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Abstract

We investigate ground-state properties of a simple model for flexible polymers, where the steric influ-
ence of monomeric side chains is effectively introduced by a thickness constraint. Thickness is defined
via the global radius of curvature. From parallel tempering and flat-histogram computer simulations,
we find a strong thickness dependence of the conformational topology of the ground-state structures.
A systematic analysis for short polymers allows for a thickness-dependent classification of the dominant
ground-state topologies. It turns out that helical structures, strands, rings, and coils are natural, intrinsic
geometries of such line-like objects.

Model – Interaction Potential and Thickness

• flexible homopolymer with fixed bond length, off-lattice

• pure Lennard–Jones interaction
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•Here: σ = 1, i.e. ELJ(rij) = 0 for rij = bond length

→ How to implement thickness?

Global curvature, thickness, and the ideal shapes of knots
O. Gonzalez and J.H. Maddocks: Proc. Natl. Acad. Sci. USA 96, 4769 (1999)

•Thickness of a curve d : the (constant, maximal) radius of a smooth, non-self-intersecting tube
centered on the curve

•Global radius of curvature rgc: smallest radius of all circumcircles defined by any three points on
the curve

“. . . the notion of global radius of curvature provides a concise characterization of the thickness
of a curve, . . . ”

d = rgc

Figure from Gonzales, Mad-
docks. “Interpretation of the minimum global radius of curvature for a numerically computed ideal
knot. Left: The tube interpretation. The minimal value of rgc is the radius of the tube shown
here. Right: The sphere interpretation. Any spherical shell of radius less than the minimum value
of rgc cannot intersect the curve at three or more points.”

Observables and Examples

•Observables

– Total Energy

– End to End Distance rend

– Radius of Gyration r2
gyr ∝

∑

i (xi − xcms)
2

– Radial Distribution Function P(rij)

– Local Radii of Curvature (related to Bond Angle) rlc,i := rc,(i ,i+1,i+2)

– Torsion Angles (w/wo orientation)

• Examples of Ground-State Properties

– “Closed”: rend → 1.12 ... (minimum of LJ potential)

– κ0: rlc,i = const., i.e. 〈rlc〉
2 − 〈rlc〉〈rlc〉 → 0

– τ0: θi ,± = const.

– “planar”: 〈θ+〉 → 0

• Illustrating Examples

– perfect helix: κ0, τ0

– bended saddle shaped ring (“windschiefer Kreis”): κ0, “closed”

– planar ring: κ0, “closed”, “planar”

Ground-State Analysis N = 8

Charakteristics of ground states with increasing thickness

How they “really” look (thickness increasing from rgc = 0.6 to 1.2)

Ground-State Analysis N = 9

The α-Helix with N = 9 Monomers

Exact α-Helix

• About 3.6 monomers/turn

• rlc = 0.688 ...

• θ = 41.66◦

Ground State at rgc,0 = 0.68

• 3.55 . . . 3.6 monomers/turn

• rlc ∈ (0.680 ... 0.688)

• θ = 41.05◦ ... 41.62◦

Ground States N = 13

Upper row: Conformatitions with energy slightly above ground-state energy. Lower row: Ground-
state conformations.

Summary

• Simple, general model with thickness constraint

•Differentiation between structural classes (controlled by thickness)

•Helicees, turns, rings

• α-helix exists in model without H-bonds
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