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Chapter 3. GR and FLRW cosmological spacetimes

Luminosity distance and redshift

Recall the previously given definitions:

L = radiation energy emitted by the source (galaxy ∗ at r∗ in the previous lecture)
per unit of time: absolute luminosity

` = radiation energy received from the source by the observer (galaxy ? at r?) per
unit of time: apparent luminosity

Then the luminosity distance is defined as

dL =

√
L

4π`

Assuming that the light emission is isotropic, one obtains with the coordinates as in
the previous lecture:

` =
L

4π(r? − r∗)2a(τ?(1))2(1 + z)2 ⇒ dL = |r? − r∗|a(τ?(1))(1 + z)

For k = 0, the luminosity distance is the spatial geodesic distance of the galaxies at
the cosmic time when the emitted radiation is received, multiplied by the redshift factor
1 + z.
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If |r? − r∗| is sufficiently small, one obtains (see previous lecture)

using the notation τ∗ = τ∗(1) , τ? = τ?(1) :

|r∗ − r?| ≈
∫ r?

r∗

dr√
1− kr 2

=

∫ τ?

τ∗

dτ
a(τ)

≈ |τ? − τ∗|
a(τ?)

and

1 + z =
a(τ?)

a(τ∗)
≈ a(τ?)

a(τ?)− ȧ(τ?)|τ? − τ∗|
≈ 1 +

ȧ(τ?)

a(τ?)
|τ? − τ∗|

Combining these two equations yields the luminosity-distance relation (for
sufficiently small |r? − r∗|, i.e. sufficiently small dL)

z ≈ ȧ(τ?)

a(τ?)
dL = H(τ?)dL

with the Hubble parameter

H(τ) =
ȧ(τ)

a(τ)

Assuming ȧ > 0, the FLRW cosmological spacetime models reproduce the observed
Hubble relation z = H0dL in a natural way. (Note that units are chosen so that c = 1.)
However the factor of proportionality between redshift z and luminosity distance dL is
not a constant, but at function H(τ) changing in τ .
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Solutions to the Friedmann equations, Λ = 0

Now we look at solutions to Friedmann’s equations and their behaviour. First, we
assume a vanishing cosmological constant, Λ = 0. This value of the cosmological
constant is favoured by local observations. In particular, other values of Λ are in
conflict with the Newtonian limit of Einstein’s equations. Hence, should Λ actually be
different from 0 (it is very difficult to test gravity at sub-microscopic scales, because
the other interactions are dominating in that regime), it would have to be very small, at
least if Einstein’s equations apply in the same form at all scales – which is their
common interpretation, leaving hypothetical quantum gravity aside.

As mentioned, Einstein’s equations must be furnished with a matter model. Partially,
this is done by assuming that the stress energy tensor assumes the ideal fluid form.
There is then also an equation of state, p = f (%,T ), relating pressure and energy
density in thermal equilibrium at absolute temperature T . Therefore, the idea here is
that (near-to) equilibrium states of an ideal fluid are considered – very much in line
with the assumption that the matter distribution is homogeneous and isotropic.
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“Dust”, p = 0

The simplest equation of state is p = 0, pictured as “dust”, i.e. a swarm of particles
which do not interact with each other (or only very weakly) of are far enough distant
from each other so that interaction is negligible. E.g., a thin gas, or galaxies or even
galaxy clusters with large distances between them.

The Friedmann equations then simplify to(
ȧ2 + k

a2

)
= κ% and

2aä + ȧ2 + k
a2 = 0

As pointed out previously, the fact that the stress-energy tensor is divergence-free
implies that (since p = 0)

d
dτ

(%a3) = 0

(cf. Problem 7.2). Inserting this into the 1st Friedmann equation leads to a
one-parametric family of differential equations for a(τ),

a(τ) > 0 , ȧ(τ)2 − C0

a(τ)
+ k = 0

where C0 = κ%(τ)a(τ)3/3 > 0 is a parameter which is constant in τ .
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For any value C0 > 0, the differential equation possesses general analytic solutions:

k = +1 : a(u) =
1
2

C0(1− cos(u)) , τ(u) =
1
2

C0(u − sin(u))

k = 0 : a(τ) =

(
9C0

4

)1/3

τ 2/3

k = −1 : a(u) =
1
2

C0(cosh(u)− 1) , τ(u) =
1
2

(sinh(u)− u)

  

The qualitative 
behaviour of the solutions
is sketched in the figure,
assuming that initial 
conditions are chosen so
that 
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k = 1 a(τ) has the form of a cycloide which is symmetric with respect to a τmax

where it assumes its absolute maximum value amax. a(τ) is strictly growing until it
reaches its maximum value past which the scale factor is strictly decreasing. In other
words, in this scenario, the scale of the Universe initially expands up until a maximal
value is reached, and then it contracts again. The maximal lifetime of a Universe with
such a scale factor is 2τmax. Behaviour for τ → 0 is a(τ) ∼ τ 2/3.

k = 0 ȧ(τ) > 0 for all τ > 0, i.e. the scale factor of the Universe is always
expanding. However, the expansion rate is decreasing; it holds that ä(τ) < 0. The
asymptotic behaviour is

a(τ) ∼ τ 2/3 for τ → 0 ; a(τ)→∞ and ȧ(τ)→ 0 for τ →∞

k = −1 Again ȧ(τ) > 0 and ä(τ) < 0. The behaviour of a(τ) is qualitatively very
similar to the case k = 0, with a different asymptotic behaviour of ȧ(τ) as τ →∞:

a(τ) ∼ τ 2/3 for τ → 0 ; a(τ)→∞ and ȧ(τ)→ 1 for τ →∞
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“Radiation”, p = %/3

Radiation can thought of as becoming a more and more dominant form of energy
when the scale factor of the Universe is so small that the density is higher than the
density of the interior of a star like the sun. Quite generally, the higher the energy
density, the more energy is carried by the “lighter” degrees of freedom, or put
differently, the contribution of the rest mass energies becomes small compared to the
kinetic energy. In Problem 7.4∗ you have been asked to give an argument for this
equation of state for electromagnetic radiation.

With the equation of state p = %/3, the Friedmann equations thake the form(
ȧ2 + k

a2

)
= κ% and

2aä + ȧ2 + k
a2 = −κ%/3

As the stress-energy tensor is divergence-free, it holds that
d(%a3)/dτ + pd(a3)/dτ = 0 (cf. Problem 7.2), and with the equation of state p ∼ %/3
for radiation, the Friedmann equations yield that

Γ0 =
κ%a4

3

is a τ -independent constant.
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In consequence, one obtains a one-parametric family of differential equations for a(τ),

a(τ) > 0 , ȧ(τ)2 − Γ0

a(τ)2 + k = 0

where 0 = κ%(τ)a(τ)4/3 > 0 is a parameter which is constant in τ .

For every Γ0 > 0, there are the following general solutions, assuming τ > 0:

k = +1 : a(τ) =
√

Γ0

(
1−

(
1− τ√

Γ0

)2
)1/2

k = 0 : a(τ) = (4Γ0)1/4√τ

k = −1 : a(τ) =
√

Γ0

((
1 +

τ√
Γ0

)2

− 1

)1/2

The qualitative behaviour for the cases k = 1, 0,−1 is very similar to that for the case
of “dust”. In particular, for k = 1, a(τ) is again symmetric w.r.t. a τmax where it
assumes its maximal value amax, and a(τ)→∞ as τ →∞ for k = 0,−1. The other
asymptotics are:

a(τ) ∼ τ 1/2 as τ → 0 (k = 1, 0,−1) ; ȧ(τ)→ 0 (k = 0) , ȧ(τ)→ 1(k = −1) for τ →∞
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Note that % ∼ a−4, implied by the equation of state p = %/3, is consistent with the
redshift effect upon cosmic expansion: At cosmic time τ , for electromagnetic radiation
one can write

%(τ) = n(τ)ε(τ) =
n(τ0)a(τ0)3

a(τ)3 2π~ν(τ) =
n(τ0)a(τ0)3

a(τ)3 · c
λ(τ)

where τ0 is any fixed cosmic reference time and

n(τ) = average numer of photons per unit volume at time τ

ε(τ) = average photon energy at time τ

ν(τ) = average photon frequency at time τ

λ(τ) = average photon wavelength at time τ

According to the redshift effect, λ(τ0)/λ(τ) = a(τ0)/a(τ), and hence

%(τ) =
n(τ0)a(τ0)3

a(τ)3 · c
λ(τ0)

· λ(τ0)

λ(τ)
= C c

a(τ)4

with the τ -independent constant C = 2π~n(τ0)a(τ0)4/λ(τ0).
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For both matter models, “dust” or “radiation”, the solutions to the Friemann equations
have the following common features:

initial expansion of the Universe, and depending on k , expansion followed by
contraction (k = 1) or eternal expansion to the future (k = 0,−1). Im particular,
the scale factor is not time-independent.

there is a finite past lifetime of the Universe with an initial point of cosmic time
(here always chosen as τ = 0); the FLRW spacetime metric breaks down at
τ = 0 because a(τ) = 0.

since %a3 = constant for “dust”, or %a4 = constant for “radiation”, the energy
density diverges as τ → 0: This is confirms the view of the “big bang” scenario: If
the Universe has expanded to the future (up to our present time), it contracts if
we go back to the past, and in the far past, it must have been very dense and
hot. As mentioned before, the CMB is one of the best arguments for that point of
view.

It should be noted that this holds under the assumption Λ = 0. If Λ 6= 0, there could be
different scenarios, depending on the value of Λ. As indicated before, observations at
large distances point at a value of Λ that is different from 0.
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