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Chapter 5. The thermal history of the early cosmos (“big bang scenario”)

Nucleosynthesis

Nucleosynthesis is one of the most important processes in early cosmology – it
predicts the abundances of chemical elements, mostly the ratio of Helium vs
Hydrogen correctly – and the abundances can be measured (observed) within our
local group of galaxies.

The description of the “plasma” again needs to be modified. We want to look at the
equlibrium of processes like the transformation of different types of particles,

[1] + [2]←→ [3] + [4]

where [x ] denotes a particle type.

The energy scale (temperature) at which these processes are considered are now
comparable to the rest masses of the particles, so we consider the low energy (or
non-relativistic limit in the distribution function. In this case, however, the equilibrium
situation in the transformation process is not only determined by the temperature, but
also by the chemical potentials of the particle types in the transformation process.

This means that for every particle type, the distribution function is

fT ,µ(v) =
1

e(E(v)−µ)/kBT ∓ 1
with the chemical potential µ.
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The negative chemical potential −µ is the “average energy cost per particle” of a
given type to be added to the interacting plasma, from a reservoir of non-interacting
particles, at temperature T .

In the non-relativistic limit where kBT << E(v)− µ one obtains

fT ,µ ≈ eµ/kBT fT ,
nT ,µ

nT
≈ eµ/kBT

for each type of particle, where nT ,µ is the particle density with chemical potential, i.e.
if the particle type participates in the interaction process, and nT (= nT ,0) is the
particle density of the particle type without interaction; both at temprature T .

Now we write nT ,µ(x) for the particle densities of the particle types x = 1, 2, 3, 4 in an
interaction process as above. They depend on τ through T = T (τ), so we write
instead n(µ)

x (τ) = nT (τ),µ(x).

Then the particle densities are determined by the condition of thermal-kinetic
equilibrium, a collection of coupled differential equations for the n(µ)

x (τ) of the form

1
a(τ)3

d(n(µ)
1 (τ)a(τ)3)

dτ
= n(0)

1 (τ)n(0)
2 (τ)〈σv〉

(
n(µ)

3 (τ)n(µ)
4 (τ)

n(0)
3 (τ)n(0)

4 (τ)
−

n(µ)
1 (τ)n(µ)

2 (τ)

n(0)
1 (τ)n(0)

2 (τ)

)
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There are 3 similar equations obtained by suitable interchange of the particle type
indices 1, 2, 3, 4.

Here 〈σv〉 = 〈σv〉|τ is called the thermal average of the interaction cross section
at relative partivle velocity v for the interaction process. (For explanation, see e.g.
Chp. 3 in Dodelson’s book.) It is a refinement of σ that we had considered earlier – it
was actually σv , but in the relativistic limit, where v was set to be equal to 1 (velocity
of light).

Analogously as before, in equilibrium one must have

t−1
int ≈ n(0)

2 〈σv〉 >> H ≈ t−1
exp

On the other hand, the left hand side of the differential equation expressing the
equlibrium condition for n(µ)

1 is approximately of the order or magnitude of n(µ)
1 H,

which means that the term in the bracket on the right hand side must be much smaller
than 1 in order to have an equilibrium situation. This is idealized to the condition that
the expression in that bracket is equal to 0, i.e.(

n(µ)
3 (τ)n(µ)

4 (τ)

n(0)
3 (τ)n(0)

4 (τ)
−

n(µ)
1 (τ)n(µ)

2 (τ)

n(0)
1 (τ)n(0)

2 (τ)

)
= 0

This is called the Saha equation and is the approximate equilibrium condition for the
interaction process [1] + [2]←→ [3] + [4] at non-relativistic energies.
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Proton abundance

We will now use the Saha-eqn to get an estimate on the proton abundance, i.e. the
ratio nn/np where nn is the number density of neutrons, and np is the number density
of protons. These are the number densities in the interaction process, with chemical
potential, but the superscript µ will be suppressed from the notation. We write n(0)

n/p to
denote the non-interacting particle densities.

The interaction processes which are relevant are

p + ν ←→ n + e+ and p + e− ←→ n + ν

In a very simple approach, take

nn = n1 , ne+,ν = n2 , np = n3 , ne−,ν = n4

To make things even simpler, it is also assumed that:

ne+,ν ≈ n(0)
e+,ν and ne−,ν ≈ n(0)

e−,ν

In other words, the interaction processes do not significantly change the number
densities of electrons and positrons and their anti-/neutrinos from what they are
without the interaction process. The motivation for this approximation is:
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The e± interact strongly with the photons and at the energies of the process, the
photon density is still very high (with a number density much larger than that of
protons and neutrons) so that the e± are still kept in equilibrium by the
interaction with the photons.

Similarly, the number density of the neutrinos is still far higher than that of
neutrons and protons, so the interaction process is a small perturbation of the
neutrinos’ thermal equilibrium distribution without the interaction process.

In this (somewhat crude) approximation, i.e.

ne+,ν

n(0)
e+,ν

= 1 =
ne−,ν

n(0)
e−,ν

the Saha-equation now takes the form

nn = np
n(0)

n

n(0)
p
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In the non-relativistic limit one finds

n(0)
n

n(0)
p

=

(
mn

mp

)3/2

e−(mn−mp)/kBT ≈ e−Q/kBT

for kBT < Q = mn −mp where mn and mp are the rest energies of neutron and
proton, respectively. (Notice once again that c = 1, so the requisite factor c2 is hidden
in the notation.)

With Q = 1.293 MeV one can see that, if kBT < 1 MeV, then the ratio nn/np drops
rapidly.

Actually, the result confirms what one would naively expect: If the ambient thermal
energy is less than the internal energy difference between neutron and proton, then
the abundance of neutrons compared to protons is suppressed by the factor e−Q/kBT ,
representing the energy cost for creating neutrons from protons in the above
interaction process.

However, a more detailed consideration shows that the transformation of neutrons into
protons becomes inefficient below kBT < 0.8 MeV since the neutrinos decouple from
the process at this energy scale, and at kBT ≈ 0.5 MeV, the electron-positron
annihilation sets in, which makes the process even less efficient and the ratio nn/np

doesn’t fall significantly below 1/7 at kBT ≈ 0.3 MeV.
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Primordial nucleosynthesis

At kBT ≈ 1 MeV, the hadronization has been completed and the annihilation
processes

baryons + antibaryons −→ photons

leptons + antileptons −→ photons + anti-/neutrinos

cease to be efficient, leaving an excess of baryonic matter (protons and neutrons) and
leptons, mainly e−.

As an aside – the reason of this matter/antimatter asymmetry will not be discussed
here. It is apparently a standing open question in cosmology. See the literature for
further discussion.

So below kBT ≈ 1 MeV, the total number of baryons and the total number of photons
remains approximately constant, and consequently the number densities of baryons
and photons remain approximately constant: nbar/nγ ≈ const.

Moreover, below kBT ≈ 1 MeV, protons and neutrons can fuse to form heavier
elements which are stable since their binding energy per nucleon is larger than the
ambient energy (so the nuclei particles are not separated immediately e.g. by
collisions with the highly aboundant photons).
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The binding energy BA for a nucleus of nucleon number A, having Z protons and
A− Z neutrons bound together in the nucleus, is given by

BA = |Zmp + (A− Z )mn −mA|
where mA is the rest energy of the nucleus and mn is the rest energy of the neutron,
mp is the rest energy of the proton (mind the c2 hiding in the convention c = 1). The
binding energy per nucleon for such a nucleus is then BA/A. It is illustrated in the
following table, taken from wikipedia, “nuclear binding energy”. BA/A is on the vertical
axis, A is the horizontal axis.
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The diagram shows that 4He is a first local maximum of the binding energy per
nucleon and that suggests that 4He should be a highly abundant element created in
the primordial nucleosynthesis since

the process 4He + p −→ X is energetically unfavorable

the process 3 4He −→ 12C is only efficient if the density of Helium is very high

Some estimates that we will consider soon will confirm this.

Using that ηbar = nbar/nγ can be assumed to be constant from the energy scale
relevant for nucleosynthesis onwards, one can gain an estimate on nbar as follows:

At our present cosmic time τ0, we determine nbar by observation of the material
around us (in our local group of galaxies). (There may be systematic errors about that,
but it is maily the luminous matter, including gas clouds.)

We determine nγ at our present cosmic time from the CMB:

nγ |τ0
=

2ζ(3)

π2

(
kBT
~

)3

, T = TCMB = 2.73 K

Rainer Verch 10 / 11



Chapter 5. The thermal history of the early cosmos (“big bang scenario”)

One finds form observations at τ0

ηbar = 5.5 · 10−10 · Ωbarh2

0.02
, Ωbar ≈ 0.04 , h = 0.7

At an early cosmological time τ with kBT (τ) < 1 MeV, one then has

nbar|τ = ηbar nγ |τ = ηbar
2ζ(3)

π2

(
kBT (τ)

~

)3
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