Prof. Dr. R. Verch Dr. T.-P. Hack

UNIVERSITÄT LEIPZIG

Inst. f. Theoretische Physik

Sommersemester 2015

Übungen zu TP2-Elektrodynamik (Staatsexamen Lehramt) Aufgabenblatt 5

Aufgabe 5.1

Das zeitgemittelte elektrische Potential des Hüllenelektrons im Wasserstoffatom ist gegeben durch

$$\varphi(\vec{x}\,) = e^{\frac{\mathrm{e}^{-\beta r}}{r}} \left(1 + \frac{\beta r}{2} \right) \,, \quad r = ||\vec{x}\,|| > 0 \,,$$

mit e= Elementarladung des Elektrons und $\beta=2/a_0$, wobei $a_0=0,529\cdot 10^{-10} {\rm m}$ den Bohrschen Radius bezeichnet.

- (a) Berechnen Sie die Ladungsdichte $\varrho(\vec{x}\,)$, die der zeitlich gemittelten Ladungsdichte des Hüllenelektrons entspricht.
- (b) Berechnen Sie das zeitlich gemittelte elektrische Feld $\vec{E}(\vec{x})$ des Elektrons. Geben Sie die elektrische Selbstenergiedichte $\mathcal{E}_{\mathrm{pot}}(\varrho)$ der zeitlich gemittelten Ladungsdichte ϱ bei $r=a_0$ und $r=2a_0$ an (in MKSA-Einheiten).
- (c) Berechenen Sie die zeitlich gemittelte Gesamtladung Q in der Kugel vom Radius $r=2a_0$ (in MKSA-Einheiten).

Aufgabe 5.2

Ermitteln Sie die elektrische Selbstenergie $\mathcal{E}_{\mathrm{pot}}$ von acht Elektronen, die an den Ecken eines Würfels von $1a_0$ (Bohrradius, s. Aufgabe 5.1) Kantenlänge angeordnet sind. (Verwenden Sie MKSA-Einheiten.) Ermitteln Sie den Wert der Funktion $||\vec{E}(\vec{x})||^2/8\pi\mathcal{K}$ (definiert für $\vec{x}\in\mathbb{R}^3$, außer an den Eckpunkten des Würfels) im Mittelpunkt des Würfels. (Zusatzaufgabe, nicht prüfungsrelevant: Besitzt $||\vec{E}(\vec{x})||^2/8\pi\mathcal{K}$ im Mittelpunkt des Würfels ein Extremum?)

/...2

Aufgabe 5.3

Der pensionierte Ingenieur Herr Lockergetriebe behauptet, das Coulombgesetz sei in der bisher bekannten Form nicht richtig. Die Messungen in seiner Werkstatt ergäben vielmehr für die Kraft $\vec{F}(\vec{r_1}, \vec{r_2})$ zwischen zwei elektrischen Ladungen q_1 und q_2 an den Orten $\vec{r_1}$ bzw. $\vec{r_2}$ den Zusammenhang

$$\vec{F}(\vec{r}_1, \vec{r}_2) = \Re q_1 q_2 \frac{\vec{r}_1 - \vec{r}_2}{||\vec{r}_1 - \vec{r}_2||^{\pi}},$$

wobei π wie üblich das Verhältnis des Kreisumfangs zu Kreisdurchmesser ist. Der Herr Ingenieur behauptet ferner, dass dies unter der üblichen Definition $\vec{F}(\vec{r}_1) = q_1 \vec{E}(\vec{r}_1)$ für das elektrische Feld $\vec{E}(\vec{r}_1)$ am Ort der Testladung q_1 , hervorgerufen durch die Quellenladung q_2 am Ort \vec{r}_2 , im Einklang ist mit den üblichen Eigenschaften des elektrischen Feldes, wie z.B.

(a)
$$\vec{\nabla} \times \vec{E} = \vec{0}$$
,

(b)
$$\vec{\nabla} \bullet \vec{E} = 4\pi \Re \varrho$$
.

Ist diese Behauptung richtig?

Wert jeder Aufgabe = 12 Punkte

Abgabe: Bis Montag, 18.05.2015, vor dem Übungsseminar