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Chapter 5. The thermal history of the early cosmos (“big bang scenario”)

The Λ-CDM standard cosmological model shows that there is an accelerated cosmic
expansion (ä > 0) in a “late” epoch of cosmic evolution, including our present time.
With k = 0 as favoured value, we are therefore in the scenario depicted as II in the
table on p 4 of Lecture 18.

When going back to small values of τ , and hence small values of a(τ), the
contribution of radiation to the energy density dominates because of
%rad(τ) ∼ (a(τ0)/a(τ))4 whereas %M (τ) ∼ (a(τ0)/a(τ))3 for the contribution to the
energy density formed by baryonic and cold dark matter.

In that situation, the matter/energy distribution in the Universe is very dense and hot;
in fact the energy density is so high that various elementary particle reactions happen
at high rates. These processes have characteristic energy thresholds for the types of
interactions involved. There are also energy scales at which certain phase transitions
set in. They relate to certain time-scales of cosmic expansion, since with increasing
cosmic expansion the energy density and pressure of the matter/energy distribution
decreases.
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Chapter 5. The thermal history of the early cosmos (“big bang scenario”)

In order to study the high energy elementary particle processes, the ideal fluid picture
used so far is no longer sufficient and a more detailed description is needed. The
material present in the Universe at high energy density will be described by a
distribution function in the sense of (relativistic) statistical mechanics, and it will be
assumed that the distribution is of a Maxwell-Boltzmann form, characteristic of thermal
equilibrium at temperature T .

A distribution function is a smooth function on the space of velocities at every point
in space and time; so for the underlying FLRW spacetime,

f : J × Σ(k) × R3 → R , (τ, q, v) 7→ f (τ, q, v)

is a distribution function, where v is to be identified with an element in TqΣ(k) (e.g.
using one of the charts for Σ(k) used before). Therefore, v is viewed as spatial velocity
at the space point q.

Consider, for the moment, Minkowski spacetime. We wish to describe a relativistic gas
of Bose or Fermi particles in thermal equlibrium at absolute temperature T . In this
case, there is an inertial system with coordinates (x0, x1, x2, x3) with respect to which
the gas is at rest (on average); this is part of the condition of equilibrium (the condition
of thermal equilibrium is not Lorentz covariant). We suppose that the particle type is
fixed and it has a rest mass-energy m = mc2 > 0; we also use units where c = 1.
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Chapter 5. The thermal history of the early cosmos (“big bang scenario”)

In this case, the distribution function is

fT (x0, q, v) = fT (v) =
1

eE(v)/kBT∓1 , E(v) =
√

m2(|v|2 + 1)

where q = (x1, x2, x3) is any point in space; “−” is for Bosons, “+” is for Fermions.
kB is Boltzmann’s constant. Note that m is actually mc2, and velocities are measured
in units of c.

This distribution function is independent of (x0, x1, x2, x3) so it is time-independent
and homogeneous in space, as one would expect for a thermal equilibrium situation.
Moreover, it depends on v only in terms of |v|, fitting with an isotropic situation, or
state, of the collection of Bosons or Fermions.

The distribution function acquires its meaning by the quantities that can be derived
from it.

nT (E0,∆E) =
g

(2π)3~3

∫
E0≤E(v)≤E0+∆E

fT (v) d3v

is the spatial number density of particles with total energy (relative to the inertial
coordinate system in which the gas is at rest) between E0 and E0 + ∆E .

Here, g is the degeneracy factor of the type of particle under consideration, this is
usually a number characteristic of spin/vector/tensor degrees of freedom for the
particle type.
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Chapter 5. The thermal history of the early cosmos (“big bang scenario”)

Similarly,

nT =
g

(2π)3~3

∫
R3

fT (v) d3v

is the (total) spatial particle number density,

%T =
g

(2π)3~3

∫
R3

E(v)fT (v) d3v

is the spatial energy density,

pT =
g

(2π)3~3

∫
R3

|mv|2

3E(v)
fT (v) d3v

is the pressure

of the Bose or Fermi gas at equilibrium temperature T .

Rainer Verch 5 / 12



Chapter 5. The thermal history of the early cosmos (“big bang scenario”)

The following limiting cases are usually of interest:

relativistic or high-energy limit: kBT >> m (note we use c = 1, so here m is actually
mc2, the particle’s rest energy)

%T =

{
π2

30~3 g(kBT )4 Bosons
7
8
π2

30~3 g(kBT )4 Fermions

nT =

{
ζ(3)

π2~3 g(kBT )3 Bosons
3
4
ζ(3)

π2~3 g(kBT )3 Fermions

pT =
%T

3
(here, ζ denotes the ζ-function)
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Chapter 5. The thermal history of the early cosmos (“big bang scenario”)

non-relativistic or low-energy limit: m >> kBT

%T = m · nT

nT = g
(

mkBT
2π~2

)3/2

e−m/kBT

pT = nT kBT <<%T

Now we carry these ideas over to FLRW spacetime. We define a distribution function
fT (τ, q, v) for a Bose/Fermi gas “in thermal equilibrium at absolute temperature T at
cosmic time τ ” by setting

fT (τ, q, v) = fT (v) =
1

eE(v)/kBT∓1 , E(v) =
√
|v|2 + m2

under the condition that we use, at every spacetime point (τ, q), coordinates
(x0 = τ, x1, x2, x2) such that, in these coordinates, gµν |(τ,q) = ηµν (Minkowski metric),
and that v = (v1, v2, v3) is identified with an element of TqΣ(k) using these
coordinates, i.e. with v j∂x j |q . Owing to the spatial homogeneity and isotropy of FLRW
spacetime, and of fT (v), this distribution function describes a homogeneous and
isotropic Bose or Fermi gas.
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Chapter 5. The thermal history of the early cosmos (“big bang scenario”)

There is an implicit τ -dependence of the distribution function entering via the
particular choice of coordinates which depends on τ . But the spatial densities, after
integrating on v, depend only on T – where now one allows for a τ -dependence of the
absolute temperature, T = T (τ). In particular, one obtains the same expressions in
the relativistic or non-relativistic limits for %T , nT and pT , with T = T (τ).

The slightly problematic assumption here is that it is meaningful to use the “extremely
adiabatic” approximation of an “instantaneous equilibrium state” for a Bose or Fermi
gas at a fixed cosmic time even if a(τ) may be very rapidly varying around τ , i.e ȧ(τ)
is very large.

However, accepting that this is a meaningful approximation (and that quantitative limits
of its validity can be established when needed), one can extend that formalism a bit,
which allows it to later draw some interesting conclusions. We consider a mixture of
Bose/Fermi gases of different particle species (meaning various degeneracy factors
and masses), where each gas component is in an (instantaneous) thermal equilibrium
state at some temperature. The various gas components need not interact, and
therefore their equilibrium temperatures can be different.
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Chapter 5. The thermal history of the early cosmos (“big bang scenario”)

In more detail: We assume that we have a mixture of
NB Bosonic particle species, labelled by a = 1, . . . ,NB , with masses ma,

degeneracy factors ga,
NF Fermionic particle species, labelled by f = 1, . . . ,NF , with masses mf ,

degeneracy factors gf ,
each Bosonic particle species forms a gas in thermal equilibrium at temperature
Tb = Tb(τ),
each Fermionic particle species froms a gas in thermal equilibrium at temperature
Tf = Tf (τ).

In the relativistic limit, the mixture of the gases has an effective temperature T and
an effective degeneracy factor g∗, defined by

g∗ =

NB∑
b=1

gb

(
Tb

T

)4

+
7
8

NF∑
f =1

gf

(
Tf

T

)4

,

so that the total energy density of the mixture is

%T =

NB∑
b=1

%Tb +

NF∑
f =1

%Tf =
π2

30~3 g∗(kBT )4
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Moreover, the total pressure is

pT =

NB∑
b=1

pTb +

NF∑
f =1

pTf = %T/3 ,

assuming the relativistic limit.

Then one can define the entropy density of the mixture,

sT =
%T + pT

kBT
=

4%T

3kBT

which can be expressed as

sT =
2π2

45~3 ĝ∗(kBT )3

with the entropy degeneracy factor

ĝ∗ =

NB∑
b=1

gb

(
Tb

T

)3

+
7
8

NF∑
f =1

gf

(
Tf

T

)3

.
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Chapter 5. The thermal history of the early cosmos (“big bang scenario”)

A hypothesis of important consequences is “the total entropy of matter in the Universe
is constant”, motivated by viewing the Universe as a “closed system”. (That is not
really correct because the matter degrees of freedom interact with the spacetime
metric degrees of freedom which therefore “exchange” entropy, but in certain regimes,
such an exchange can be considered as a small effect.) A more precise version of the
hypothesis is the principle of constant entropy in the form

sT a(τ)3 = const (T = T (τ))

which provides a constraint on the behaviour T (τ) of the effective temperature of
mixtures.

In a mixture of Bose and Fermi gases, some particle species typically interact with
others. In a static spacetime, they are therefore held in thermal equilibrium by the
interaction, and their temperatures agree. In a FLRW spacetime, if the timescale of the
interaction tint between two particle species is much smaller than the expansion time
scale texp of the spacetime metric, then the interaction between the particle species
can hold them in thermal equilibrium, and their temperatures agree.
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As measure for the expansion time scale, one usually chooses in the early, “radiation
dominated” phase of the Universe,

texp =
1

H(τ)
= 2τ (for radiation with a(τ) = τ 1/2)

If particle species labelled by A and B interact, then an estimate for the interaction
time scale in the relativistic limit is

tint =
1

n · σ
where σ is the interaction cross section for the interaction process between the
particle types A and B, and n is the lesser of the particle number densities of the
particle types.

If a(τ) = τ 1/2, then n ∼ τ−3/2. Moreover, σ will decrease with decreasing energy
density of the particle types partcipating in the interaction and therefore will decrease
with increasing τ . Thus tint & τ 3/2 so there will be some τdec with tint & texp for τ ≥ τdec .
One says that τdec is the decoupling time at which the particle types A and B
decouple from joint thermal equilibrium.

We will shortly look more closely at an example where this happens, involving
electrons, neutrinos and photons.
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