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Chapter 7. Fluctuations during inflation and in the CMB

During inflation, the dominant part of energy density and pressure is carried by the
inflaton field ϕ. Neglecting the radiation (and matter) contribution in energy density
and pressure, the inflationary phase is a solution to the gravitationally coupled
Einstein-Klein-Gordon system, where the fields to be determined dynamically are
gµν , the spacetime metric, and ϕ, the inflaton field, with some given effective potential
V . The coupled system of field equations is

�ϕ+ V ′(ϕ) = 0 , G[g]
µν = κT [g,ϕ]

µν

where � = ∇µ∇µ is the d’Alembert operator of the metric gµν , and the Einstein tensor
and the stress-energy tensor carry labels in square brackets to indicate that they refer
to gµν and ϕ.

Now we assume that we have a solution to the gravitationally coupled
Einstein-Klein-Gordon system where the resulting spacetime is an FLRW spacetime
with k = 0 and a scale factor a together with an inflaton field ϕ (depending only on
time) which corresponds to a slow-roll scenario.

In the following, we consider ã(η) and ϕ(η), i.e. the “background” solutions as
functions of conformal time η.
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Chapter 7. Fluctuations during inflation and in the CMB

We call this a “background” solution because we now want to consider perturbations
around that solution which lead to deviations from spatial homogeneity and
isotropy. The expectation is that small perturbations (or fluctutations) around a
(homogeneous and isotropic) solution during the early inflationary phase lead to
density deviations from homogeneity which during cosmic expansion “blow up” and
are therefore the seeds for density inhomgeneities which lead to temperature
fluctations in the CMB.

Essentially, the CMB temperature released from the plasma at recombination varies a
little depending on whether it originates from a place with a little higher or lower energy
density (compared to the average), and that corresponds to the small temperature
fluctuations in the CMB around its average temperature. The main mechanism
describing this behaviour of the CMB temperature dependence on the energy density
at the time of its release is the Sachs-Wolfe-effect. That would be another lecture but
for lack of time, I will skip it here. It is well described in the textbooks.
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Chapter 7. Fluctuations during inflation and in the CMB

In describing small perturbations of the spacetime metric around a given one, one
needs a way of parametrizing them; they are also subject to a gauge freedom which is
a complication. There are three types of metric perturbations which can be separated,
they are scalar, vector and tensor type perturbations. Here, we look at the simplest
type, the scalar perturbations (as do most textbooks), where we assume that the
metric is perturbed by a Bardeen potential Φ(η, x , y , z), giving perturbed metrics of
the form

ds2(ε) = ã2(η)
(

(1 + 2Φ)dη2 − (1− 2Φ)(dx2 + dy2 + dz2)
)

The idea here is that Φ = O(ε) with ε <<1, so if this metric ansatz is inserted into the
Einstein equations – more precisely, the coupled Einstein-Klein-Gordon system –
terms corresponding to the same order in ε will be equated separately and terms of
quadratic or higher order in ε will be discarded. This is the ususal perturbation-
theoretic approach, as you may have seen in quantum mechanics. The metric
perturbation is written in this particular way because it ensures “gauge invariance” at
the perturbative level. I will avoid the discussion of the gauge freedom in the
perturbations of the metric since its is complicated; see the textbooks for detailed
discussion. However, it has the consequence that gauge invariant quantities assume a
special form.
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Chapter 7. Fluctuations during inflation and in the CMB

In a perturbation of the Einstein-Klein-Gordon system around a “background” solution
given by ã and ϕ, there need to be also perturbations around ϕ:

ϕ(ε) = ϕ+ δϕ , where δϕ = δϕ(η, x , y , z) = O(ε)

A gauge invariant quantity describing the joint metric & matter perturbation at O(ε) is
the Mukhanov-Sasaki variable

u = u(η, x , y , z) = ãδϕ+ ζΦ

where
ζ =

ã
H
√
%ϕ + pϕ ;

here, all quantities refer to the “background” solution, and ã(η) · H(η) = dã(η)/dη.

Plugging the perturbed metric and perturbed ϕ(ε) into the Einstein-Klein-Gordon
system gives for the terms of O(ε) a wave equation for u,

∂2
ηu −∆u −

∂2
ηζ

ζ
u = 0 (∆ = ∂2

x + ∂2
y + ∂2

z )
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Chapter 7. Fluctuations during inflation and in the CMB

If u is a solution to the wave equation, one can find the corresponding metric
perturbation Φ(η, x , y , z) as the solution to

∆Φ =
H

2ã2 (ζ∂ηu − u∂ηζ)

Therefore, the metric perturbation has properties similar to that of a solution to a wave
equation; it is a gravitational wave (of small amplitude) perturbing the background
(which is constant in space).

Instead of u, also the comoving curvature perturbation is considered:

R = −u
ζ
⇒ ∂2

ηR−∆R + 2
∂ηζ

ζ
∂ηR = 0

Like u, also R is a gauge-invariant joint metric-matter perturbation of the
Einstein-Klein-Gordon system at O(ε).
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Chapter 7. Fluctuations during inflation and in the CMB

The idea is now: u, or equivalently, R, describe small perturbations of matter/geometry
during inflation.

Question: How small can they be?

Answer: There is a lower limit set by quantum fluctuations.

E.g. in a cavity, you cannot get rid of “shot noise” in the electromagnetic field due to
quantum fluctuations.
This is related to the lowest stationary energy level of the quantized harmonic
oscillator = ~ω/2 > 0, while classically it is = 0.
In turn, this is related to the quantum mechanical uncertainty relation ∆x ·∆p ≥ ~/2.

Thus: Treating u, resp. R as a quantized field, so that R(η, x , y , z) is formally replaced
by an operator R(η, x , y , z) (in a suitable Hilbert space), it holds that

〈R(η, x)∗R(η′, x ′)〉ψ > 0 (x = (x , y , z))

if (η, x) is close enough to (η′, x ′) for any state ψ of the quantum field.
(Actually, the expectation value on the left hand side has to be viewed as a
distribution, which allows it to give a more quantitative lower bound, including its
dependence on ~.)
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Chapter 7. Fluctuations during inflation and in the CMB

A simple, formal way (which can be made completely rigorous) of quantizing R is by
the ansatz

R(η, x) =
1

(2π)3/2

∫
R3

d3k
(

mk (η)Akeik ·x + mk (η)A∗ke−ik ·x
)

where k = |k |, the mk (η) are “mode functions” chosen so that R(η, x) satisfies the
same wave equation as R(η, x), and the Ak are formally operators fulfilling the
canonical commutation relations:

[Ak ,Ak ′ ] = 0 = [A∗k ,A
∗
k ′ ] , [Ak ,A∗k ′ ] = ~δ(k − k ′)

Remark A completely rigorous treatment of the quantization of fluctuations in inflation,
also explaining why u (or R) are the preferred fields to quantize, including an in-depth
discussion of the gauge freedom involved, can be found in: T.-P. Hack,“Cosmological
Applications of Algebraic Quantum Field Theory in Curved Spacetimes”, Springer
Briefs in Mathematical Physics, Springer-Verlag, 2016.
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Chapter 7. Fluctuations during inflation and in the CMB

One can define
R̂k (η) = mk (η)Ak + mk (η)A∗k

which is formally the Fourier transform of R(η, x) with respect to x .

The simplest types of states 〈...〉ψ for the quantum field R have the form

〈R̂k (η)∗R̂k′(η)〉ψ =
2π2

k3 P(k)δ(k − k ′)

where P(k) = Pψ(k , η) is the 2-correlation power spectrum at conformal time η.

The idea is now to choose a state 〈...〉ψ which comes closest to a “vacuum state” for R
since (in analogy to the quantized harmonic oscillator) one expects that in such a state
the above expectation value (and hence, the power spectrum) will deviate in the least
possible way from 0 .

For a(τ) ∼ eH0τ with constant H0 there is a candidate state, known as the
“Bunch-Davies state”. One sets this state for R at η = ηfin = conformal time at the end
of inflation.
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Chapter 7. Fluctuations during inflation and in the CMB

When looking at the relative temperature fluctuations Θ = δT
T in the CMB today, one

finds that their directional correlations are approximately given by a Gaussian random
distribution with a 2-correlation function

C2(Θ(k),Θ(k ′)) =
2π2

k3 P(k)δ(k − k ′)

which is also characterized by a power spectrum P(k) at η = ηtoday.

The key point is: One can establish a connection

P(k) = F(P(k), ∗ ∗ ∗)

where F is a function – which depends on quite a number of additional parameters,
including the density parameters for the late stage cosmic expansion, and also some
phenomenological modelling of the behaviour of electromagnetic radiation during the
various processes after inflation, particularly at recombination. Knowing F, one has
constraints on P(k) and can derive constraints on the inflation timescale. A careful
narrative leading to F in textbooks, or in the review article by Norbert Straumann
(highly recommended, see course webpage), typically takes 10x pages, 1 < x < 2.
This is beyond the scope of these lectures, and would fill most of an advanced
cosmology lecture course.
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