
ELSEVIER Nuclear Physics B (Proc. Suppl.) 106 (2002) 986-988 

I~Llllll$'-'1~tl~l-'t'b'l[Ik'l:! 

PROCEEDINGS 
SUPPLEMENTS 
www.elsevier.com/locate/npe 

Algorithmic tools for simulations of vertex models on random graphs* t 

Martin Weigel a and Wolfhard Janke a 

aInstitut für Theoretische Physik, Universität Leipzig, Augustusplatz 10/11, 04109 Leipzig, Germany 

We consider the coupling of ice-type vertex models to random, planar ¢4 quantum-gravity graphs. The well- 
established techniques for the simulation of dynamical triangulations and their dual ¢3 graphs are suitably adapted 
to the case of four-valent graphs. These methods are combined with a formulation of the loop algorithm for the 
simulation of the vertex model matter part. We present a preliminary analysis of the dynamical scaling behaviour 
of the combined algorithm for the case of the 6-vertex model coupled to quantum gravity. 

1. I N T R O D U C T I O N  

Vertex models on regular lattices exhibit an ex- 
ceptionally rich phase structure, including lines of 
first- and second-order phase transitions as weU as 
critical and multi-critical points [1]. A number of 
classic lattice models such as the Ising and Potts  
models and graph-colouring problems correspond 
to limiting cases of the 8-vertex model. If vertex 
models are coupled to non-perturbative quantum 
gravity in the form of random planar ¢4 graphs, 
corresponding to the dual lattices of dynamical 
"quadrangulations", a richness of the phase dia- 
gram similar to the case of the square lattice can 
be expected. Recently, the use of matrix model 
methods led to a conjecture for the behaviour of 
a limiting case of the 6-vertex model, the F model 
[2]; for a special slice of the 8-vertex model, see 
[3]. 

We present the numerical setup of a Monte 
Carlo (MC) simulation scheme for the analysis 
of 6- and 8-vertex models coupled to planar ¢4 
graphs. Apart from verifying the conjectured re- 
sults for the F model, this type of simulations can 
clarify the properties of the more general cases 
not yet covered by the matrix model approach. 

2. D Y N A M I C A L  ¢4 G R A P H S  

While MC simulations of dynamical triangu- 
lations [4] have been used successfully for more 
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than a decade, dynamical quadrangulations and 
the dual ¢4 graphs have received much less at- 
tention. First, concerning the amount of singular 
contributions allowed in the ¢4 graphs we distin- 
guish a hierarchy of four different ensembles of 
graphs: 

• singular: no restrictions 

• restricted singular: no seagull contributions 

0 
• regular: in addition no self-energies 

• strict: in addition no double bonds 

Here, the excluded contributions not only include 
the depicted local singularities, but  also "dressed" 
seagulls, i.e. one-point subgraphs, and "dressed" 
self-energies, i.e. two-point subgraphs; the double 
bonds are purely local contributions. 

For the case of dynamical triangulations and 
their dual ¢3 graphs, it has been shown [5] that  
the so-called Pachner or (k, l) moves constitute a 
set of ergodic updates for a MC process. In two 
dimensions, these moves are readily generalized to 
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the case of ¢4 graphs; the volume preserving (2, 2) 
move for quadrangulations (top) and ¢4 graphs 
(bottom) is given by: 

1 I _____~ ~ 
l l 

The original (2, 2) or flip move for ¢3 graphs ean 
be shown to be ergodie within the elass of eom- 
binatorial manifolds, i.e., the equivalent of the 
stritt ensemble for the ¢4 ease above [5], and is 
eommonly believed to be ergodie for the singular 
eases also. However, in all but the strict ensemble 
in the ¢4 ease, there are possible configurations 
like the following "ring" and "eenter" diagrams, 

whieh are in all but  the singular ensembles obvi- 
ously not eonneeted to eaeh other by a (2, 2) flip 
move. Thus, the moves depieted above are not 
ergodie for the non-strict ensembles, ttowever, 
we find that  augmenting the (2, 2) move with a 
two-link flip of the form 

ensures ergodieity for the non-strict ensembles 
also. 

3. V E R T E X  M O D E L S  

The vertex configurations of the 6-vertex model 
depicted in Fig. 1 carry energies ei, i = 1 , . . ,  6; 
the overall arrow reversal symmetry is reflected 
by ei = ei+l, i = 1,3,5. Thus, the Boltzmann 
weights of the model are given by [1] 

a = e -Kex, b = e - K e s ,  c ~- e - g e s ,  (1) 

+ + +  
1 2 3 

+ + +  
4 5 6 

Figure 1. The 6-vertex model configurations. 

9 8 7  

where K denotes the thermal coupling. Obvi- 
ously, on a random graph one has to impose the 
additional restriction a -- b, since the vertices 1 
and 3 resp. 2 and 4 are related to each other only 
by rotations of 7r/2. This choice of weights cor- 
responds to the F model of statistical mechanics; 
we choose a = b = e x p ( - K )  and c = 1. On 
the square lattice this model undergoes a contin- 
uous phase transition to an anti-ferroelectrically 
ordered phase at Kc = In 2 [1]. 

For the proper definition of an order parameter 
for the anti-ferroelectric transition of the F model 
on a random lattice one needs a two-colouring of 
the dual lattice of the ~b 4 graph, i.e. the corre- 
sponding dynamical quadrangulation, leading to 

M = E E C(1) v(bt), (2) 
IEL brEI 

where L denotes the set of faces or minimal loops 
on the ¢4 graphs, bt are the bonds belonging to 
loop l, C(1) E { + 1 , - 1 }  is the "colour" of loop 
l and v(bl) the arrow direction of a given vertex 
configuration on bond I relative to a given, say 
anti-clockwise, trespassing of the loops. 

4. D Y N A M I C A L  S C A L I N G  

Combining the described update moves for the 
random lattice with an implementation of the 
loop algorithm [6], a non-local algorithm of the 
cluster type, for the vertex model part, we con- 
sider integrated autocorrelation times for the to- 
tal update measured in units of sweeps consisting 
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Figure 2. Integrated autocorrelation times for the 
magnetization of the 6-vertex model on planar ¢4 
graphs of the regular ensemble. 

of 10 sweeps of link flip moves and one multi- 
cluster update of the vertex model. As properties 
of the vertex model part we measure the total sys- 
tem energy E defined from (1) and the magneti- 
zation (2). As generic graph property we consider 
the mean square e x t e n t  ( r  2) of the lattice, which 
is known to be the slowest mode of relaxation in 
most cases. Integrated autocorrelation times for 
all three quantities are determined from a direct 
integration of the measured autocorrelation func- 
tion as well as a combined binning/jackknife tech- 
nique [7], the latter of which is also used for the 
determination of statistical errors in both cases. 

The dynamical behaviour of the algorithm is 
demonstrated in Fig. 2 for the magnetization; au- 
tocorrelation times diverge exponentially in the 
low-temperature phase as expected. For the reg- 
ular ensemble, the finite-size scaling of T M at the 
conjectured critical point Kc = In 2 [2] yields a 
dynamical critical exponent of 

zMIdH = 0.155(27), (3) 

where dH denotes the (unknown) Hausdorff di- 
mension of the lattice, and for the mean square 
extent (r 2) we obtain 

z(r2)/dH = 0.724(58). (4) 

This indicates that these two observables pick up 
dynamical modes which are "orthogonal" to each 

other, yielding clearly different dynamical criti- 
cal exponents. The total system energy, on the 
other hand, yields very small and almost con- 
stant autocorrelation times for all temperatures. 
This is connected to the sub-lattice structure of 
the ordered state, which leads to strongly anti- 
correlated sub-lattice energies as observed for ver- 
tex models on regular lattices [6]. On random lat- 
tices, however, the concept of sub-lattice energies 
is maldefined, Such that we cannot consider the 
dynamical scaling of such quantities. For the case 
of the strict ensemble, autocorrelation times for 
all quantities are strongly enhanced in amplitude 
due to the strong restrictions for the flip moves. 
The critical exponents z/dH, however, are com- 
patible between ensembles as expected. 

5. C O N C L U S I O N S  

With proper care a generalization of the Pach- 
ner moves to dynamical ¢4 graphs and the defini- 
tion of a vertex model order parameter are possi- 
ble. The large dynamical exponent of the lattice 
part, however, calls for the adaption and applica- 
tion of non-local update schemes. 
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