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Geometric and stochastic clusters of gravitating Potts models
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Abstract

We consider the fractal dimensions of critical clusters occurring in configurations of a q-state Potts model coupled to the planar random
graphs of the dynamical triangulations approach to Euclidean quantum gravity in two dimensions. For regular lattices, it is well-established that
at criticality the properties of Fortuin–Kasteleyn clusters are directly related to the conventional critical exponents, whereas the corresponding
properties of the geometric clusters of like spins are not. Recently it has been observed that the latter are related to the critical properties of a
tricritical Potts model with the same central charge. We apply the KPZ formalism to develop a related prediction for the case of Potts models
coupled to quantum gravity and employ numerical simulation methods to confirm it for the Ising case q = 2.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The relation between the percolation problem and thermal
phase transitions of lattice spin systems has been a question
of intense research for at least three decades. Clusters of even
spins are natural objects occurring in the analysis of phase
ordering processes and nucleation [1], and a theory of criti-
cal phenomena in terms of purely geometrical objects appears
appealing. In this context, it had long been surmised that a
continuous phase transition of a spin system might be accom-
panied (or, in fact, caused) by a percolation transition of the
clusters of like spins (geometric clusters), the appearance of
a percolating cluster sustaining the onset of a non-zero mag-
netisation [2]. While for the special case of the Potts model in
two dimensions it turned out that, indeed, the thermal phase
transition point coincides with the percolation transition of the
spin clusters, this behaviour is not generic and does not occur in
three-dimensional systems [3]. Also, the critical exponents as-
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sociated to the percolation of geometric clusters are not directly
related to the thermal exponents of the spin model [4]. However,
a close relation between the percolation and thermal phase tran-
sitions can be established by considering stochastically defined
clusters (or droplets) as they occur in the Fortuin–Kasteleyn
(FK) representation of the Potts model, and it can be shown that,
in fact, the Potts model is equivalent to a site-bond correlated
percolation problem [5] such that the corresponding critical ex-
ponents agree. This identification of the proper cluster objects
(FK clusters) percolating at the thermal phase transition subse-
quently also allowed for the design of cluster algorithms for the
efficient simulation of Potts models in the vicinity of the order-
ing transition [6,7], beating the observed critical slowing down
of local update algorithms. Similarly, relations of continuous-
spin models to percolation problems could be established and
corresponding cluster algorithms formulated [7,8], such that the
continuous phase transitions of many standard models of statis-
tical mechanics are by now understood in terms of the percola-
tion properties of some suitably defined ensemble of stochastic
clusters.

Although not in the universality class of the thermal phase
transition, the clusters of like spins or geometric clusters still
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undergo a percolation transition in the course of thermal phase
ordering. This transition is in general not equivalent to ordinary
(site or bond) percolation [4] and it remains an interesting open
question to determine the general critical behaviour of clus-
ters of aligned spins. For the case of the two-dimensional Ising
model, it has been conjectured and numerically verified that the
geometric clusters are described by the q = 1 tricritical Potts
model [9]; this correspondence can be understood from a direct
construction starting from the dilute Potts model [10]. Subse-
quently, analogous conjectures for the 2 < q � 4 Potts models
were made and some of them substantiated by numerical simu-
lations [11]. Analytical calculations concerning clusters occur-
ring in systems of statistical physics and their boundaries, tra-
ditionally based on methods of conformal field theory and the
Coulomb gas [12], have recently seen major advances from the
insight that fractal random curves can be described in a frame-
work dubbed stochastic Loewner evolution (SLE) [13,14]. Col-
lecting these observations, a more systematic analysis of the
relation between the critical and tricritical branches of the Potts
model and their connection to the FK and geometric clusters has
been performed, resulting in the identification of exact values
for the different cluster fractal dimensions and their numerical
verification [15,16].

Coupling spin models to the planar random lattices of the
dynamical triangulations model of two-dimensional Euclidean
quantum gravity [17] corresponds to the introduction of a par-
ticular type of annealed connectivity disorder. The resulting
randomness is strong, leading to a change in critical behaviour
of virtually all types of coupled matter variables [18]. Geomet-
rically, it is characterised by a large fractal dimension dh ≈ 4
of these lattices of topological dimension two. It is interesting
to see how the relation between geometric and FK clusters of
the Potts model works out far away from the regularity of a Bra-
vais lattice. The mentioned relations between geometric and FK
clusters have not yet been rigorously established, such that evi-
dence from further models is highly welcome support. Besides,
the behaviour of these fractal cluster objects on lattices which
are themselves highly fractal is of particular interest in itself.

2. Dynamical triangulations and the KPZ formula

The dynamical triangulations approach provides a construc-
tive model for Euclidean quantum gravity in general dimen-
sions [17]. It regularizes the path integral over fluctuating met-
rics naturally occurring in an attempt to quantize the gravita-
tional interaction by a sum over combinatorial manifolds re-
alised as simplicial complexes [19]. In two dimensions, the
resulting canonical ensemble of discrete surfaces can be defined
as that of all possible gluings of a given number N2 of equi-
lateral triangles to a closed surface of fixed (usually spherical)
topology, where all resulting triangulations are counted with the
same weight in the partition sum. This is a purely combinato-
rial definition, and due to the equilaterality of the triangles the
resulting triangulations cannot in general be embedded in the
Euclidean R

3 and, in fact, one is only interested in their intrinsic
geometry. Many counting problems related to these graphs can
be solved exactly by using matrix integrals or general combina-
torial techniques [20]. For our purposes it is sufficient to note
that the resulting random graphs are highly fractal with blobs
(“baby universes”) of arbitrary size being connected to the main
graph body with a minimal number of links. This structure en-
tails an internal Hausdorff dimension dh = 4 [17]. Decorating
the vertices (or edges, faces) of the graphs with matter vari-
ables, corresponding to an annealed geometrical average, leads
to a change of universality class at criticality, expressed through
a dressing of the conformal weights Δ of the matter fields given
by the KPZ formula [18],

(1)Δ̃ =
√

1 − c + 24Δ − √
1 − c√

25 − c − √
1 − c

,

where c denotes the central charge of the coupled matter model.
Analogously, the change of the string-susceptibility exponent
γs can be expressed in terms of c [18].

As mentioned above, the fractal properties of FK and geo-
metric clusters of the square-lattice Ising model have been stud-
ied rather extensively [9,10,16]. Here, we are interested in the
(normalised) fractal dimensions dFK

C /d respectively dG
C /d of

the incipient percolating Fortuin–Kasteleyn respectively geo-
metric cluster at criticality (where d = 2 denotes the spatial
dimension). For the FK clusters, dFK

C /d = 1 − β/dν = 15/16
is an exact result [21]. From the identification of the geomet-
ric Ising clusters with the FK clusters of a q = 1 tricritical Potts
model, one finds dG

C /d = 187/192 [10]. These values are re-
lated to the conformal weights Δ above as ΔC = 1 − dC/d

[22]. To describe the coupling of the two-dimensional Ising
model to quantum gravity, the resulting weights ΔFK

C = 1/16
and ΔG

C = 5/192 have to be dressed according to Eq. (1). Since
for both, the Ising and q = 1 tricritical Potts models, the central
charge c = 1/2, from (1) we find Δ̃FK

C = 1/6 and Δ̃G
C = 1/12.

Therefore, we expect the following cluster fractal dimensions
for the Ising model coupled to dynamical triangulations,

d̃FK
C /dh = 1 − Δ̃FK

C = 5/6,

(2)d̃G
C /dh = 1 − Δ̃G

C = 11/12,

which now have been written in units of the Hausdorff dimen-
sion dh of the graphs coupled to the spin model, the value of
which is not known exactly but numerically found to be consis-
tent with dh = 4 for all 0 � c � 1 [23,24].

3. Numerical simulation method and results for the Ising
model

For a numerical simulation of the system, due to the an-
nealed nature of the disorder both, the underlying dynamical
triangulations as well as the coupled Ising spins, must be up-
dated in parallel. An ergodic set of Monte Carlo updates for
the dynamical triangulations is given by the so-called Pachner
moves [25]. For the canonical ensemble of a fixed number N2
of triangles in two dimensions, these reduce to the following
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flip between two adjacent triangles,

where the dashed lines indicate the effect on the dual φ3 graph.
To improve the decorrelation of adjacent configurations in the
Monte Carlo Markov chain, this local update is complemented
by intermittent non-local rewirings of the blob structure of
the graph known as “baby-universe surgery method” [26,27].
We consider the case of non-degenerate triangulations, corre-
sponding to dual one-point irreducible φ3 Feynman diagrams
and place the Ising spins on the faces of the triangulation or,
equivalently, the vertices of the dual φ3 graphs. The coupled
Ising model is being updated according to the Swendsen–Wang
cluster algorithm [6] in order to alleviate the critical slow-
ing down of the spin variables expected since simulations are
performed at the exactly known inverse critical temperature
βc = 1

2 ln 108
23 ≈ 0.7733 of the coupled system [28].

Although the fractal dimensions dFK
C and dG

C could be deter-
mined directly by means of an appropriate geometrical analysis
of the clusters, it is convenient to exploit relations to more
easily accessible quantities. The fractal dimension of Fortuin–
Kasteleyn clusters, dFK

C , is related to the magnetic susceptibility
exponent γ = γ FK as dC/dh = 1

2 (1 + γ /dhν) [29], where ν

denotes the critical exponent of the correlation length. The sus-
ceptibility χ = χFK can be sampled by the following estimator
in the cluster language [30],

(3)χ ≡ 1

N2

〈(∑
i

σi

)2〉
= 1

N2

〈∑
i

|Ci |2
〉
,

where σi = ±1 denotes the Ising spins. The sum in the second
expression is over all FK clusters Ci (including the percolating
cluster as well as isolated sites) of a given configuration and
|Ci | denotes the number of spins in cluster i. Close to the criti-
cal point and for a system of finite size N2, standard finite-size
scaling (FSS) arguments suggest that χ scales as

(4)χ ∼ N
γ/dhν

2 = N
2dC/dh−1
2 .

Thus, Eqs. (3) and (4) allow for a FSS determination of the
fractal dimension dFK

C /dh of the FK clusters from informa-
tion about the cluster distribution naturally produced by the
Swendsen–Wang cluster update of the spins. In complete anal-
ogy, a “geometric susceptibility” χG can be estimated with Ci

now denoting the geometric clusters in relation (3), and its FSS
is described by Eq. (4) with exponent dG

C /dh.
As a check and gauge for the method, we determined the

cluster fractal dimensions for the Ising model on the square lat-
tice, using L × L lattices with L = 8, . . . ,512. From fits of the
form (4) to the (magnetic and geometric) susceptibility data,
we find dFK

C /d = 0.93 756(15) and dG
C /d = 0.97 370(13) (in-

cluding lattices of sizes L = 16, . . . ,512), in very good agree-
ment with the exact results dFK/d = 15/16 ≈ 0.93 750 and
C
Fig. 1. Finite-size scaling of the magnetic (“FK clusters”) and geometric (“geo-
metric clusters”) susceptibilities χ of the Ising model coupled to regular dy-
namical triangulations with N2 triangles and at the critical inverse temperature
βc = 1

2 ln 108
23 ≈ 0.7733. The lines show fits of the functional form (4) to the

data.

dG
C /d = 187/192 ≈ 0.97 396. For the dynamical triangulations

model, only graphs of somewhat smaller sizes can be equili-
brated, and we consider volumes N2 = 256,512, . . . ,65 536.
Fig. 1 shows the resulting susceptibility data in a doubly loga-
rithmic plot together with fits of the form (4) to the data. Due
to rather strong finite-size corrections, only the largest lattice
sizes can be included in the uncorrected fit (4) with reasonable
fit quality. For the range N2 = 8192, . . . ,65536, we arrive at the
estimates d̃FK

C /dh = 0.84 301(93) and d̃G
C /dh = 0.92 220(55),

in marginal agreement with the conjectured values of Eq. (2),
d̃FK

C /dh ≈ 0.83 333 and d̃G
C /dh ≈ 0.91 667. From previous ex-

perience with the dynamical triangulations model, one indeed
expects very strong finite-size corrections to be present [24].
These result from the small effective linear extents of lattices
of a given number of triangles which are reflected in the large
fractal dimension dh ≈ 4. As dominant contribution, we expect
analytic corrections to the effective linear extent,

(5)Leff(N2) = L0N
1/dh

2 + L1 + L2N
−1/dh

2 + · · · ,
such that the susceptibility should scale as χ ∼ [Leff(N2)]γ /ν .
Since the data are not precise enough to determine an additional
exponent, we fix dh = 4 in the expression for Leff(N2). Already
with one correction term only (L2 = 0), the fit results,

(6)d̃FK
C /dh = 0.8291(19), d̃G

C /dh = 0.9132(12)

for the range N2 = 1024, . . . ,65536, move considerably closer
to the conjectured values. With both correction terms (i.e., vari-
able L2), we get full consistency with estimates d̃FK

C /dh =
0.8349(118) and d̃G

C /dh = 0.9164(68). Conversely, if we fix
d̃FK

C /dh respectively d̃G
C /dh at the conjectured values, the fits

with one correction term give reasonable fit qualities with
Q = 0.20 respectively Q = 0.03, and very high-quality fits are
reached when including both correction terms with Q = 0.66
respectively Q = 0.42.
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4. General results for the Potts model

To understand the general relation between FK and geomet-
ric clusters and the critical and tricritical branches of the Potts
model coupled to dynamical triangulations, we consider the fol-
lowing parametrisation of the critical q-state Potts model [31],

(7)
√

q = −2 cos(π/κ), κ = 1 + m

m
, m = 1,2,3, . . . ,

where 1 � κ � 2 and the central charge c = 1 − 6/m(m + 1),
such that κ = 2, 3/2, 4/3, 6/5, 1 corresponds to the q = 0, 1,
2, 3, 4 Potts models with c = −2, 0, 1/2, 4/5, 1, respectively.
The conformal weights of the primary operators follow from
the Kac table [22],

(8)Δr,s = [(m + 1)r − ms]2 − 1

4m(m + 1)
, r, s = 1,2, . . . ,m − 1,

and they are identified with the physical operators of the Potts
model as follows,

Δε = Δ2,1 = 3κ

4
− 1

2
,

Δσ = Δm+1
2 −1, m+1

2
= 1

2
− 3κ

16
− 1

4κ
,

ΔC = Δm+1
2 , m+1

2
= 1

2
− 3κ

16
− 1

4κ
,

ΔH = Δm,m = 1

2
− κ

4
,

ΔEP = Δm+1,m+1 = 1

2
− 1

4κ
,

(9)ΔRB = Δm,m−1 = 1

2
+ 3

4κ
− κ

4
,

where Δε and Δσ = ΔC correspond to the leading energetic
and magnetic operators, respectively, ΔH denotes the weight
corresponding to the cluster hull, ΔEP the weight of the external
perimeter and ΔRB the weight of the “red bonds” of the cluster,
cf. Ref. [16]. The various fractal dimensions of FK clusters are
given by the corresponding renormalization-group eigenvalues,
dα = yα ≡ dh(1 − Δα), where α = C, H, EP, RB.

In Ref. [16] it was argued that in general the fractal dimen-
sions of the geometric clusters of the critical Potts model are

Table 1
Cluster fractal dimensions of the q-state Potts model on dynamical triangula-
tions. The values of d̃EP/dh and d̃RB/dh for the geometric clusters are only
formal since, by definition, d̃EP/dh � d̃H/dh . Thus one has d̃G

EP/dh = d̃G
H /dh

and the geometric clusters are multiply connected

q Type d̃C/dh d̃H/dh d̃EP/dh d̃RB/dh

FK 7
8

3
4

1
2

1
41

Geo 1 1
2 ( 3

4 ) (− 1
4 )

FK 5
6

2
3

1
2

1
62

Geo 11
12

1
2 ( 2

3 ) (− 1
6 )

FK 4
5

3
5

1
2

1
103

Geo 17
20

1
2 ( 3

5 ) (− 1
10 )

FK 3
4

1
2

1
2 0

4
Geo 3

4
1
2 ( 1

2 ) 0
identical to the fractal dimensions of the tricritical Potts model
of the same central charge, to be reached by performing the
central-charge conserving “duality transformation” κ → 1/κ in
Eq. (7). For the tricritical model, the leading conformal weights
are identified as

Δε = Δ1,2 = 3

4κ
− 1

2
,

Δσ = Δm
2 , m

2
= 1

2
− 3

16κ
− κ

4
,

ΔC = Δm
2 , m

2
= 1

2
− 3

16κ
− κ

4
,

ΔH = Δm+1,m+1 = 1

2
− 1

4κ
,

ΔEP = Δm,m = 1

2
− κ

4
,

(10)ΔRB = Δm+4
2 , m+1

2
= 1

2
+ 3κ

4
− 1

4κ
,

which, as can be seen, directly follow from those of Eq. (9) by
replacing κ → 1/κ .

For the weights of the unitary minimal models of Eq. (8), the
KPZ formula (1) can be written as

(11)Δ̃r,s = 1

2

(
1 − κ + |s − κr|),

explicitly revealing that all weights of the minimal models
dressed for the coupling to quantum gravity are rational num-
bers. Dressing the weights (9) of the critical branch yields

Δ̃ε = κ

2
, Δ̃σ = 1

2
− κ

4
,

Δ̃C = 1

2
− κ

4
, Δ̃H = 1 − κ

2
,

(12)Δ̃EP = 1

2
, Δ̃RB = 3

2
− κ

2
,

whereas the weights (10) of the tricritical branch become

Δ̃ε = 3

2
− κ, Δ̃σ = 3

4
− κ

2
,

Δ̃C = 3

4
− κ

2
, Δ̃H = 1

2
,

(13)Δ̃EP = 1 − κ

2
, Δ̃RB = 1

2
+ κ

2
.

Note that now, in contrast to the regular lattice case of Eqs. (9)
and (10), all weights depend linearly on the parameter κ .
The resulting FK and geometric cluster fractal dimensions for
the Potts model coupled to dynamical triangulations are sum-
marised in Table 1.

5. Conclusions

We have shown how the fractal dimensions associated with
the geometric clusters of the Potts model coupled to the dy-
namical triangulations model of Euclidean quantum gravity in
two dimensions can be inferred from a mapping to the tricriti-
cal branch of the Potts model. To allow for an application of the
KPZ framework, the conformal weights associated to the frac-
tal dimensions dC of the cluster, dH of the cluster hull, dEP of
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the external perimeter and dRB of the cluster red bonds have
been identified from the Kac table. Lifting the corresponding
weights of the critical and tricritical branches to the dynamical
triangulations results in rational values for the fractal dimen-
sions of FK and geometric clusters for the q = 1, 2, 3 and 4
state Potts models summarised in Table 1. The duality symme-
try κ → 1/κ present between the critical and tricritical weights
on regular lattices, Eqs. (9) and (10), is no longer present in
the dressed weights of Eqs. (12) and (13). As a peculiarity, we
note that the fractal dimension of the geometric cluster hulls is
a constant d̃G

H/dh = 1/2 independent of q . A scaling or duality
relation between the dimensions of the external perimeter and
cluster hulls found valid for the regular case [32],

(14)

(
dEP/d − 1

2

)(
dH/d − 1

2

)
= 1

16
,

does not apply to the model coupled to quantum gravity, but
instead one gets,

(15)

(
d̃EP/dh − 1

2

)(
d̃H/dh − 1

2

)
= 0.

Also, while the four fractal dimensions fulfill the identity dC −
dH = 1

4 (dEP − dRB) for regular lattices [16], for the random-
lattice case we instead find d̃C − d̃H = 1

2 (d̃EP − d̃RB). A couple
of further similar scaling relations can be formulated.

Our simulation results for the case of the q = 2 Potts or
Ising model coupled to dynamical triangulations show full con-
sistency of the measured fractal dimensions of the Fortuin–
Kasteleyn and geometric clusters with the predictions resulting
from the KPZ mapping, confirming that the properties of the
geometric Potts clusters on dynamical triangulations are de-
scribed by the corresponding tricritical Potts model of the same
central charge. Corrections to scaling are found to be much
stronger for the random-graph model than for the square-lattice
simulations performed as a gauge. These corrections, known to
result from the small effective linear extents of the graphs due
to their large Hausdorff dimension dh ≈ 4 [24], have to be ex-
plicitly taken into account to find consistency with the scaling
predictions and satisfactory quality of the fits.

It would be interesting to see whether, as expected, the frac-
tal dimensions of the geometric clusters of the q �= 2 Potts
models coupled to dynamical triangulations follow the predic-
tions summarised in Table 1, in particular for the case of q = 4,
where the critical and tricritical branches coalesce and the KPZ
mapping (1) becomes marginal due to central charge c = 1.
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