the valuemeta amplitudes.4(n)=A,(n)x,(n), depending on the
for n=3 (the Heisenberg modebnd its apparent deviation order-parameter dimension It might be interesting to con-
towards a larger ratio is due to the impossibility to fit the  sider further classes of models, such as, for example, Potts
=3 energy-energy correlation lengths to a scaling law inmodels, to see whether any of these properties are specific to
cluding a correction term as mentioned in Sec. IV. Statistithe O(n) spin model class.
cally, the data are consistent with a fit to a constaQt ( Considering the deviation of the periodic boundary corre-
=0.08), and perfectly so when dropping tine=3 point  |ation lengths ratios from the corresponding inverse scaling
(Q=0.4). dimension ratios, the validity of a scaling law of the form Eq.
In view of this observation one might argue that the(6) can be definitely ruled out for this case. Generalizing this
asymptotic scaling relation E¢6) in three dimensions has to ansatz with an overall factd® depending on boundary con-

be replaced by a generalized ansatz of the form ditions as in Eq(33), however, we find it fulfilled also for
the case of periodic boundaries with a fac®bmdependent
% _ RE (33) from n and taking a value compatible wifn In view of that,
&e Xg' the fact thatR=1 for the case of antiperiodic boundary con-

with an overall, model independent factB that depends ditions might k?e ra_theracoincidence_than a“t_jeep”_physmal
only on the boundary conditions and happens to be just 1 faproperty. T_aklng Into account th"%‘. in two dimensions thg
the case of an antiperiodic boundary. For the amplitude Scaf;orrespondlng prefactor§ are specific to the ope rators conS|d—
ing law this would lead to an asymptotic form ered, Cf' Eq.(8), makes_ it probable Fhat a"3|m|!ar behawor
occurs in three dimensions, destroying type universality.
A(n) It might be interesting to analyze the behavior of correlation
§o1e(N) =R —Ly, (34 lengths in the four-dimensional geomeByx S'x S'X R to
check whether a scaling law of the generalized form (B@)
cf. Eq. (5). Accepting such a generalized ansatz, a leastean be retained and if so, how the facRidepends on the
squares fit of the collapsed ratios of Fig. 9 to a consRwint dimensionality of the lattice.
gives R=1.0037(45) for antiperiodic boundary conditions,  Trying to match our finiten results with analytical calcu-
underlining the validity of the original amplitude-exponent lations for the spherical model we found a striking mismatch

ole
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of the data concerning energy-energy correlations. Inspecting , 1 ,

the four-point functions directly in the spherical model and f(6)= msmn_'_lei, i<n—1, (A5)
the O(n— ) model limit we find that both results do not 4

match to first order of the saddle-point approximation in gen-

eral dimensions and to all orders in one dimension. Thus, the f=D(g,_1)= =,

idea of equivalence of the two models has to be limited to its 2m

original extent, namely, the identity of partition functions in . —
the th d ic limit. titi t directl lated t with normalization factor;y(_k)zﬁf‘([k+ 11/2)/T (k/2
e thermodynamic limit. Quantities not directly relate O+1). Thus, forz, equally distributed if0, 1] the transfor-

the partition function, like multipoint correlation functions, d X

do not necessarily have to coincide. Further work has to b8'ationszi(6;) are given by

done to possibly evaluate exactly the correlation lengths ra-

tios in then— < limit for both sorts of boundary conditions. z(6,)=int(6,)= ;f do,sim=—16,, (A6)
Since, still, there is no explanation of the findings con- y(n—i—1)

cerning the correlation lengths ratios for finitén terms of a . . .

field theoretic or otherwise exact approach, we would like tofor I<n—1. The_ integrals can be evaluated analytlca_llly for

encourage further research in this direction. each 0,. There is, hovyever, no cloged form expression for

the inversetransformationd;(z;) that is needed to generate
random vectors equally distributed on the hyperspis8rée-.

The trivial workaround solution of sampling equally distrib-
The authors thank K. Binder, J. L. Cardy, and M. Henkeluted in the hypercube"=[ —1,1]X---X[—1,1], discarding
for useful discussions. M.W. gratefully acknowledges supthe complement™B" and projecting the remaining points
port by the “Deutsche Forschungsgemeinschaft” throughon the spheres”~*, suffers from asymptotically vanishing
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the “Graduiertenkolleg Quantenfeldtheorie.” efficiency, since the ratio of used to discarded volumes van-
ishes with increasing exponentially asr"?/2"I"(n/2+1).
APPENDIX A: EQUAL DISTRIBUTION OF RANDOM We thus resorted to a numerical inversion 2f6;) using
NUMBERS ON A HYPERSPHERE interpolation between the precalculated points of a binary
tree.

Consider a probability density in polar coordinates
f(¢,0) equally distributed on the 2-spheg, i.e.,

f(h,0)dpdo
é?]:](gzj—(:;e: onst. (A1)

APPENDIX B: ENERGY-ENERGY CORRELATION
FUNCTION IN THE SPHERICAL MODEL

Consider the spherical model of Berlin and Kaconsist-

. . . ing of “spins” €; € R with the constraint
Factorizing f(¢,0)=p(¢$)q(#)=constxsing, and taking

into account the normalization conditiofdQ) f(¢,0)=1, N
one finds > €2=N, (B1)
=
1 1 . .
f(¢>,¢9)=p(¢)q(0)=§><§sm 6. (A2)  where N denotes the number of lattice sites. For ease of

reference we use the notation of the original paper here; thus,
Pseudorandom number generators usually generate numbéhe €; are not to be confused with the local energy densities
equally distributed in the unit interv@D,1]. How does this defined above in Eq13). The Hamiltonian is
transform to an arbitrary distribution? Let a random variable
z be distributed with a density(z) and transform according

to 2’ = w(z); the densityh(z') then follows from the equa- H= _‘]% €i€j - (B2)
tion
Using the Fourier representation of tAeonstraint Eq(B1)
g(z)dz=h(z')dZ =h(w(2))w’'(z)dz (A3) the partition function can be written as
Thus, for random numbesequally distributed ir{0,1] the AL faotie
transformationg=arccos (+22) gives the desired distribu- 7 =N T s @S| | der--de
. 1o . . : . NTo » 1 N
tion q(#) =3 sing. This form is being used for the simula- T J ag—ie
tions of then=3 Heisenberg model. For general polar coor-
dinates inR", x;=r cos#;, X,=r sinf cosb,, up to X, xexp{—sz +KD 6.6.> (B3)
. . . - | — =)
=rsin#;---sinf,_,, where O<f,)<m, 0<6,,_,<2 is un- [ (i)

derstood, the volume element is given by ) ] o )
choosingeg such that the singularities imof the integrand

. . ] are excluded from the integration volum&, ensures the
dv=r"""sin""? 4, si" =20, --sin 6, _,dr H dé;, correct normalization of the integral measure #nd 8J de-
(A4) notes the coupling. Diagonalizing the quadratic form
_ > jjy€i€; with eigenvalues,; via an orthogonal transforma-
so that one has for the factofg)(ﬂi) of an equally distrib-  tion €=2;V;;y;, the Gaussian integration over teecan be
uted densityf (6, ...,0,_1)=I1;f(8): performed:
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5 dimensions and folf =T, in three dimensions; in the low-
f f dy;--dynexpg — 2 (s—K\))y; temperature phase, the saddle point “sticks” to its value for
' T=T,. Then, the four-point function simply factorizes, so

that, comparing EqB10) to the expression EB6) for the
=2 exr{ - %; In(s— K)\j)} (B4)  two-point function it is clear that
so that Cijki = GCijCi + Ci Cj +C;i Cyi., (B11)
1 (zo+i= and, finally, considering the connected energy-energy corre-
Zy=AytmN2K e (VAN In ZKZ—ﬂJ dz lation function, one has
zg—i»

1 N Cii+1jj+1~Ci+1=CijCit1j+1+Cij+1Cis1
xexp{ N2Kz—= >, In , (B5)
2=
where s=2Kz. This expression can be evaluated in theso that the energy-energy correlation function is trivially re-
saddle point limitN— oo depending on the distribution of the lated to the spin-spin correlation function. Note that Eg.
eigenvalues\; for a given lattice. Now consider the two- (B11) would follow from Wicks's lemma for the Gaussian
point function, model. This especially confirms the factor-two relation
X.IX,=2 between the corresponding écaling dimensions de-
_ _ _ 2 rived by Henkel using transfer matric&sThe factorization
Cij=(e Ej>_;5 VierS(y’ys>_Z VieVieyr), (B6) propert))// can also be gseen in the grand-canonical formulation
) of the spherical model, the “mean” spherical mod&l,
where the last equality follows from the symmetry of the here the hard constraint E6B1) is being replaced by its
partition function Eq.(B3). Compared to the Gaussian inte- thermodynamical average, so that one can leave out the
gration Eq.(B4) the insertion of a factoy? in the integrand problematicz integration above. There has been some debate
gives an additional factor of over the coincidence of the thermodynamic limit of the two
1 1 models, which is now believed to be settféd.

1
Z—EAJ'

—2Ch,  |j—i]—e, (B12)

2(s—K\,) 1y (B7)
) 4K(z— i) APPENDIX C: ENERGY-ENERGY CORRELATION
FUNCTION IN THE LIMIT OF INFINITE SPIN

The corresponding integral overcan also be evaluated in
DIMENSIONALITY

the saddle point approximatidh.Now, analogously, con-

sider the four-point function: The treatment of the partition function of tin) model
in the n—oo limit is quite analogous to that of the spherical
CijkIE<€i€j€k€I>:r;u Vir VisVieViud Y YsYiYu) - model, cf. Ref. 66. For the comparison of the»co limit

with the spherical model the constraimt- o;=1 of Eq.(11)
(B8 has to be replaced by, - o;=n. We write the partition func-
Here, again, only paired occurrences of fhesurvive due to  tion of the model as

the inversion symmetry:
-1
. L, ZN”)(K):AF\‘H) J J do.(ll)...do.g\ln)H 5(n_0f)
Cijui :Z VierrVkrVIr<yr>+;S Vir Vi VisVis(YrY2) !

: (CD

14

X ex;{ KE Z 0'<1")0'J( V)
(ij)

+ ;S VierstrVIS<yr2y§>+ ;S VierstsVIr<yr2y§>'
whereA{” ensures the correct normalization. Rewriting the
(BY) S constraints to the Fourier representation, one now has to
The insertion ofy; under the Gaussian integral gives anintroduceN variables{t;}, arriving at
additional factor of 3/4(s—KN\,)2]=3/[16K2(z—\,/2)?], \
whereasyfyi gives 1] 16K2(z—\,/2)(z— N4/2)], so that the Z(”)(K)ZA(”)_l L) f+w-~-f+wda<l)---da(”>
diagonal terms left out in EJB9) are reinserted: N N 2 —o I N

+ic +ioo
Ciikl 22 (VirVirVksVIs+VirVistrV|s+VierstsVIr) X Jlim '“Jliw dty---dty ex‘{ KnEi ti)
X(yrys (B10) ’
( r. ) _ _ . XH exg —K>, tiO'i(”)2+K2 O'i(V)O'J(V) .
Now performing thez integration of Eq(B5) in the saddle- v=1 [ (i)
point limit N— is equivalent to just inserting the saddle- (C2)

point valuez=z, for the factors given above, whenever a
normal saddle point exists. As Berlin and Kac have shown|nterchanging the order of integrations one is again left with
this is the case for all finite temperatures in one and twadntegrals of Gaussian type that are easily solved transforming
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the spin variables orthogonally according te” 1o e

=3,V;;u”. Note that the transformation is symmetric in Cijla=<CijCu+ - CRIC¥+ —CIVCR™,  (C9)

the component index of the spins. The calculation is given

in more detail for the case of a one-dimensional chain belowand again the connected part of the energy-energy correlation
Here, we again consider the relation between two-point angunction isO(1/n), vanishing in the first-order saddle-point
four-point correlation functions. We take the two-point func- limit.

tion to be For the case of an one-dimensional lattice the first-order
saddle-point approximation is exact as can be checked by
explicit calculation. Consider an open chain®n) spins’®

The partition function is given by the general expression Eq.
(C1) with the nearest-neighbor sully;;,o;- o; replaced by
where the last equation for amy=1, . .. n follows from the  the one-dimensional expressiol;o;-o;.,. Following

O(n) symmetry of the model in the unbroken, high- Stanley’® we factor out the integration over the last spig,
temperature phase. Using the same arguments of Gaussiamich has the form

integration as for the case of the spherical model, the four-
point function

)= on- o) =(al"o1"). ©3

J

K +oo
Z(n)(K)Zz_ﬂ_ij J da.(l)...da.(n)Jl du

Cijw==2((ay- o)) oy a7)) (CH

2~

X ex;{uK( n-> 0'(”)2)

ex;{ K>, ¢,
v

(C10

again decomposes in terms of the diagonal variajqﬁé)sas

1 . .
Cij=rz tz Vi Vi VaVa (Y& y0%) where (Z:VEU(N”Zl. Inserting the unity factor effaq(n
Py —>,0)] and choosingy, sufficiently large to exclude the

1 2 ()2 singularities, one has
+ ?rg VriVserszI<yr'u ys'u >
1S

K ogtic
ZW(K)= — ’ dv e[| fdtr(”)
! (W2 (1)? 27 ) gy—ice ;
+ Hirg VriVsjVserI<yr Ys > . (C5) )
e xexg—K(wo” —c,0)],  (C1D

In the saddle-point limit, which now correspondsre-«,

this expression factorizes in terms of two-point functions asvherev=u+a,. Square completion and a change of vari-
ablesw=2yv gives

1 1
Ciju=CijCi+ ﬁcikcj|+ﬁcilcjk, (Co) dw

zm><K>=(

2m\"2 K [2aq+i=
K| mi Joug i
so that the “mixed” terms are suppressed witin.1/This L
asymmt_atry_ results from the preset pairing _of the spin com- x exgl = NK(W-+ 1) |w~ "2
ponent indicesu and v in the four-point function. As a con-

2
sequence, the connected part of the energy-energy correla-
tion function, =3K(2m/K)™ -1 (nK), (C12

which is an integral representation of the modified Bessel
Cii+1jj+1—Cﬁ+1=—CijCi+1j+1+ =Cij+1Cji+1, function of thg first kind. Thus, 'the spin integrations can be
n n done successively, the full partition function being given by

(C7)

vanishes in the first-order saddle-point approximation. Thus, 2N (K)=[(NK/2)* ™™ (n/2)1 yo-1(nK)IN Y,
any nonvanishing contributions that are to be expected from (C13

our numerical results have to come from subleading terms i here thel” function enters through the normalization factor
the steepest-descent expansion. The correspondence of the,-1

n—c limit to the spherical model seems only to hold to AN, and the last integration, which corresponds to

leading order of the saddle-point approximation. 2M(0). Considering the two-point function, an additional
In the broken, low-temperature phase EQ3) has to be factorei- ey, i<j, is inserted in the integrand of E(CL).
replaced by Again starting the integration with the last spin,, the first
N—j integrations are unaltered. The integration owgr
1 gives additional factors of,/2v from the Gaussian integra-
Cij :ﬁ<0'i -op)=maxo{” a{")=C["*, (C8  tion Eq.(C12), where nowc,=a{";, so that one is left with

: . . . ~ 1 20 n/2
so that the factorization property of the four-point function Z(M(K)= —K(—) | (nK ("¢ c14
Eq. (C6) becomes (K)=5K| G| Tna(nk) 2 of’c,, (C14
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and the form of the integrand for the next integrations iswhere i <j<k<I| is understood. For the special case of
unchanged. The integration ovet adds a factor of since  energy-energy correlations one has

¢, above becomes(” and= 0" o{"=n, followed by an-

otheri—1 integrations of the partition-function type. With

1
U=U(NK)=1(NK) and v=0 (1K) =1z (K) one ar- (01 a0} 7)) = (U}, (C1D
rives al
L U T —(up)-i.  (c1s Which does not depend on the distarjge-i|. Hence the
n*t ol N1 ' connected energy-energy correlation function vanishes ex-

actly even for finiten in one dimension. The@— o limit of

From this it is straightforward to derive the form of the four- _ © S
this expression, is given by

point function by analogy:

1 o
HZ((O'i'O'j)(G'k'0'|)>:UN_lul_kUk_]UJ_'U'_lvl_N i<(0...0.. ) oj-0iq))= 4K?
r,|2 i i+1 ] j+1 [1+\/m]2-
=(ufp)1 700D (C16) (C18
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