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( Abstract )

We apply recently developed enhancements of
the Pruned Enriched Rosenbluth Method (PERM)
[1], namely the Multicanonical Chain-Growth Al-
gorithm [2] and the Flat Histogram Method [3],
to polymers and peptides on lattices.

Both methods are based on the idea to sample
independently of temperature the complete
energy space of polymer conformations. They
thus enable, for example, the determination of
the density of states within one simulation run
for lattice polymers.

We apply both algorithms to interacting self-
avoiding walks to compare the behaviour of the
two versions and, of course, to get new results
for statistical properties of polymers and pepti-
des.

[1] P Grassberger, Phys. Rev. E 56 (1997) 3682.

[2] M. Bachmann and W. Janke, Phys. Rev. Lett. 91 (2003)
208105.

[3] T. Prellberg and J. Krawczyk, Phys. Rev. Lett. 92
(2004) 120602.

( flatPERM )

The flat histogram version follows a strategy
from a microcanonical view of the problem.
The basic ideas are:

Use growth steps as in the normal PERM chain
growth algorithm.

Consider then a microcanonical estimator for
the total number of configurations of size n
with energy m
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where W, . is the Rosenbluth weight of the
ith configuration. Now define r as the ratio of
actual Rosenbluth weight and Cg%:
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Apply population control by pruning, when
r<1 and enrichment, when r>1.

( Check with Exact Results )

Firstly we compare with exact results from
enumeration. An example gives the figure: It
shows the heat capacity of an homo8mer on
the sc lattice, as well as the relative deviation
from the exact value. The deviation is at all
temperatures lower than 10-3, the statistics
includes 2x109 conformations, 5x10° arose
from independent growth starts.
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( mucaPERM )

As in all multicanonical simulations, the idea
of mucaPERM is to sample a flat energy
distribution instead of the canonical one.
Therefore we apply a weight W{lat(E) in
addition to the Rosenbluth and the Boltzmann
weights. The partition sum according to the
new distribution thus becomes
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The weights Wflat(E) have to be determined

iteratively:
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where H,(E) is the histogram of the
accumulated weights, which is reset to 0 after
each iteration. One applies population control
by comparing the weight with some threshold

Three typical conformations of an homo256mer on the sc

lattice at different temperatures.

( Check with Exact Results )

The figures show the density of states as well
as the heat capacity of an homopolymer on the
sc lattice, here with 14 monomers. With very
little computing time, the relative deviations
from the exact values are already lower than 1
percent.
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( Coil-Globule Transition )

With the presented algorithms one can study
the coil-globule transition of homopolymers up
to lengths of order 103. The upper figure
shows In(Cef,,) (the "density of states") for
chains up to length n=256, where m is the
energy. The lower figure shows the heat
capacity for the homopolymers with lengths
n=128 and n=256 near the coil-globule
transition temperature. Both figures are for
polymers on the sc lattice.
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( Crystallization )

At much lower temperatures as considered
above, we find a second peak in the heat
capacity that can be interpreted as a liquid-
solid transition (crystallization) point [4]. But
low-energy conformations (i.e., conformations
at very low temperatures) are that rare (by a
factor of over hundred orders of magnitudes
for considered lengths) that even with the
presented powerful methods, chain lengths
only up to order 102 can reliably be studied at
these temperatures. The figure shows the
average energies and the respective heat
capacities for two shorter chains on a fcc
lattice.
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( Outlook )

Further work will include:
Application of both methods to other models

Systematic comparison of excellence of both
methods in different fields

Study of finite-size scaling of both transitions
Improvement of efficiency
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