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Polymers and polymeric materials are present in everyday life and fundamental
components in biology. Hence, they are among the most interesting substances in
science in general and in particular subject of numberless studies in experimental,
theoretical and computational physics. In my doctoral thesis, I present new results
on different generic aspects of polymer science, obtained by means of sophisticated
Monte Carlo computer simulations. More precisely, I focus on the phase behavior
of polymers described by different coarse-grained models.

Motivation and Overview Polymers are chemical compounds consisting of equal
or similar molecules, forming a molecular chain. They are therefore often also called
macromolecules. Two of the most important examples of polymers in life are syn-
thetic carbon-based homopolymers, such as polyethylene, and biopolymers, like
proteins or DNA. The first mentioned homopolymers consists of (a large number
of) identical (simple) components and are the basis of a multitude of macroscopic
products in everyday life. In the case of polyethylene, these components are ethene
molecules simply consisting of two carbon and four hydrogen atoms (see Fig. 1).

Biopolymers consist, generally, of more complex and different molecules. In the
case of proteins, these are the amino acids, in the case of DNA for example the so-
called nucleotides. Since proteins are the basic building blocks of cells and involved
in the majority of the biological processes, for example, transport of substances,
catalysis of chemical reactions or recognition of messengers, a general as well as
specific understanding of these macromolecules, in particular of their structure is
highly desirable. It is widely assumed, that the primary structure of proteins, i.e.,
their amino-acid sequence, determines uniquely the three-dimensional native con-
formation and hence the biological function [1]. Unfortunately, the major question,

Figure 1: Left: All-atom visualization of a part of a polyethylene chain (space-filling model).

Right: A miniprotein in the all-atom stick representation. Additionally emphasized is the helical

secondary structure.
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how a protein exactly finds or folds into its native state is still open, though exten-
sively studied since decades. Hence, theoretical and computational efforts should
be made studying the behavior of single polymers with respect to their structure
and structural behavior.

Generally, as every other substance, polymers can be found in different states
depending on external conditions like temperature or solvent quality. At high tem-
peratures, polymers are known to be in the swollen random coil state. Cooling them
down, they collapse at the so-called Θ-temperature into much more compact glob-
ules. At very low temperatures, they freeze into glassy or crystalline solids [2–4].
In the case of proteins, by definition finite systems, one speaks also of the “folding”
transition.

All this leads to the general structure of this work. In the first part, I study lat-
tice polymers using the interacting self-avoiding walk model. Special attention has
been paid to the scaling of the collapse and the freezing transition. The interesting
question is, if the intermediate amorphous phase is stable or vanishes in the ther-
modynamic limit. In the second part, I study an off-lattice tube model for polymers
with the emphasis on the different low-temperature pseudo-phases for finite systems
depending on the thickness of the tube and the folded secondary structures therein.

Methods All results in this work have been obtained by means of computer sim-
ulations [5, 6], a third cornerstone of physics beside experiments and theoretical
work, of simplified, coarse-grained models. The simplicity of these models results
from “integrating out” nonrelevant, microscopic degrees of freedom and replacing
them by a few effective parameters. By studying polymer models, several restric-
tions imposed on “real” experimental studies do not exist. Furthermore, as physical
conditions of the system and the environment can be varied freely and rapidly, the-
ories could be verified and statistical analyses could be carried out more easily in
general.

For the study of lattice polymers, in particular for the low temperature freezing
regime, I applied sophisticated chain growth algorithms [7, 8], where the polymer
chain is created, i.e, grows, during the simulation. By a clever population con-
trol through pruning and enriching the simulated sample, the simulation can be
forced to perform a random walk in the energy space and system size and one
can hence estimate the entire density of states of the system over many orders of
magnitude within one single simulation (see Fig. 2). For the simulation of the off-
lattice systems, I used mainly generalized ensemble Monte Carlo methods, like the
multicanonical recursion or the Wang–Landau algorithm. These methods base on
conformational updates of the chain which are accepted with a certain probability
depending on statistical weights. Rather than sampling, for example, the canonical
ensemble using just the Boltzmann weights, these weights are here adapted such
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that the simulated system performs a random walk through the energy space. For
reliability reasons, cross-checks have been made using further different simulational
techniques, as well as independent data from previous studies. Ground states have
been refined using deterministic minimization techniques.

Lattice Polymers In the study of lattice polymers, I considered monomer chains
on the simple cubic (sc) and the face centered cubic (fcc) lattice, whereas non-
bonded nearest neighbors interact between each other via a local attractive poten-
tial. I studied conformational transitions of these systems, namely the collapse (or
coil–globule transition) at the so-called Θ-temperature and the freezing transition
at very low temperatures, i.e., well below the Θ-temperature. A question of partic-
ular interest deals with the coincidence of these transitions, i.e., with the stability
or instability of intermediate phases between the random coil (vapor) phase and
the frozen (solid) phase, in the thermodynamic limit. Both scenarios have been
found for polymeric systems and were explained by different ranges of interaction
between the single monomers [9]. This behavior can be described introducing an
interaction-range parameter R. It is known for colloidal systems, that for very small
R-values different solid phases can coexist and that there is a stable liquid phase
for large R [10]. As I used here a potential with R → 0, and with the implicit un-
derstanding that polymeric systems behave similarly, one would expect a two-stage
collapse from random-coil conformations at high temperatures to the ground states
of the system.

The thermodynamic behavior of the polymer systems was studied consider-
ing peaks in the specific heat as indicators of structural activity. Figure 3 (left)
shows specific-heat peak positions 1 of polymers on the sc lattice with lengths
8 ≤ N ≤ 125 [O1, O2]. In contrast to similar studies for other polymer mod-
els [9], the freezing peaks seem not to behave in any regular way at first view.
Unraveling the non-uniform peak structure, it became rather clear, that the finite-
size low temperature behavior is strongly superposed by systematic lattice effects
(see Fig. 3, right). Due to the high precision of my simulations, it was possible to
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Figure 3: Left: Map of specific-heat maxima for several chain lengths N ∈ [8, 125]. Right:

The same data in dependence of the chain length N . (a) Collapse (⊙) and freezing (+) peak

temperatures of the specific heat, (b) values of the specific-heat maxima.
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explain this behavior also quantitatively. One notes for example, that the freez-
ing temperature fluctuates systematically. In particular, there are “magic” lengths
where the ground-state conformations fit into compact cuboid shapes (see [O3] for
similar considerations) and where the transition temperature jumps between almost
fixed boundaries. Generally, the low-temperature transition can be interpreted as
the “freezing” of compact globular shapes into polymer crystals.

To estimate the scaling of the finite size collapse transition temperature, I sim-
ulated much longer polymers with lengths up to N = 32 000. This task is by no
means trivial, as the upper critical dimension is just dc = 3 and hence logarith-
mic corrections to the leading order scaling Tc(N) − TΘ ∼ 1/

√
N are expected.

By fitting my data to various scaling functions motivated by field-theoretic studies
(see, for example, Fig. 4), it was not possible to uniquely identify the nature of
these corrections. It rather turned out that even these apparently large systems
are still to short to determine the type of corrections and hence verify theoretical
predictions. Still, the value of the infinite length Θ temperature seems not to be
affected seriously by the explicit type of scaling corrections, as they can mimic each
other effectively to a certain degree. Beside a very well agreement of my estimates
on the sc lattice with the most precise estimates from the literature, my data con-
firm, to my best knowledge, the only numerical value existing so far for the fcc
lattice [O1, O2].

Concerning the question of the stability of the structural phases, it can be con-
cluded from my results, that both transitions, the collapse and the freezing remain
well separated also in the extrapolation towards the thermodynamic limit. This may
be explained by the expected stable “solid” phase due to the very short attractive
interaction in the model. Hence, a qualitative agreement between the behavior or
polymers and colloids has been found.

The Tube Model In the presented analysis of the tube model, I concentrated
on the formation of secondary structures of short systems. Similar to previously
studied tube models [11], the polymer is modeled as an off-lattice chain consisting
of monomers, which interact between each other by means of a Lennard–Jones
potential. The chain itself is coated by a tube, mimicking the three-dimensional
extension of polymers due to steric constraints introduced, for example, by amino-
acid side chains in the case of proteins. Its diameter was introduced using the
concept of the global radius of curvature, a mathematical concept which has been
proven to provide a concise characterization of the thickness of a curve [12].

The main task of this work was, to take this simple coarse-grained model and to
show, to which degree secondary structure formation as observed in nature can be
understood already with this approach. The other way around one may ask: Which
level of coarse graining is necessary, to observe secondary structure formation in-
cluding helices, sheets, etc. Therefore, I first studied systematically the ground-state
structures depending on the thickness parameter ρ. It turned out that, driven by
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Figure 5: Phase diagram of the homopolymer with N = 8 monomers. The labels α, β, γ, and δ

indicate the different pseudophases at finite temperature. The left picture shows the perspective

view of the specific-heat landscape, in the right one the top-view is plotted with marked peak

positions for various thickness parameters ρ. The specific-heat values are encoded in gray scale.

The pictures in the inset in correspond to the ground-state conformations.

the variation of the thickness parameter, several different conformations occur as
ground states. In particular, I could show that the exact α-helix and planar β-
sheets are amongst them [O4, O5]. For examples, see inset of Fig. 5 at ρ ≈ 0.68 and
ρ . 1.0. 2 This is remarkable as the model consists of nothing but Lennard–Jones
interaction and an additional length scale, the tube diameter.3 This is of course
just a first step in the understanding of the model. Subsequently, in detailed and
elaborate studies I could develop the full conformational phase diagrams depending
on the thickness constraint and temperature for short polymers and unravel the
internal structure of the pseudo phases of folded conformations (Fig. 5 shows ex-
emplarily the phase diagram for the tubes with length N = 9). Independently of
the polymer length, I identified four major structural phases, where helices, sheet-
like planar structures, bended rings and sprawled random coils are the dominant
conformations [O4, O6]. As a by-product, I found special regions in the parameter
space, where conformations crystallized into regular lattices dominate.

After introducing finally the AB tube model for heteropolymers, I studied a spe-
cial protein in this model, which has been subject of several preceding works without
thickness. As a key result, I showed that special sequences of different monomers, in-
volving different intramolecular interactions, can stabilize the secondary structures
of tube polymers. In particular, I found a broad and stable ground-state region of
a β-sheet structure for that protein [O6].

To conclude, I could resolve the complete (pseudo)phase behavior of the Lennard–
Jones tube model for polymers with respect to the thickness constraint and tem-
perature, including the formation of the native states for T → 0. This allowed,
for example, for the classification of thermodynamic conformational phases. Hence,
I have identified the generic structure of the conformational phase space for classes
of polymers, parameterized by their thickness. Although a mesoscopic model for
flexible polymers was employed, I found that the thickness constraint is an intrinsic
source of an effective stiffness and enhances the capability of a polymer to form
secondary structures which are stable against thermal fluctuations.

1The observables in Figs. 3–5 are given in a dimensionless form, where the Boltzmann constant
kB and the energy scale of the model ǫ are set to 1 for convenience. Alternatively, the dimensionless
temperature and specific heat would read TkBǫ−1 and CV k−1

B
, respectively.

2The thickness parameter ρ is measured in terms of the unit length of the model, i.e., the bond
length between two monomers, which is set to 1 as well.

3Doubtlessly, secondary structures can be stabilized by further interactions, for example due to
special primary structures (see below).
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