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1. Concepts

1.1. The Ising model

The phenomenon of magnetism belongs to one of the oldest observations in nature which

focused the academic interest of scientists as well as of philosophers and engineers while

it remains a sophisticated subject of investigation till today. One remarkable effect in

ferromagnets is the spontaneous magnetization on cooling down the substance below a

critical temperture, the so called Curie temperature.

The Ising model represents one of the historical successes to qualitatively reproduce this

critical behaviour. The crucial point is its simplicity of modelling the essential behaviours

which lead to the observed phase transition. In general the system is modelled as a

quadratic or cubic lattice of particles i ∈ I = {1, . . . , N} each carrying an elementary

magnetization of only two distinct values−1
2

and +1
2

all oriented along the same axis. This

concept finds its realistic counterparts in spin-1
2
-particles like electrons in an embedding

magnetic field. Each of those spins causes a magnetic field whose strength decreases

with distance and influences the surrounding particles. For the sake of simplicity the

Ising model assumes only the so called nearest neighbours to be coupled and neglects

wider range interactions completely. Two particles are nearest neighbours if no other

particle is located closer to one of them. In a one-dimensional Ising system an ordinary

particle has two nearest neighbours, in two dimensions four, in a d-dimensional system 2d.

These magnetic interactions contribute to the energy of the whole system as well as to an

interaction of an external field h which, again for simplicity, is parallel oriented to the axis

of spin direction. Having a certain spin configuration σ ∈ S := {I → {−1,+1} , i 7→ σi}
the Hamiltonian of the system is

Hh (σ) := −
∑
i,j∈I

Jijσiσj − h
∑
i∈I

σi

where Jij = 1 if i and j are nearest neighbours and Jij = 0 else. Formal simplification led
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1. Concepts

us to consider spins to be of values −1 or +1 and magnetic interaction constants equal 1.

Although the system has a quadratic or cubic topology there are freedoms to define the

boundary of finite systems N < ∞. Common are free boundaries where corresponding

edge particles have a reduced number of nearest neigbours or periodic boundaries where

the matrix Jij defines a nearest neighbourhood topology of a loop, a torus or a hyper-

torus. Our case of interest is the fixed boundary of a system I ∼= Z
2 whose spins are all

non-variable and negative except of a finite number forming a square of length L with

N = L2 particles. The set of all couplings with varying and fixed spins is called the minus

boundary .

Determining the macroscopic behaviour leads in general to the more abstract problem

of calculating the partition function (e.g. in Boltzmann statistics)

Zβ,h :=
∑
σ∈S

exp (−βHh (σ)) , β := 1/kBT , kB := 1

or the Gibbs measure (the probability measure determining the Boltzmann statistics)

µ (S ⊂ S) := Z−1
β,h ·

∑
σ∈S

exp (−βHh (σ))

from which essential system information can be concluded, e.g.

E = 〈H〉 = ∂βZβ,h

m = 〈M〉 = ∂hZβ,h/β

. . .

In practice difficulties arises from the fact that this partition sum has as many summands

as the space of states S has elements, #S = 2N . While properties of the thermodynamic

limit get obvious for system sizes N ∼ 104 . . . 106 today’s capability of single CPU cores

enables calculation for lattices of sizes N = 62 or 72 at maximum. Approaches yielding

concise formulas for Zβh (in thermodynamic limit L → ∞) basing on transfer matrix

method like the legendary Onsager solution for 2-dimensional Ising model with periodic

boundary remain exceptions and solutions of 3-dimensional lattices or 2-dimensional with

minus boundary are unknown – although this problem has a long tradition and is canonical

content of lectures in statistical physics for decades. Despite that unsolved problem many

partial aspects can be formulated explicitly which we will discuss next.
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1.2. The matter of interest

1.2. The matter of interest

One proud achievement made by statistical analysts is the explicit formulation of the

spontaneous magnetization of the 2-dimensional Ising model with periodic boundary for

L→∞: [13]

m∗β =

{
β > βc :

(
1− (sinh (2Jβ))−4)1/8

β 6 βc : 0
, βc =

log
(
1 +
√

2
)

2J

Since magnetization has at least two different possible directions and the average magne-

tization is zero (without exterior field) theorists give a clear definition of m∗β as a limit of

ensembles prefering the plus phase. I met two conventions [11] [18]

a) m∗β := “ lim
L→∞

〈m〉β,fixed (+)-boundary ”

b) m∗β := “ lim
h→0+

m∗β,periodic (h) ”

In detail: a) formulates a finite size scaling of the average magnetization 〈m〉L (β, h = 0)

of (L× L)-lattice with temperature β, vanishing external field h and (+)-boundary con-

dition, i.e. all out-of-boundary spins are positive. The positive boundary forces the

(+)-phase to dominate the system while the limit L→∞ generally damps the influence

of boundary condition until it vanishes. The limit represents the spontaneous magnetiza-

tion as if the system has evolved into the positive branch. The formulation of b) is another

avenue. Here we are considering the thermodynamic limits m∗β (h) of magnetizations with

various fixed but positive exterior fields h. Here the one-side limit h→ 0+ gives again the

positive spontaneous magnetization. Both formulations result in equivalent definitions.

But what happens if we combine both limits to competing influences

c) m = “ lim
h→0+

lim
L→∞

〈m〉fixed (−)-boundary ”

having a (−)-boundary forcing the system in the minus phase while an external positive

field h damps the boundary influence. How large is h such that they compensate

each other, i.e. 〈m〉 = 0? Or: How are h and L related to each other such that

“nobody wins” the magnetization “battle”? This is the question this Diplom thesis

was concerning with. A central role played the actual computational simulation which

afterwards turned out to be a formidable and inherently difficult task. The most notable

3



1. Concepts

result of my measurements is the critical field hc (β, L) and the magnetization 〈m〉 as well

as the magnetical susceptibility 〈χ〉 in dependence of β and h = hc (β). These obtained

data shall provide an empirical counterpart to the theoretical paper [11].

Let us assume the system is prepared with an exterior field such that 〈m〉 = 0. As in

the case of standard Ising model this does not imply configurations σ with M (σ) ≈ 0

to be privileged. For subcritical temperatures β > βc we find the typical preference of

magnetized phases again. In contrast to the standard Ising case there is an assymetry

of how the system is magnetized depending on the phase, if it is positive or negative.

While the minus phase takes the ordinary form of an omni-present cluster with few pos-

itive sprinkles due to thermal fluctuation the plus phase must have a surface between a

positive region and the negative boundary. This surface consists of anti-binding couplings

undermining the local energy minimum. To be close to the local minimum the system is

forced to reduce the negative couplings, i.e. to reduce the length (or area) of the surface.

The resulting surface tension turnes the plus phase to a droplet.

−L2 0 +L2

h
is

to
gr

am
H

(M
)

magnetization M

Fig. 1.1.: Magnetization histograms for different β.

The (in general direction-dependent) surface tension τ (n) is given by the ratio of the

(free) energy of a plane surface perpendicular to n and the (free) energy of the phase

without a surface. In the Ising structure we prepare plane surfaces of well-defined direction

with boundary conditions again: A lattice of finite size is intersected by a half plane whose

one half defines the fixed boundary spins to be positive and the other half the other fixed

boundary spins to be negative. The case without surface is prepared as discussed above

in a) receiving the spontaneous magnetization. Again with the limit L→∞ we yield the
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1.2. The matter of interest

thermodynamic limit.

τ (n) = lim
L→∞

− 1

β · lsecant

log
Zβ,h=0,halfplane(n) (L)

Zβ,h=0,(+)-boundary (L)

[Remark. I could not figure out of how large lsecant, i.e. the length of our prepared min-

imal surface interesecting the boundary, is. An overview simulation yielding the different

partition functions suggest that lsecant is not the Euclidean distance of the intersecting

points, as proposed in [18].]

In [1] were presented successes to explicitely calculate the surface tension τ (ϕ) of a

2-dimensional Ising lattice in dependence of the direction given by an angle ϕ.

x := e−2βJ , a :=
(
1 + x2

)2
, p := 2x

(
1− x2

)
b :=

{(a
2

sin 2ϕ
)2

+ (p cos 2ϕ)2

}1/2

α1 := ar cosh

(
a2 sin2 ϕ+ p2 cos 2ϕ

)
p
(
a sin2 ϕ+ b

)
α2 := ar cosh

(a2 cos2 ϕ− p2 cos 2ϕ)

p (a cos2 ϕ+ b)

τ (ϕ) = β−1 [α1 sinϕ+ α2 cosϕ]

By applying studies of crystal growth originated in the chemical papers [19] of Wulff we

are able to determine the average shape line of the surface tension minimizing droplet.

This numerical concisely realizable method is known as Wulff construction: Let Lλ,n the

half plane {x ∈ R2|x · n 6 λ} whose border ∂Lλ,n has the normal n and the distance λ

from the origin, the origin lies within Lλ,n. The construction

Wτ,λ :=
⋂

06ϕ<2π

Lλτ(ϕ),n(ϕ)

of intersecting non-concave sets gives the convex set of a Wulff shape. We define a

parametrization of its border by

γτ : ∂Wτ,λ = {γτ (ϕ) |0 6 ϕ < 2π} .

Behind the scenes this principle is a variational problem of crystal or droplet shapes

minimizing the surface tension. The corresponding integralWτ (γ) := |Wτ,λ|−1 ∮
γ
τ (ns) ds

5



1. Concepts
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Fig. 1.2.: Scheme of Wulff construction: the direction dependent surface tension, Wullf con-
struction scheme, Wulff shapes and integration scheme for the Wulff functional. Different con-
tures are of different temperature.

of least action is called the Wulff functional . It is normed by the volume of the Wulff

shape such that it is independent of the shape radius λ. All these numerical available

data are combined by Schonman and Schlossmann [18] to determine the spontaneous

magnetization of the droplet phase and the critical field for L→∞.

B0,β =
4τ̄β − wβ

4m∗β

κβ =
16τ̄ 2

β − w2
β

2m∗β

Where τ̄ := τ (ϕ = 0) is the surface tension along a crystal main axis, w := Wτ (γWulff)

is the Wulff functional of the Wulff shape which is per construction the minimum of Wτ

and the solution of the variation problem.

R. Kotecký and I. Medved’ claimed [11] to describe the spontaneous magnetization for

the minus phase as well as the positive droplet phase not only for L → ∞ but estimate
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Fig. 1.3.: Plot of the explicit computable surface tension along (0,1) and Wulff functional of
minimizing Wulff shapes; from this derived quantities B0 and κ.

it for finite L with an error tending to zero for L→∞: The thermodynamic limit is

lim
L→∞

mL,β,h =

{
−m∗β for Lh =: B < B0,β

+m∗β −
κβ

(2B)2
=: m (B) for B > B0,β

while the finite size scaling effords more abbreviating definitions. Let hχ (L) the external

field at which the susceptibility χ attains its maximum. It is not surprising that hχ (L)

should closely coincide with the critical field B0/L. Let

B∗ :=

(
1

2
+

κ

16m∗B2
0

)
B0

m+ (B) :=

{
m (B) for B > B∗

m (B∗) for B 6 B∗

m̄ (B) := (m+ (B)−m∗) /2

∆m (B) := (m+ (B) +m∗) /2

∆ := ∆m (B0)

7



1. Concepts

The main result of Kotecký and Medved’ reads as

hχ (L) ≈ h̃χ (L) := B0/L

mL ≈ m̃L := m̄ (B) + ∆m (B) tanh
(
β∆ (h− hχ (L))L2

)
χL ≈ χ̃L := (∆m (B))2 cosh−2

(
β∆ (h− hχ (L))L2

)
for β > βc and h = B/L. With error estimates∣∣∣h̃χ (L)− hχ (L) =: R

(0)
L

∣∣∣ 6 3B3
0L
−δ/κ

sup
h

∣∣∣m̃L −mL =: R
(1)
L (h)

∣∣∣ 6 CL−δ

sup
h

∣∣∣χ̃L − χL =: R
(2)
L (h)

∣∣∣ 6 CL−δ

The constants C and δ are not determined but it is claimed that for a fixed 0 < δ < 1/4

there is a fixed C and a L0 such that these estimates are valid for all L > L0.

-1

-0.5

0

0.5

1

0.4 0.5 0.6 0.7 0.8 0.9 1

m
ag

n
et

iz
at

io
n
m
L
,β
,h

inverse temperature β

0

0.5

1

1.5

2

0.4 0.8 1.2 1.6 2

su
sc

ep
ti

b
il
it

y
χ
L
,β
,h

inverse temperature β

Fig. 1.4.: Plots of the explicit results of Kotecký and Medved’ over β.

[Remark. In the paper [18] the authors took B0 := (4τ̄ − w) / (2m∗) which results in

a wrong factor of 1/2. For the above calculations I did not use their definition, rather the

result of [11]. Further, I took the definition χ = β var (M) instead of χ = var (M).]
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1.2. The matter of interest

Discussion. These results are remarkable in a certain sense: Contrary to my expecta-

tion, the estimates h̃χ (L), m̃L and χ̃L still show a singular point at β = βc rather than

a continuous smeared finite size version which actually occur. While the residues R
(1)
L

and R
(2)
L have an undetermined scaling behaviour their still finite (i.e. non-zero) at the

critical temperature. But in fact the estimate
∣∣∣R(i)

L

∣∣∣ < C · L−δ for unknown C and δ > 0

only states that the scaling over L is better than logarithmic. It is getting worser for

R
(0)
L : Although h̃χ (β = βc, L <∞) = 0 and hχ (β = βc, L <∞) > 0 the residue R

(0)
L is

also zero at β = βc. Since the finite size scalings are given only for β > βc the statements

remain mathematically true – we only need to choose a δ which is small enough that for

some L0 all L > L0 underlie the scaling. That means if we get closer to βc we will find

an arbitrary bad constraint R
(0)
L of the actual finite size scaling.

Conclusion. The results of Kotecký and Medved’ might be of theoretical relevance

but are impractical for computational purposes, especially the estimate of the critical field

which we need prior the simulation.

9



1. Concepts

1.3. Algorithms

1.3.1. Monte Carlo Methods

Despite the practical difficulties to enumerate the partition function exactly many states

σ ∈ S fortunately have similar or same Boltzmann factors exp (−βHh (σ)) which allows

us to choose a representable tiny fraction of S ′ ⊂ S without striking the Law of Large

Numbers. To this end, we decompose the Hamiltonian in spin sum M (σ) :=
∑

i σi ∈ Z
and coupling sum K (σ) :=

∑
i<j σiσj +

∑
i Fi ∈ Z and thus we yield

H (σ) = −JK (σ)− hM (σ) .

Correspondingly, we decompose the set of states in disjoint subsets

Sm,k := {σ ∈ S|M (σ) = m,K (σ) = k}

and call the characteristic couple (m, k) ∈ Z × Z a bin. For each bin all states have the

same energy

Hm,k := H (σ ∈ Sm,k) ≡ const .

The essence of binning the set S is a simplification of the partition function

Z (β, h) =
∑
m,k∈Z

∑
σ∈Sm,k

exp (−βH (σ) (h))

=
∑
m,k∈Z

|Sm,k| · exp (βJk + βhm)

which is now a sum over few bins # {(m, k)} ∼ L4 instead over the whole state space

#S = 2L. The very question now is how to choose the states σ representable.

The first idea may be selecting each state with same probability. This is easy to

implement by choosing each spin with a 50-50 chance (simple sampling Monte Carlo).

Formally, this method corresponds to selecting each state with its Boltzmann factor 1/Zβh

at temperature β = 0. But this method fails since nearly all states in S become highly

unlikely, i.e. their Boltzmann factors tend to zero, as the inverse temperature β increases.

Relevant states with significant factors occure rarely, irrelevant states with unsignificantly

small factors will dominate the simulation time. The best would be if we had an algorithm

10



1.3. Algorithms

preparing states Sm,k with probabilities

Pβ,h (m, k) :=
#Sm,k · exp (βJk + βhm)

#S

A direct method to construct states with probability of their Boltzmann factors with

a general , determining and sufficiently fast algorithm seems to be impossible since the

algorithm must use an inner larger symmetry of the system to have the states of arbitrary

complexity calculated with an algorithm of low complexity. If there would be such a

symmetry a concise formula implementing this algorithm would exist. But as already

mentioned no formula is known yet except for some special cases and as far as I know no

such algorithm has been published yet.

Today’s successfull approaches use non-determining algorithms which relie on time

evolving, energy minimizing techniques which transform each state to a close, similar

state. One possibility orients on the equation of motion, i.e. following the natural laws

of certain dynamics. But this method is not optimal since stationary points or cycles

(which widely occure in nature) would trap the simulation for a small selection of states

and this selection can not be representable. Importance Sampling Monte Carlo methods

give a more powerful tool. The basic and very intuitive picture is to propose a small set

of states at each time step which are close to the current state and to choose one of them

with the probability given by their Boltzmann factors. Stationary points or cycles may

occure in finite time intervals but with increasing time the system becomes more likely to

change its orbit and cover the full range of S. (And the Monte Carlo principle is closer

to quantum dynamics whose common interpretation suggest random driven events). But

even those temporal orbits can get a long life time when β & βc (critical slowing down)

and these are further problems that need to be taken into account.

Regarding our problem we will focus our consideration on the Heat Bath algorithm

which belongs to the single spin update algorithms. For the Ising model the Metropolis

algorithm, also a single spin update algorithm, is slightly more efficient. Nevertheless we

will use Heat Bath for two reasons: first it is formally a bit more comfortable and second

the aim of this thesis is to provide a starting point to generalize the elaborated methods

to those for the Potts model where Heat Bath is slightly more efficient than Metropolis.

We improve critical slowing down by applying the Parallel Tempering method.

In certain cases it is possible to improve the slowing down with Cluster algorithms.

But while the famous Wolff algorithm does not work for systems with exterior fields,

11



1. Concepts

Swendsen-Wang does but has no clear advantage.

1.3.2. Independent Monte Carlo steps and autocorrelation

The aim of a Monte Carlo simulation is a set of independently generated states σ ∈
S following the distribution Pβ,h (M (σ) , K (σ)). But since such importance sampling

methods rely on a Markov chain producing states each with a memory to its preceding

state, we can not eliminate remanent effects. We expect an exponentially decreasing

correlation of states which we discuss quantitatively with the autocorrelation function

A (∆t) for an observable X (t) of interest:

A (∆t) :=
1

MCS−∆t

∑MCS−∆t
t=1 X (t)X (t+ ∆t)− 〈X〉2

var (X)
∼ exp (−t/τ) .

The factor τ > 0 determines the time scaling of autocorrelations, it has the unit of time

so it is called correlation time. The smaller the correlation time the larger the number of

states which are allowed to be considered as nearly independent. Actually, measurements

reveal an “overlap” of multiple exponentials

A (∆t) ∼ C1e−t/τ1 + C2e−t/τ2 + C3e−t/τ3 + . . .

and suggest a multitude of influences which autocorrelate the simulation. The largest

impact is caused by significant local minima in Pβ,h over magnetization m. Since single

spin flip algorithms turn only one spin at once the system undergoes a random walk mt →
mt+1 ± 2 within the binned state space {Sm,k} or the histogram Pβ,h. Two distant states

σ1, σ2 ∈ S with similar energies Hh (σ1) ≈ Hh (σ2) are highly unlikely to be transformed

into each other when a significant energy “barrier” makes a walk from σ1 to σ2 to a

rare “tunneling” event although statistics demand a ≈ 50-50 transition probability. This

simulational problem has its physical counter part in spontaneous symmetry breaking,

i.e. spontaneous magnetization in our case.

While this effect causes a critical slowing down around β = βc the simulation will be

“subcritically trapped” in one magnetization phase for β � βc. Computational physics

provide a wide arsenal of methods to reduce this trapping effect, e.g. Cluster flip algo-

rithms and umbrella techniques like Multicanonical sampling or Wang-Landau algorithm.

We decided for Parallel Tempering [4] method which will be discussed soon.

A second correlation effect inherently comes from the simulation principle itself: as we

12



1.3. Algorithms

will discuss in the next section, the Heat Bath sinlge-spin flip systematically “rejects” spin

flip proposals if they would turn the system into a less probable state, i.e. the Boltzmann

weight factor e−βHh(σ) would decreases. The lower the temperature T the larger is β and

the larger it amplifies the differences in the weight factors. In turn this increases the

probability of rejection in the case the system is in equilibrium, i.e. if it is already forced

into a local optimum. This effect slows down the simulation but not in such a large scale

like the above mentioned random walk trap. Rejects can be avoided completely with a

reformulation of the original algorithm, as we will show in the next section.

The result will be a time line of states each holding the additional information of its

average lifetime and avoiding subsequent repetitions. Before calculating τ we unfold the

compressed time line to the actual A (∆t). Since analytical methods would be non-trivial

we calculate τ from the integral or sum of A (∆t). After that, we normalize τ with the

acceptance rate.

A further influence should be kept in mind: the type of (pseudo!) random number

generator determines the quality of random distribution. Standard generators produces

numbers which are not sufficiently uncorrelated for scientific demands. To avoid unpre-

dictable artefacts I used a Mersenne twister generator. [17]

1.3.3. Heat Bath Update and a slight improvement

The classical Heat Bath algorithm performs repeated single-spin-flip transitions of given

spin configuration σ0 → σ1 to produce a Markov chain obeying the Boltzmann statistics.

This is done by taking a particle i at uniform randomness, calculating the transition

energy ∆Ei and deriving the transition probability

w
(
σ0 → σ1 (i)

)
= e−β∆Ei/

(
1 + e−β∆Ei

)
which determines the probability to accept the flip request. But the main disadvantage of

an increasing reject rate of the flip request when temperature decreases (,,critical slowing

down“) is that this method slows down. However it is possible to reformulate the algorithm

in such a way that effectively the same simulation takes place with the rejects rejected .

We use simplifications which result from the simplicity of the model: The individual flip

energy of each particle i depends only on its spin σ0
i ∈ {−1,+1} and on the local field,

i.e. the sum νi of the spins of its nearest neighbour particles. These sums νi are one

of {−4,−2, 0,+2,+4}. Later on, we can tabularize further derived quantities with low

13



1. Concepts

costs. The flip energy is

∆Eσ,ν = 2σ · (Jν + h) , ∆Ei = ∆Eσi,νi

We sort all particles in sets Iν,s := {i ∈ I|ν0
i = ν, σ0

i = s} in dependence of their nearest

neighbour configuration and the spin. The probability to visit particle i is

pvisit (i) = N−1

=
Nν,s

N
· 1

Nν,s

where Nν,σ := #Iν,σ. In classical Heat Bath it means we may equivalently choose a

subset Iν,σ ⊂ I with probability Nν,σ/N and subsequently we choose a particle i ∈ Iν,σ
with probability 1/Nν,σ to get the same effect. In classical Heat Bath, the probability of

acceptance, i.e. to flip any arbitrary particle’s spin is

pflip =
∑
i∈I

pvisit (i) · w
(
σ0 → σ1 (i)

)
=

∑
ν,σ

Nν,σ

N
·
∑
i∈Iν,σ

1

Nν,σ

· e−β∆Eν,σ

1 + e−β∆Eν,σ

=
∑
ν,σ

Nν,σ

N
· Nν,σ

Nν,σ

· 1

eβ∆Eν,σ + 1

=:
∑
ν,σ

nν,σ · wν,σ

This means a state σ0 needs 1/pflip requests on average until a flip is accepted.

Algorithm. In our faster variant of Heat Bath the current state’s expected lifetime

1/pFlip is added to the histogram (instead of counting the ”matches”) and the flip will

definitely be carried out (this means an effective 100% acceptance rate). The probability

to choose a specific subset Iν,σ is nν,σ ·wν,σ/pflip, the probability to choose a particle in Iν,σ

is uniformly 1/Nν,σ. Implementational drawback of this method may be the complicated

list data structures for the Iν,s.

The deeper meaning of pflip (σ). Let be (t 7→ σt) : T → S a Markov chain of states

σt ∈ S over a discrete time t ∈ T = {1, . . . ,MCS} as a product of our faster Heat Bath

14



1.3. Algorithms

sweeps. Consider the selection of states with specific energy

Tm,k = {t ∈ T |σ ∈ Sm,k} .

By the above discussion we have

Pβ,h (m, k) ∼
∑
t∈Tm,k

pflip (σt)
−1

If we forget the binning over (m, k) for a short time and consider a certain σ ∈ S we will

have

Z−1
β,h · e

−βHh(σ) = Pβ,h (σ) = c (σ) · pflip (σ)−1

and we will see that

c (σ) ∼ e−βHh(σ) · pflip (σ)

counts the frequency of the state σ in the fast Heat Bath variant – it is the probability

measure in the statistics of our algorithm. If we are interested in transition probabilities

for arbitrary states (and we are for parallel tempering method) we should take this circum-

stance into account. Long living states which are the significant in Boltzmann statistics

will be under-representated by the factor pflip (σ)−1 in the fast Heat Bath statistics where

c (·) is the probability measure.

〈χm,k〉Gibbs = Pβ,h (m, k) =
〈
p−1

flipχm,k
〉
c

where χm,k (σ) :=

{
σ ∈ Sm,k : 1

else : 0
. A transition probability like wσ1,σ2 := c(σ2)

c(σ1)+c(σ2)

preserves detailed balance in fast Heat Bath statistics.

1.3.4. Parallel tempering

An efficient method [4] to reduce critical slowing down is the trick of swapping replicas of

the system simulated with different parameters (β, h). The idea is that configurations in

a deep temperature environment with large slowing down profits from the uncorrelating

effect of high temperature environment when they randomly diffuse through the field

15
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of parallel simulated environments. While the local simulation within a replica may

be arbitrary, e.g. Heat Bath or Wang-Landau, the replica swapping must obey detailed

balance. But as proposed in the previous section, swapping states between two simulations

does not only mean changing spin configurations within the probability of the underlying

statistics but of two statistics which are different in general caused by different simulation

parameters β and h.

Assume two parallel, isolated simulations. The first with parameters β, h and the

resulting probability measure c (·) and the second one with β′, h′ and c′ (·). Let σ1, σ2 ∈ S
and let us, with the notation (σ, σ′) ∈ S × S, abbreviate the fact “first system has state

σ, second σ′.” Since both simulations are independent from each other the probability

of a configuration (σ1, σ2) of the total system is c (σ1) · c′ (σ2). The function w (X → Y )

stands for transition probability from a circumstance X to a circumstance Y . Detailed

balance for swapping demands us

w ((σ1, σ2)→ (σ2, σ1))

w ((σ2, σ1)→ (σ1, σ2))
=

c (σ2) · c′ (σ1)

c (σ1) · c′ (σ2)

=
e−βHh(σ2) · pflip (σ2) · e−β′Hh′ (σ1) · p′flip (σ1)

e−βHh(σ1) · pflip (σ1) · e−β′Hh′ (σ2) · p′flip (σ2)

= eJ(β−β′)(K2−K1)+(βh−β′h′)(M2−M1) ·
pflip (σ2) p′flip (σ1)

pflip (σ1) p′flip (σ2)

=: Wσ1,σ2 (β, h; β′, h′)

which is fulfilled e.g. for

w ((σ1, σ2)→ (σ2, σ1)) = min {1,Wσ1,σ2 (β, h; β′, h′)} .

In general, the selection of the simulation parameters (βi, hi) is a non-trivial task: The

parallel tempering method works optimal if the different overlapping histogram regions of

adjacent simulation are ‘balanced’. There are methods “making life simple” [3]. But for

reasons of comparability I chose an apriori distribution of βi such that βi/βi+1 = const.
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1.3. Algorithms

The distribution of N measure points β1 < . . . < βN for given β1, βN is

C := β2/β1

βi+1 = Cβi

=⇒ βi
!

= Ciβ1

=⇒ C = N
√
βN/β1

=⇒ βi = (βN/β1)(i−1)/N β1

17
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1.4. Evaluation techniques and error estimation

1.4.1. Reweighting techniques.

Reweighting techniques. Once we are in knowledge of Pβ0,h0 (m, k) for a certain tem-

perature β0 and a certain external field h0 we are able transform it with an easy-to-

calculate factor in order to generalise it for arbitrary temperatures β and fields h

Pβ,h (m, k) = Pβ0,h0 (m, k) · exp ((β0 − β) Jk + (β0h0 − βh)m) .

This factor is called reweighting factor Rm,k (β, h; β0, h0) since it formally replaces the

Boltzmann weights e−β0Hh0 (m,k) by e−βHh(m,k) which are implicitely contained in Pβ0,h0 (m, k).

Transforming one histogram Pβ0,h0 into another histogram Pβ,h suggests this method to

name (single) Histogram Reweighting . It has the advantage to carry out a single simu-

late only once and have data for an infinite ensemble of different parameters. But one

needs to bear in mind that statistical errors scale exponentially with Rm,k (β, h; β0, h0),

which are huge for larger ∆β and ∆h and constrain the reliability of reweighting to the

neighbourhood of (β0, h0).

To get data for a wider range of simulation parameters – as we need for β = βc · · · 2.0 –

we have to measure at few distant parameters (β0, h0) , . . . , (βk, hk). The question is how

to combine the multiple histograms to a single one. The difficulty is, that

Pβp,hp (m, k) ∼= Cp · % (m, k) · e−βpHhp (m,k)

for which the factors Cp ∈ R+ are unknown. An idea that naturally comes into mind is

to get the correct ratios between adjacent histograms Pβp,hp and Pβp+1,hp+1 by reweighting

the histogram p+ 1 as (βp+1, hp+1) −→ (βp, hp) so that comparison is allowed from which

we conclude all normalizations

C̃p = C · Cp

in correct ratios, with the remaining unknown C to be of no problem. And if we have,

e.g. β0 = 0, we are able to conclude the absolute Cp and get the density of states without

biases from cut off effects. But the problem of statistical errors remains problematical

since our chain of conclusion is C0 ⇒ C1 ⇒ C2 ⇒ . . .⇒ Ck so Ck is less correct. Luckily

there is a fixed point iteration suggested by Swendsen and Ferrenberg [5] which solves
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these difficulties: Let us reweight all histograms to the same parameter, e.g. (β0, h0) = 0

and sum them

P ′ (m, k) =
k∑
p=0

Pβp,hp (m, k) · e−βpHhp (m,k)

tp =
∑
m,k

Pβp,hp (m, k)

and iterate the two formulas

P new (m, k) = P ′ (m, k) ·

(
k∑
p=0

tp · e−βpHhp (m,k) · C−1
p

)−1

Cp =
∑
m,k

P new (m, k) · exp
(
−βpHhp (m, k)

)

1.4.2. Range of Magnitudes

The tremendous magnitudes of the reweighting factors do not only lead to a limiting effect

of the applicable ranges of β and h but also to a pragmatical difficulty when we want to

unite multiple histograms of very different parameters β and h to a single one: Since the

Rm,k (β, h; β0, h0) is an exponential, we need to face the serious question of magnitudes

it spans in machine numbers. For our specific problem of a 2-dimensional spin lattice of

linear length L the coupling sum ranges within −2L (L+ 1) . . .+2L (L+ 1), the spin sum

within −L2 . . . + L2 but which is multiplied by the external field h which never exceeds

4J/L. Thus, the Hamiltonian never exceeds

H 6 2L (L+ 3)

The partition function can generously be estimated via

Z =
∑

e−βH(σ) < |S| · e−0...2H = 2L
2 · e4L(L+3) < eL

2+L(4L+12) = eL(5L+12)

The comparison with realistic system sizes shows us the significance of magnitudes

L 16 32 64 128 256

ln (Z) 1472 5504 21248 83456 330752

So even a 16 × 16-Lattice is to large to be handled with machine numbers of double

precision standard IEEE 754, whose values range within −2−1023 . . . + 2+1024. The pro-
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grammer needs to handle these issues by using multi precision libraries or by implementing

necessary functionality on his own – as it has been done in this work – when a logarithmic

storage of the large numbers seems to be an inattractive alternative.

1.4.3. Calculation of magnetization 〈M〉 (β, h) and χ (β, h)

The average magnetization and its i-th powers are the expectation values of M i (σ) in

Boltzmann statistics and calculates from histogram as

〈
M i
〉

(β, h) =
∑
σ∈S

M (σ)i · exp (−βHh (σ)) /
∑
σ∈S

exp (−βHh (σ))

=
∑
m,k

mi · Pβ,h (m, k)

when Pβ,h (m, k) is normalized. The magnetic susceptibility χ (β, h) is defined as

χ (β, h) :=
∂ 〈M〉
∂h

∣∣∣∣
β

and can be reformulated using the above formula for 〈M〉. Consider

Z ′β,h :=

(
∂

∂h

∣∣∣∣
β

)
Zβ,h =

(
∂

∂h

∣∣∣∣
β

)∑
σ∈S

exp (βJK (σ) + βhM (σ))

=
∑
σ∈S

βM (σ) · exp (−βHh (σ)) /Zβ,h · Zβ,h

= β 〈M〉 · Zβ,h
analogously Z ′′β,h = β2

〈
M2
〉
· Zβ,h

and thus

χ (β, h) =

(
Z ′β,h
βZβ,h

)′
=

1

β
·
Z ′′β,h · Zβ,h −

(
Z ′β,h

)2

Z2
β,h

=
1

β
·

(
Z ′′β,h
Zβ,h

−
(
Z ′β,h
Zβ,h

)2
)

= β−1
(
β2
〈
M2
〉
− (β 〈M〉)2)

= β
(〈
M2
〉
− 〈M〉2

)
.
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Since var (M) = β−1χ (β, h) we also calculated the error of the magnetization estimator

εM :=
√

var(M)
MCS

=
√

χ(β,h)
β·MCS

where MCS is the number of (independent!) M onte C arlo steps

of the simulation. The errors of χ (β, h) are of interest, too. As the susceptibility is not

an observable derived from the normally distributed histogram bins Pβ,h (m, k) directly,

we need a different method to get error estimates. A common method – the blocking –

divides the whole block {X1, . . . , XMCS} of Monte Carlo steps into a set of B disjoint

sub blocks {X}1 , . . . , {X}B of width b and consider each as a single simulation. From

all these sub blocks the susceptibility will be calculated as mentioned above so in turn

χ (β, h) is made to a random variable on which we apply statistics. The Jackknife method

is an improved version of that concept and reduces uncomfortable bias effects from the

given distribution. The fundamental difference of simple blocking is that the Jackknife

uses the set-theoretical complements {X}′j := {X1, . . . , XMCS} \ {X}j so it “reuses” the

measurements of the overlapping regions. This aspect must be taken into account by a

correct normalization:

Yj :=
1

b (B − 1)

∑
X 6∈{X}j

X

var (Y ) =
B − 1

B

B∑
j=1

(
Yj −

1

B
·

B∑
k=1

Yk

)2

1.4.4. Calculation of critical field hc (β)

The critical field hc (β) is defined such it fulfills the equation 〈M〉 (β, hc (β)) = 0, i.e.

the critical field compensates the influence of the minus boundary on magnetization. We

solve this equation numerically by the method of nested intervals : Since 〈M〉β (h) is a

monotonously increasing function answering the effect of external field we simply need to

select a value hi+1 =
(
h−i + h+

i

)
/2 ∈ Ii :=

[
h−i , h

+
i

]
and look if it is negative, positive or

(close to) zero. If it is negative, we will set h−i+1 = h−i and h+
i+1 =

(
h−i + h+

i

)
/2, i.e. we

will divide Ii in the middle and take the lower part and continue the procedure on Ii+1,

if magnetization is positive we will set h−i+1 =
(
h−i + h+

i

)
/2 and h+

i+1 = h+
i , i.e. taking

the upper part, if magnetization is (close to) zero, we will break the algorithm and have

hc ≈ hi+1.

Since hc (β) is the value of the inverse function of h 7→ 〈M〉 (β, h) at 〈M〉 = 0 we derive

the errors from 〈M〉:

21



1. Concepts

h (〈M〉)− hc =

(
∂ 〈M〉
∂h

)−1

h=hc

· 〈M〉

=
(
βσ2
〈M〉
)−1 · 〈M〉

σ2
h=hc =

(
βσ2
〈M〉
)−2 · σ2

〈M〉

=
1

β2σ2
〈M〉

=
1

βχ

Since hc (L, β) . 4J/L we find the relative error of hc

εhc
hc

=
1

hc
· 1√

MCS βχ (β, hc)

&
L

4J
· 1√

MCS βχ (β, hc)

If we wish to have a certain εhc we need the following N independent Monte Carlo steps

N &
1

16J2
· 1

βχ (β, hc (β))
· L

2

ε2
hc

1.4.5. Extrapolation

The quality of simulation results essentially relies on an exact estimate of the external

field h which is a simulation parameter like β and which must coincide well with the

critical field hc. The only way to receive these important data prior the simulation is to

extrapolate them from prior simulations of lower system sizes. Thus we need a reliable

interpolation algorithm. We expect the critical field hc (L) to evolve in a law of decay

over L. The paper of Kotecký and Medved’ suggest the Finite Size Scaling of hc (L) to

be power-like. In the first order approximation we take the ansatz

hc (L) ≈ D · L−δ + C

To extrapolate the hc (L) of interest we hope the triples (L− 3, L− 2, L− 1) as inter-

polation input yield a good approximating law. How to interpolate given data techni-

cally is discussed in appendix A. Of essential interest is the problem for arbitrary triples

(L1, L2, L3). This flexibility allows us to experiment with the best selections of interpola-

tion inputs but demands a non-explicit iterating calculation, a fixed point iteration.
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By the way: Since we have a tool interpolating exponential decay and a fast variant

of heat bath algorithm we are in the comfort to investigate the exponential behaviour

of an accurate measured autocorrelation A (t). My personal hope was to find a method

for a more precise calculation of correlation time τ . But the interpolation failes with the

ansatz

A (t) = Ae−t/τa +Be−t/τb .

I recognized that the most accurate samples, which are that for the lowest t, start almost

linearly and that this causes the interpolation to calculate degenerated roots or roots of

negative radicals. In other words: The ansatz is qualitatively wrong and needs to be

refined.
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2.1. General difficulties

Lack of a good algorithm. The most serious difficulty comes with the fact that each

standard simulation technique has profound drawbacks: Wolff cluster algorithm is not ap-

plicable to systems with a non-vanishing exterior field, Swendsen-Wang cluster algorithm

works but does not yield the performance improvement we hoped to achieve. Parallel

Tempering fails due to the wide temperature range: to get a good overlap of adjacent

histograms the number of parallel simulations must increase and that declines the effi-

ciency of system mixing. Furthermore we need a wide temperature range since there exist

a measurable deviation of hc (β) and hc (∞) even at β = 4.0. We decide for β ∈ (0.0, 2.0)

as a compromise. Umbrella techniques fail since even for L = 14 we have more than 105

relevant histogram entries for equally distributed visits but the minus phase is represented

by fairly one entry. And we need a good ratio of plus and minus phase to calculate hc.

In my opinion only a cluster algorithm – probably a variation of Swendsen-Wang – may

solve our sorrows elegantly.

Unknown simulation parameter hc (β). The simulation must be carried out with

an exterior field h very close to actual hc – which I originally planned to calculate from

simulation data – since even if we had an algorithm comparable to Wolff a wrong field

would cause bad histogram statistics. The problem enhances as β increases. There

exists an exact solution of the limit hc/L for L → ∞ but this does not help since the

asymptotical finite size scaling behaviour is very weak. The only way is to simulate each

system size L and to estimate the next field hc (L+ 1) e.g. by exponential extrapolation

which, in contrast to the whole frustrating situation, is very accurate. Unfortunatly the

extrapolation is not reliable for wider ranges of L.

Large histograms. Since we are interested in the magnetical behaviour we need

a histogram which seperates the states between coupling energy K (σ) :=
∑

i,j Ji,jσiσj

and magnetization M (σ) :=
∑

i σi. K ranges between ±2L (L+ 1) and M between
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±L2. That means our histograms scale in size as ∼ L4. Furthermore there are sharpe

peaked regions which makes it delicate to decrease the histogram resolution. As mentioned

before, hc has a very sensitive dependence to the peaks close to the pure phases. But the

large histograms make calculations considerably long (Swendsen-Ferrenberg reweighting

iteration, method of nested intervals to systematically guess hc) and takes time comparable

to the simulation time itself! Fortunatly we only need a high accuracy of the minus phase

histogram bin so we ever can choose a resolution grid which reduces the neighbourhood

of the minus phase bin to M = −N .

Hidden barriers. Since the critical field hc scales as∼ L−1 the energetical contribution

of magnetization in the positive droplet phase gets weak in comparison the coupling energy

K. This makes many droplet shapes with the same vertical and horizontal diameter close

to be equivalent since for given diameters there is a huge class of shapes with “rounded”

corners which have the same coupling energy. But using single spin flip algorithms the

transition between shapes with different diameters demands whole edge lines to be flipped

and for increasing L this becomes increasingly unlike to happen. So even the simulation

in the plus phase causes larger correlations.

2.2. The algorithm I took

Finding an appropiate simulation algorithm was a frustrating and time consuming task. I

recognized the “great barrier” of rare events between the two magnetization phases in the

histogram as the main problem which cannot be circumvented using elabored standard

techniques as already mentioned. My uncountable fruitless trials had this in mind: single

spin updates make the system undergo a random walk through the (M,K) histogram, i.e.

locally jumping to “nearest neighbour” bins at each update. But what we need are far

jumps between the two phases. Cluster algorithms carry out many far jumps and this is

the main effect of decorrelating the simulation.

Out of desperation for the time running out I decided to give it a last try with a very

inelegant method. I equipped the parallel tempered heat bath algorithm with a whole

system flip update. My hope was that this approach would decorrelate the cool end of the

parallel tempered chain and that this cool end would feet the middle of the chain with

further uncorrelated states. Since the ground state consists of the two pure magnetized

phases (if h = hc, of course) this is reasonable but not perfect because for large but

finite β the system lies above the ground state where the minus and plus phase are not
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symmetric in their distribution: while the minus phase is strongly peaked at M = −N
the plus phase has a smoother bulk reaching its maximum at a M < +N .

What I did not expect was the considerable improvement for systems of moderat sizes

up to L ≈ 24. Since the whole system flips this improvement also decorrelates the hidden

barriers in the plus phase which I explained above.

Unfortunately, this idea came nearly too late. I simulated the problem on my work

station only because I felt the time to demand computation time on the busy computer

cluster was to short and I needed to hurry up scraping together my results and docu-

menting them. I decided it would be better to invest the remaining time in completing

this document. At the end I simulated systems of sizes L = 7, 8, 9, 10, 11, 12, 13, 14,

15, 16, 18, 20, 22 and 24 each with 22 parallel replica and 106 sweeps per replica. The

temperatures β are chosen such that βi/βi+1 = const while i is the parallel simulation

index with given βi and hi ≈ hc (βi). The temperatures ranges in β ∈ [0.25, 2.0]. In

order to get an estimate of the critical field hc (β, L) I extrapolated it from three previous

measurements of hc (β) with the ansatz hc (β, L) = g ·Lγ +c. For the small lattices L = 7,

8 and 9 I used extrapolates from exact enumerated lattices L = 3, . . . , 6.

2.3. Evaluation

As mentioned earlier the additional whole-system-flip has an essential impact on the

simulation velocity. Figure 2.1 shows the dependence of temperature and the system size.

Without the additional system flip the autocorrelation time would grow exponential over

β. The bulk in the middle might be reduced using a dynamic adapting distribution of the

βi as proposed in [3].

2.3.1. Finite Size Scaling of the critical field

The scaling of the normed critical field B0 (β, L) := hc (β, L) · L is very slow. Figure

2.2 shows the measured results and gives an overview of the further scaling in which we

assume a power law B0 (β, L) = D (β) · L−δ(β) + B0 (β, L→∞) which interpolates the

measurements of L = 18, 22 and the explicit known limit L → ∞. As we conclude from

the plot even very large systems of sizes L = 27...10 do not approximate the infinite size

limit very well.

Even the power law has a slow scaling. Figure 2.3 shows the parameters D and δ of
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Fig. 2.1.: Autocorrelation times in dependence of L and β for parallel tempered heat bath
algorithm with a whole-system-flip-proposal each sweep.

interpolations in dependence of the measurements we took: Reliable fits are possible e.g.

for triples (L, 16,∞) with L = 2, . . . , 8. While DL,16,∞ suggests an explicit approximation

for L→∞ the shape of δL,16,∞ obeys a less obvious expression.

2.3.2. Finite Size Scaling of magnetization and susceptibility

The finite size scalings of magnetization and susceptibility in the formulas of Kotecký

and Medved’ have a dependency on the unknown hχ (L), i.e. the critical field defined by

the maximal value of χL (h). If we approximate hχ (L) ≈ B0/L as done in their paper

we expect systematical deviations of the explicit estimates from the actual measured

quantities.

As we can see in figure 2.4 the magnetization mL (h) is qualitatively well reproduced by

the complete explicit formulas, except for the systematical shift along the h axis due to

the wrong critical field estimate. But as in the case of critical field estimates the explicit

result shows a significant, systematical deviation as temperature β tends to βc. Further,

the convergence is weaker close to the critical point and stronger in the cold phases.

The accordance of explicit and measured result gets quite more obvious for the suscep-

tibilities χL (h) which are peaked at the critical field h = hc, cf. fig. 2.5 . Again we find
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2.3. Evaluation
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Fig. 2.2.: Plot of critical field for different sizes L. The thick lines show calculation from
measurements for L = 2, 4, 6, ..., 24 and the explicit L→∞. The thin lines show interpolations
for L = 32, 64, 128, 512, 1024.

systematical shifts due to the inaccuracy of the estimation hχ (L) ≈ B0/L. A closer look

reveals the right tails of the measurement peaks a bit stronger than the left ones while

the explicit peaks have a symmetric shape.

We conclude our visual comparison: the semi-explicit formulas of magnetization and

susceptibility are substancially better than the more simple estimate of the external field .

Since these relations incorporate the unknown hχ (L) they do not provide an explicit

expression unless this unknown term is replaced by the worsening B0/L.

It remains the question of quantitative accuracy of the semi-explicit estimations. To

have the measured data comparable with the explicit, we calibrate our measurements to a

relative field η := h−hc (L). The measurement plots over η would show the same centering

arrangement as the explicit data with B0/L as critical field estimate. The residues R
(i)
L (h)

for i = 1, 2 are summands and thus they are the difference of the explicit and the actual

quantities. Kotecký and Medved’ state that these residues decreases with increasing L

and are constrained by a power law CL−δ where δ ∈ (0, 1/4) can be chosen arbitrarily and

C is sufficiently big. Unfortunately, the power law is so weak that the available range of L
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2. Simulation and Evaluation
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is to small to have an effect which is large enough to see more than statistical fluctuation.

2.4. Conclusion

Conclusion on algorithmic strategy. The parallel tempered heat bath algorithm

equipped with an whole-system-spin-flip proposal marks a first goal of the gained “far

jumps” in the histogram walk but nevertheless it is not as efficient as needed. I guess that

finally a multi-magnetic umbrella technique would yield results of comparable quality.

Further steps must be made to improve this idea. Such certain flip algorithm must do

more than simply flip the whole system. Probably, there is a method which relates “cold”

positive droplets with the negative phase and makes transitions between these two areas

more likely to happen.

Conclusion on the explicit approach of Kotecký and Medved’. The theory has

a quite good accordance to the measurements when we consider the semi-explicit expres-

sion for magnetization and susceptibility. The theory surely is mathematical consistent

but lacks useful statements for temperatures close to the critical temperature and it is
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insufficient predicting the external field.

Personal Conclusion. The whole situation of this work is highly unsatisfactory. I

guess there is no point in my life where I had undertaken a task with such an amount of

ambitious dedication and diligence. And never I had such a bad ratio of effort to result.

But this should not be an accusation, not for me and not for somebody else. At the

beginning of my studies on this topic I decided to find a reliable simulation technique

and not to stop untill I had found something. It turned out to be a true sophisticated

challenge. I risked to fail and now I pay for it with a suboptimal result. But what are

the alternatives?
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A. Mathematical considerations on

extrapolation of decay

Problem. For a certain function of the type

f (t) = Aeat +Bebt + Cect + . . . <
t→∞

∞

we only know a finite set of of key-value pairs (“points”) f1 = f (t1), f2 = f (t2), f3 =

f (t3), . . . from which we like to reconstruct f , i.e. the parameters a,A, b, B, c, C, . . .

Case I (2 points given). A function f (t) = A · at with given values f0 = f (t0) and

f1 = f (t1) has parameter a = t0−t1
√
f0/f1 and A = f0/a

t0 .

Case II (3 points given). Let

f (t) = A · at +B

for unknown A, a,B and let fi = f (ti) be given for i = 1, 2, 3. With elementary transfor-

mations we yield the solution

a =
f3 − f2

f2 − f1

A =
f2 − f1

at1 (a− 1)

B = f0 − Aat0

Case III (4 points). Let

f (t) = A · at +B · bt
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A. Mathematical considerations on extrapolation of decay

for unknown A, a,B, b. Let f (ti) = fi be known for ti = i = 0, 1, 2, 3 and let fifi+2 6= f 2
i+1,

i.e. f (t) is a true bi-exponential and not ∼ ect. We isolate the coefficients

A (i) =
(
fi −Bbti

)
a−ti

B (i) = −fi+1a
−ti+1 − fia−ti

(a/b)ti+1 − (a/b)ti

using two adjacent pairs (ti, fi) , (ti+1, fi+1). Of course A (0) = A (1) = A (2) = A (3) and

B (0) = B (1) = B (2). With c = a/b and C (i) := fi+1a
−ti+1 − fia−ti we conclude from

B (i) = B (i+ 1) that

r
(
cti − cti+1

)
=

(
cti+1 − cti+2

)
, r := C (i+ 1) /C (i)

0 = cti+2 − (r + 1) cti+1 + rcti

0 = c2 − (r + 1) c+ r · 1

=⇒ c ∈ {1, r}

Since we are not interested in a = b ⇔ c = 1 the solution c (i) = r = C (i+ 1) /C (i) is

the only relevant. Again we have c (0) = c (1) and we conclude

C (1)2 = C (0)C (2)(
f2a
−2 − f1a

−1
)2

=
(
f1a
−1 − f0a

0
) (
f3a
−3 − f2a

−2
)

0 =
(
f1f3 − f 2

2

)
a−4 + (f1f2 − f0f3) a−3 +

(
f0f2 − f 2

1

)
a−2

0 = q + 2pa+ a2 , p =
1

2
· f1f2 − f0f3

f0f2 − f 2
1

, q =
f1f3 − f 2

2

f0f2 − f 2
1

a = −p±
√
p2 − q.

Since we could have done the same calculation for b instead of a – swapping A, a and

B, b causes no change in f (t) – we conclude that the above formula also represents b. We

36



choose

a = −p+
√
p2 − q , p :=

1

2
· f1f2 − f0f3

f1f3 − f 2
2

b = −p−
√
p2 − q , q :=

f0f2 − f 2
1

f1f3 − f 2
2

B = B (0) =
f1 − f0a

b− a
A = A (0) = f0 −B.

Case IV (5 Points). The problem

ϕ (t) = Aat +Bbt + C

with five given values ϕi = ϕ (ti), ti = 0, . . . , 4 reduces to the above case III by setting

fi := ϕi − ϕi+1 , i = 0, . . . , 3

and we then yield verbatim solution for a and b. The coefficients are calculated as

B =
af0 − f1

(b− a) (b− 1) bt0

A =
bf0 − f1

(a− b) (a− 1) at0

C = ϕ0 − Aat0 −Bbt0 .

Case V (6 points). Let

f (t) = Aat +Bbt + Cct

and let fi := f (ti) for ti = i = 0, . . . , 5 be given. We isolate the coefficients

A (i) = fia
−t −Bdti − Cgti , d := b/a, g := c/a

B (i) =
ϕi − Cγi

δi
, γi := gti+1 − gti , δi := dti+1 − dti , ϕi = fi+1a

−ti+1 − fia−ti

C (i) =
ϕiδi+1 − ϕi+1δi
γi+1δi − γiδi+1

=
Di

γi+1 − γid
, Di := ϕid− ϕi+1
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A. Mathematical considerations on extrapolation of decay

and it holds that A (0) = . . . = A (5), B (0) = . . . = B (4) and C (0) = . . . = C (3). Thus

we get from C (i) = C (i+ 1)

Di+1 (γi+1 − γid) = Di (γi+2 − γi+1d)

Di+1 (g − d) = Dig (g − d)

g (i) = g = Di+1/Di

and it holds g (0) = g (1) = g (2). With g (i) = g (i+ 1) and d = b/a we have

D2
i+1 = Di ·Di+1

(ϕi+1d− ϕi+2)2 = (ϕid− ϕi+1) (ϕi+2d− ϕi+3)

0 =
(
ϕ2
i+1 − ϕiϕi+2

)
d2 + (ϕiϕi+3 − ϕi+1ϕi+2) d+

(
ϕ2
i+2 − ϕi+1ϕi+3

)
0 = d (i)2 +

ϕiϕi+3 − ϕi+1ϕi+2

ϕ2
i+1 − ϕiϕi+2

· d (i) +
ϕ2
i+2 − ϕi+1ϕi+3

ϕ2
i+1 − ϕiϕi+2

.

Solving this equation, setting d (0) = d (1) and evaluating this as a polynomial over a with

a computer algebra system we yield a polynomial of degree 8 which separates into two

irreducible factors of degree 3 and 5. The smaller polynomial has the form (Γijk := fifjfk)

0 = (+Γ135 − Γ225 − Γ144 + Γ234 + Γ234 − Γ333) +

(−Γ035 + Γ125 + Γ044 − Γ134 − Γ224 + Γ233) a+

(+Γ025 − Γ115 + Γ124 − Γ034 + Γ133 − Γ223) a2 +

(−Γ024 + Γ114 + Γ033 − Γ123 − Γ123 + Γ222) a3

Once again we argue that changing the roles of A, a with B, b and C, c yields the same

polynomial. That means the solution of this polynomial represents a, b, c and with the

38



Cardan Formula, casus irreducibilis, we get the solving algorithm

n := −Γ024 + Γ114 + Γ033 − Γ123 − Γ123 + Γ222

α := (+Γ025 − Γ115 + Γ124 − Γ034 + Γ133 − Γ223) /n

β := (−Γ035 + Γ125 + Γ044 − Γ134 − Γ224 + Γ233) /n

γ := (+Γ135 − Γ225 − Γ144 + Γ234 + Γ234 − Γ333) /n

−3p := β − α2/3

−2q := 2α3/27− αβ/3 + γ

ω := arccos
(
q · p−3/2

)
/3

a = −2
√
p cos [ω + π/3]

b = +2
√
p cos [ω]

c = −2
√
p cos [ω − π/3]

C = C (0) =
(f1 − f0a) b− (f2 − f1a)

(c− a) (c− b)

B = B (0) =
f1a
−t1 − f0a

−t0 − C (gt1 − gt0)
dt1 − dt0

A = A (0) = f0 −B − C

Problem. Given a function

f (t) = g ·Gt + c

from which we know fi = f (ti) for some t0 < t1 < t2 6 ∞ and g,G, c are unknown and

shall be calculated. We isolate G and formulate a fixed point equation whose contractive

form depends on f it it is a decay (0 < G < 1) or a growth (G > 1).

α :=
f0 − f1

f1 − f2

=
Gt0 −Gt1

Gt1 −Gt2
=

1−Gt1−t0

Gt1−t0 −Gt2−t0
or

Gt0−t2 −Gt1−t2

Gt1−t2 − 1

(α + 1)Gt1−t0 = 1 + αGt2−t0 , with G < 1 for decay

or (α + 1) Ḡt2−t1 = α + Ḡt2−t0 , with Ḡ := G−1 < 1 for growth

decay: x1 = ϕ1 (x1) :=
1 + αxs11

α + 1
, with 0 < x1 := Gt1−t0 < 1, s1 :=

t2 − t0
t1 − t0

> 1

growth: x2 = ϕ2 (x2) :=
α + xs22

α + 1
, with 0 < x2 := Ḡt2−t1 < 1, s2 :=

t2 − t0
t2 − t1

> 1
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A. Mathematical considerations on extrapolation of decay

Ever it holds α > 0 for decay and growth. To proof contractivity we use the following

Lemma. For 0 < a, b < 1 and p > 1 we have |ap − bp| 6 |a− b|. Proof. We know

that p 7→ ap is a decreasing function since 0 < a < 1; we yield a = a1 > ap and b > bp.

Without loss of generality a > b. So there is a c ∈ (0, 1) such that a · c = b and from this

follows bp = apcp 6 apc0 = ap. Finally we get |ap − bp| = ap − bp 6 a− b = |a− b|.
Lemma (contractivity). For decay ϕ1 and for growth ϕ2 is contractive.

Proof. Let x, y ∈ (0, 1). λ := α/ (α + 1) < 1 and µ := 1/ (α + 1) < 1 ever hold. The

above lemma yields

|ϕ1 (x)− ϕ1 (y)| =

∣∣∣∣ α

α + 1

∣∣∣∣ · |xs1 − ys1| 6 λ |x− y|

|ϕ2 (x)− ϕ2 (y)| =

∣∣∣∣ 1

α + 1

∣∣∣∣ · |xs2 − ys2| 6 µ |x− y| .

From Banach’s fixed point theorem we conclude that for decay ϕ1 and for growth ϕ2 has

one and only one fixed point x1 or x2, respectively. From them we calculate the constants

G, g and c.

G = x
1/(t1−t0)
1 = x

−1/(t2−t1)
2

g =
f0 − f1

Gt0 −Gt1

c = f0 − gGt0

Problem. Given a function

f (t) = g · tγ + c

from which we know fi = f (ti) for some 0 < t0 < t1 < t2 and g, γ, c are unknown and

shall be calculated. We reformulate f to transform this problem to that one previously

discussed.

f̃
(
t̃
)

:= f
(
t = et̃

)
= g · (eγ)t̃ + c

With t̃i = log (ti) and f̃i = fi we yield g = g̃, γ = log
(
G̃
)

and c = c̃.
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