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Chapter 3. GR and FLRW cosmological spacetimes

The notation for the spacetime metrics g,(f) of the FLRW cosmological spacetimes
(k =—1,0,1) is usually given in terms of the metric line elements. For the case k = 0,
it is typically written

dsfi—o) = dr? — a(7)?(dx® + dy® + dz°)

where (x, y, z) are Cartesian coordinates of R®.
In the other cases, i.e. k = £1,

dsfy) = dr* — a(r)? (d@z)2 + sin®(4)(d6® + sinz(e)d¢2))
ds?_y) = dr® — a(7)? (dz/)z + sinh?(v)(d6? + sin2(0)d¢2))

in the 3-dimensional spherical polar coordinates, resp. spherical hyperbolic
coordinates.

The terminology “metric line element” has some historical roots — see textbooks on
GR for explanation. It is a convenient and customary way of denoting the coordinate
expression of a metric with respect to particular coordinates. If the coordinates are
chosen so that the coordinate expression of the metric diagonalizes, like here, itis a
very useful notation.
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Chapter 3. GR and FLRW cosmological spacetimes

To indicate how it is used: Eg. in the case k = 0, one reads dr* as a symmetric (3)
tensor field fulfilling

dr?(0, ®8:) =1, dri(0, ) =dr?(0x®8.) =0, dr?(Bx® 8x) =0

and similarly upon replacing x by y or z. Analogously, dx? is a symmetric (3) tensor
field fulfilling

POy @) =1, d¥¥(0, @) =0, dx’(0, ®d,)=0
A0y ®8,) =0, dx®@,®d)=0, dx*d, ®d;)=0

and similarly upon replacing y by z.
Analogously one has, e.g., at the coordinate point g = (7, %, 6, ¢)

(072 = a(r)? (o + sin®(¥)(d6° + sin®(8)d6?) ) | (9slq20sla) = —a(r)’ sin® () sin®(6)

.
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Another choice of coordinates for the FLRW spacetimes is also often in use: It is given
for all cases k = —1,0,1 by (7, r,0, $).

7 (cosmological time) and (6, ¢) (spherical polar coordinates of the S?) are as before.
ris a radial coordinate: for k = —1,0, r € (0, 00), while for k =1, r € (0, 1), with

dsfyy = dr° — a(t)? ( + r?(d6? + sin®(0)d¢ )) (k=-1,0,1)

k 2
It is a different way of choosing coordinates on X %)

The FLRW cosmological spacetimes (M®) = J x £, g{)) which are possible as
solutions to Einstein’s equations with matter described as a homogeneous and
isotropic ideal fluid are therefore very much restricted. What remains undetermined so
far are

@ The value of k = —1,0,1

@ The smooth function a: J — (0, c0), called the scale factor of an FLRW
spacetime. (Note that the interval J C R isn’t determined either.)
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Chapter 3. GR and FLRW cosmological spacetimes

The Friedmann Equations

For any choice of k = —1,0, 1, the scale factor a(r) is determined by the requirement
that the spacetime (M*) = J x £, g¥)) with the metric line element

dsfyy = dr* — a(t)? ( o’ T 2(d6? + sin?(0)d¢ )) (k=-1,0,1)

be a solution to Einstein’s equations
G = G +Ngw = KT

where the stress-energy tensor on the right hand side is of the form of a
homogeneous and isotropic ideal fluid,

Tuw = (0 + P)Uply — PG With " = (0-)"

Recall that G, = Ricu, — 19, R is the Einstein tensor.

Using the form of the metric above together with the assumed form of the
stress-energy tensor, Einstein’s equations assume the much simpler form
Friedmann’s equations, a system of differential equations coupling a(r), o(7) and
p(7) — owing to spatial homogeneity, o and p can only depend on 7, not on (r, 0, ¢):
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3 (aza—g k> +A=kp (1st Friedmann eqgn)
.
2&327?“ +A=—kp (2nd Friedmann eqgn)

where a dot denotes differentiation with respect to 7.

Showing that Einstein’s equations assume the form of Friedmann’s equations under
the assumptions stated is a classical exercise problem for any student in cosmology.

Remarks

(i) Besides the constant k = —1,0, 1, the cosmological constant A enters as
another — at this point, undetermined — constant into the Friedmann equations.
Caution: In cosmology, many authors use the opposite sign convention for A, i.e.
they write —A instead of A as used here. So there is another sign convention that
needs to be checked with the literature.
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Chapter 3. GR and FLRW cosmological spacetimes

(ii) Assuming k and A given, the Friedmann equations in this form are
underdetermined because there are no relations between g and p. They have to be
supplied, as a further specification of the matter model at hand, by an equation of
state in the form p = f(, T) with a suitable function of ¢ and T (absolute temperature)
characterizing a (near to) thermal equilibrium situation. The most common choices in
cosmology are:

@ p = 0. This form of matter is called dust and it is appropriate for the picture that
galaxy clusters are viewed as the “grains of a dust cloud”.

@ p = /3. This form of matter is called radiation. It is appropropriate at the very
early stages of the cosmic evolution were electromagnetic radiation can be
considered as the main energy-carrying component of the cosmic inventory.

(iii)  Furthermore, to find an explicit solution, it is necessary to specify initial
conditions at some cosmic time .

Once equations of state of the form “dust” or “radiation” are assumed, one can further
simplify Friedmann’s equations, by eliminating o, p from the equations, which makes it
possible to determine concrete solutions (even analytically) from initial conditions. We
will return to this shortly.
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Scale factor and Redshift

Here, we discuss the meaning of the scale factor a(r) appearing in the FLRW
spacetime metric: It scales spatial lengths, depending on cosmic time 7.

To see this formally, let o and o’ be any two points in £*).

Then consider for any cosmic time 7 a smooth curve s — ~.(s) = (,v(s)) € J x £,
S € [0, 51], where s — ~(s) is a smooth curve in %) connecting o and o”’. Thus, the
~, are copies of a “curve in space” at various values of cosmic time 7.

The metric length of these curves, for different 7, is given by

s 1/2 s 1/2
100 = [ e Grr(s) gerr(a)| - as=a(r) [ (KOS9 Grle)) s

where the form of the FLRW metric gff‘) = drodg — a(r)zhfjk) as in Lec 15, slide 11,
was used.

Therefore,
Yy-) _ a(r)

U(vx) — a(ro)
for any values 7 and 7 of cosmic time, showing that the scale parameter scales

lengths in space over time.
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Chapter 3. GR and FLRW cosmological spacetimes

Correspondingly, a(r)® is the scaling factor for a fixed coordinate space volume
over cosmic time 7.

Using either the Friedmann equations, or more generally, the requirement that the
stress-energy tensor be divergence-free, V* T,,, = 0, one obtains in the FLRW
spacetimes

d, s d a3
E(Qa )+PE(3)—O

With a(7)® ~ V., = spatial unit volume at cosmic time 7,

V;0 = E. = energy in unit volume at cosmic time obtains, implying
iEH—inT:O, i.e. dE+pdV =0
ar ar

In other words, we see the validity of a conservation law analogous to the 1st law of
thermodynamics.
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Chapter 3. GR and FLRW cosmological spacetimes

We now aim at relating the scale factor a() and the redshift. To this end, consider the
following situation: We have two galaxies, *« and x. We assume that the galaxies have
the following worldlines with respect to the (, r, 6, ¢) coordinates

* T*—)(T,I},Go,(ﬁo)
* T (7’7 I},@o,qf)o)

That means, the galaxies have the same angular coordinates, but different radial
coordinates, r. and r.. We assume for convenience (but without restriction of
generality) that r. < r..

Then we consider the situation that in short succession, two light signals (lightrays)
are sent from galaxy = to galaxy ~ where they are registered. At galaxy x, the first light
signal is emitted at 7..(1) and the second at 7..(2). The light signals are registered in
galaxy « at 7.(1) and 7.(2). We are interested in the relation between

AT, = 71(2) — 7+(1) and A7, = 7.(2) — 7 (1). These are the proper time differences
of the light signals emitted/received in the galaxies.
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Chapter 3. GR and FLRW cosmological spacetimes

The following picture illustrates the situation described in the previous slide. The
worldlines of the galaxies are parallel to the 7-axis (cosmic time) and remain at their
fixed r-coordinates. The lightlike geodesics of the light signals are sketched as the
golden lines. They appear here curved, assuming that a(r) is growing in 7.

T i galaxy 3k galaxy %

7(2)

/ T*(1)

i

7+(2)

(1)

.
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Chapter 3. GR and FLRW cosmological spacetimes

Let s = v(8) = (7(8), r(8), o, ¢0), S € [S«, S+] be a lightlike geodesic describing the
worldline of a light signal travelling from galaxy = to galaxy %, at fixed angular
coordinates. Then by the form of the FLRW metric, the condition that the geodesic is
lightlike means

/ 2 2 rl(s)2 _
7'(s)" — a(r(s)) T k(s ~ 0 (se€]sss)
where the prime means differentiation with respect to the affine parameter s. We have,
by assumption, 7/(s) > 0 and r’(s) > 0, and hence
T(s) __ r'(s)
a(7(s)) 11— kr(s)?’

implying

Lo, o w0 e, J%dsz/:wdrw
Therefore,
[ ] w5l %
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Chapter 3. GR and FLRW cosmological spacetimes
This now implies, noting that 7..(2) = 7.(1) + A7, and 7.(2) = 7.(1) + ATy,
Tx(1)+AT7, dT 75 (1) dT
[
r()+ar, aT) o alr)

At _ a(n(1))
At a(r(1))

This yields

+ O(AT)

Therefore, if one sets
AT, ~ X' = wavelength of light signals registered in galaxy x
AT, ~ X = wavelength of the light signals registerd in galaxy x

one obtains in the “short wave length limit” (i.e. the wavelength of light signals
between the galaxies is very much smaller than the spatial distance of the galaxies),

X At a(r.(1))
N T anto An  a(n(l)
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Chapter 3. GR and FLRW cosmological spacetimes

Assuming & > 0, our previous assumption 7/ > 0 (as a function of the affine
parameter) now implies the occurrence of a redshift,

N =X _ a(r(1) 150

T TN T am)

between the wavelength X of a light signal at its emission from galaxy *, and the
wavelength )\’ of the light signal when it is registerd in the galaxy .

Therefore, the FLRW spacetime models describe the redshift effect of light received
from remote galaxies if & > 0. It is also obvious that the redshift factor z increases
when the galaxies are further apart because increasing r, implies increasing 7..(1).

It should be noted that the redshift factor is in general not constant in 7 since zgg;;
depends on the cosmic time 7..(1) at which the light signal is being emitted.
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