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Chapter 3. GR and FLRW cosmological spacetimes

The notation for the spacetime metrics g(k)
µν of the FLRW cosmological spacetimes

(k = −1, 0, 1) is usually given in terms of the metric line elements. For the case k = 0,
it is typically written

ds2
(k=0) = dτ 2 − a(τ)2(dx2 + dy2 + dz2)

where (x , y , z) are Cartesian coordinates of R3.

In the other cases, i.e. k = ±1,

ds2
(1) = dτ 2 − a(τ)2

(
dψ2 + sin2(ψ)(dθ2 + sin2(θ)dφ2)

)
ds2

(−1) = dτ 2 − a(τ)2
(

dψ2 + sinh2(ψ)(dθ2 + sin2(θ)dφ2)
)

in the 3-dimensional spherical polar coordinates, resp. spherical hyperbolic
coordinates.

The terminology “metric line element” has some historical roots – see textbooks on
GR for explanation. It is a convenient and customary way of denoting the coordinate
expression of a metric with respect to particular coordinates. If the coordinates are
chosen so that the coordinate expression of the metric diagonalizes, like here, it is a
very useful notation.
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To indicate how it is used: Eg. in the case k = 0, one reads dτ 2 as a symmetric
(0

2

)
tensor field fulfilling

dτ 2(∂τ ⊗ ∂τ ) = 1 , dτ 2(∂τ ⊗ ∂x ) = dτ 2(∂x ⊗ ∂τ ) = 0 , dτ 2(∂x ⊗ ∂x ) = 0

and similarly upon replacing x by y or z. Analogously, dx2 is a symmetric
(0

2

)
tensor

field fulfilling

dx2(∂x ⊗ ∂x ) = 1 , dx2(∂τ ⊗ ∂x ) = 0 , dx2(∂τ ⊗ ∂τ ) = 0

dx2(∂x ⊗ ∂y ) = 0 , dx2(∂y ⊗ ∂y ) = 0 , dx2(∂y ⊗ ∂z) = 0

and similarly upon replacing y by z.
Analogously one has, e.g., at the coordinate point q = (τ, ψ, θ, φ)[
dτ 2 − a(τ)2

(
dψ2 + sin2(ψ)(dθ2 + sin2(θ)dφ2)

)]
(∂φ|q⊗∂φ|q) = −a(τ)2 sin2(ψ) sin2(θ)
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Another choice of coordinates for the FLRW spacetimes is also often in use: It is given
for all cases k = −1, 0, 1 by (τ, r , θ, φ).

τ (cosmological time) and (θ, φ) (spherical polar coordinates of the S2) are as before.

r is a radial coordinate: for k = −1, 0, r ∈ (0,∞), while for k = 1, r ∈ (0, 1), with

ds2
(k) = dτ 2 − a(τ)2

(
dr 2

1− kr 2 + r 2(dθ2 + sin2(θ)dφ2)

)
(k = −1, 0, 1)

It is a different way of choosing coordinates on Σ(k).

The FLRW cosmological spacetimes (M(k) = J × Σ(k), g(k)
µν ) which are possible as

solutions to Einstein’s equations with matter described as a homogeneous and
isotropic ideal fluid are therefore very much restricted. What remains undetermined so
far are

The value of k = −1, 0, 1

The smooth function a : J → (0,∞), called the scale factor of an FLRW
spacetime. (Note that the interval J ⊂ R isn’t determined either.)
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The Friedmann Equations

For any choice of k = −1, 0, 1, the scale factor a(τ) is determined by the requirement
that the spacetime (M(k) = J × Σ(k), g(k)

µν ) with the metric line element

ds2
(k) = dτ 2 − a(τ)2

(
dr 2

1− kr 2 + r 2(dθ2 + sin2(θ)dφ2)

)
(k = −1, 0, 1)

be a solution to Einstein’s equations

G(Λ)
µν = Gµν + Λgµν = κTµν

where the stress-energy tensor on the right hand side is of the form of a
homogeneous and isotropic ideal fluid,

Tµν = (%+ p)uµuν − pgµν with uµ = (∂τ )µ

Recall that Gµν = Ricµν − 1
2 gµνR is the Einstein tensor.

Using the form of the metric above together with the assumed form of the
stress-energy tensor, Einstein’s equations assume the much simpler form
Friedmann’s equations, a system of differential equations coupling a(τ), %(τ) and
p(τ) – owing to spatial homogeneity, % and p can only depend on τ , not on (r , θ, φ):
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3
(

ȧ2 + k
a2

)
+ Λ = κ% (1st Friedmann eqn)

2aä + ȧ2 + k
a2 + Λ = −κp (2nd Friedmann eqn)

where a dot denotes differentiation with respect to τ .

Showing that Einstein’s equations assume the form of Friedmann’s equations under
the assumptions stated is a classical exercise problem for any student in cosmology.

Remarks

(i) Besides the constant k = −1, 0, 1, the cosmological constant Λ enters as
another – at this point, undetermined – constant into the Friedmann equations.
Caution: In cosmology, many authors use the opposite sign convention for Λ, i.e.
they write −Λ instead of Λ as used here. So there is another sign convention that
needs to be checked with the literature.
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(ii) Assuming k and Λ given, the Friedmann equations in this form are
underdetermined because there are no relations between % and p. They have to be
supplied, as a further specification of the matter model at hand, by an equation of
state in the form p = f (%,T ) with a suitable function of % and T (absolute temperature)
characterizing a (near to) thermal equilibrium situation. The most common choices in
cosmology are:

p = 0. This form of matter is called dust and it is appropriate for the picture that
galaxy clusters are viewed as the “grains of a dust cloud”.

p = %/3. This form of matter is called radiation. It is appropropriate at the very
early stages of the cosmic evolution were electromagnetic radiation can be
considered as the main energy-carrying component of the cosmic inventory.

(iii) Furthermore, to find an explicit solution, it is necessary to specify initial
conditions at some cosmic time τ0.

Once equations of state of the form “dust” or “radiation” are assumed, one can further
simplify Friedmann’s equations, by eliminating %, p from the equations, which makes it
possible to determine concrete solutions (even analytically) from initial conditions. We
will return to this shortly.
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Scale factor and Redshift

Here, we discuss the meaning of the scale factor a(τ) appearing in the FLRW
spacetime metric: It scales spatial lengths, depending on cosmic time τ .

To see this formally, let σ and σ′ be any two points in Σ(k).

Then consider for any cosmic time τ a smooth curve s 7→ γτ (s) = (τ,γ(s)) ∈ J ×Σ(k),
s ∈ [s0, s1], where s 7→ γ(s) is a smooth curve in Σ(k) connecting σ and σ′. Thus, the
γτ are copies of a “curve in space” at various values of cosmic time τ .

The metric length of these curves, for different τ , is given by

`(γτ ) =

∫ s1

s0

∣∣∣∣g(k)(
d
ds
γτ (s),

d
ds
γτ (s))

∣∣∣∣1/2

ds = a(τ)

∫ s1

s0

(
h(k)(

d
ds

γ(s),
d
ds

γ(s))

)1/2

ds

where the form of the FLRW metric g(k)
µν = dτ0dτ0 − a(τ)2h(k)

ij as in Lec 15, slide 11,
was used.

Therefore,
`(γτ )

`(γτ0 )
=

a(τ)

a(τ0)

for any values τ and τ0 of cosmic time, showing that the scale parameter scales
lengths in space over time.
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Correspondingly, a(τ)3 is the scaling factor for a fixed coordinate space volume
over cosmic time τ .

Using either the Friedmann equations, or more generally, the requirement that the
stress-energy tensor be divergence-free, ∇µTµν = 0, one obtains in the FLRW
spacetimes

d
dτ

(%a3) + p
d

dτ
(a3) = 0

With a(τ)3 ∼ Vτ = spatial unit volume at cosmic time τ ,

Vτ% = Eτ = energy in unit volume at cosmic time τ obtains, implying

d
dτ

Eτ + p
d

dτ
Vτ = 0 , i.e. dE + pdV = 0

In other words, we see the validity of a conservation law analogous to the 1st law of
thermodynamics.
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We now aim at relating the scale factor a(τ) and the redshift. To this end, consider the
following situation: We have two galaxies, ∗ and ? . We assume that the galaxies have
the following worldlines with respect to the (τ, r , θ, φ) coordinates

∗ τ 7→ (τ, r∗, θ0, φ0)

? τ 7→ (τ, r?, θ0, φ0)

That means, the galaxies have the same angular coordinates, but different radial
coordinates, r∗ and r?. We assume for convenience (but without restriction of
generality) that r∗ < r?.

Then we consider the situation that in short succession, two light signals (lightrays)
are sent from galaxy ∗ to galaxy ? where they are registered. At galaxy ∗, the first light
signal is emitted at τ∗(1) and the second at τ∗(2). The light signals are registered in
galaxy ? at τ?(1) and τ?(2). We are interested in the relation between
∆τ∗ = τ∗(2)− τ∗(1) and ∆τ? = τ?(2)− τ?(1). These are the proper time differences
of the light signals emitted/received in the galaxies.
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The following picture illustrates the situation described in the previous slide. The
worldlines of the galaxies are parallel to the τ -axis (cosmic time) and remain at their
fixed r -coordinates. The lightlike geodesics of the light signals are sketched as the
golden lines. They appear here curved, assuming that a(τ) is growing in τ .

  

galaxy galaxy
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Let s 7→ γ(s) = (τ(s), r(s), θ0, φ0), s ∈ [s∗, s?] be a lightlike geodesic describing the
worldline of a light signal travelling from galaxy ∗ to galaxy ?, at fixed angular
coordinates. Then by the form of the FLRW metric, the condition that the geodesic is
lightlike means

τ ′(s)2 − a(τ(s))2 r ′(s)2

1− kr(s)2 = 0 (s ∈ [s∗, s?])

where the prime means differentiation with respect to the affine parameter s. We have,
by assumption, τ ′(s) > 0 and r ′(s) > 0, and hence

τ ′(s)

a(τ(s))
=

r ′(s)√
1− kr(s)2

, implying

∫ τ(s?)

τ(s∗)

dτ
a(τ)

=

∫ s?

s∗

τ ′(s)

a(τ(s))
ds =

∫ s?

s∗

r ′(s)√
1− kr(s)2

ds =

∫ r?

r∗

dr√
1− kr 2

Therefore, ∫ τ?(1)

τ∗(1)

dτ
a(τ)

=

∫ r?

r∗

dr√
1− kr 2

=

∫ τ?(2)

τ∗(2)

dτ
a(τ)
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This now implies, noting that τ∗(2) = τ∗(1) + ∆τ∗ and τ?(2) = τ?(1) + ∆τ?,∫ τ?(1)+∆τ?

τ∗(1)+∆τ∗

dτ
a(τ)

−
∫ τ?(1)

τ∗(1)

dτ
a(τ)

= 0

This yields
∆τ?
∆τ∗

=
a(τ?(1))

a(τ∗(1))
+ O(∆τ∗)

Therefore, if one sets

∆τ? ∼ λ′ = wavelength of light signals registered in galaxy ?

∆τ∗ ∼ λ = wavelength of the light signals registerd in galaxy ∗

one obtains in the “short wave length limit” (i.e. the wavelength of light signals
between the galaxies is very much smaller than the spatial distance of the galaxies),

λ′

λ
= lim

∆τ∗→0

∆τ?
∆τ∗

=
a(τ?(1))

a(τ∗(1))
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Assuming ȧ > 0, our previous assumption τ ′ > 0 (as a function of the affine
parameter) now implies the occurrence of a redshift,

z =
λ′ − λ
λ

=
a(τ?(1))

a(τ∗(1))
− 1 > 0

between the wavelength λ of a light signal at its emission from galaxy ∗, and the
wavelength λ′ of the light signal when it is registerd in the galaxy ?.

Therefore, the FLRW spacetime models describe the redshift effect of light received
from remote galaxies if ȧ > 0. It is also obvious that the redshift factor z increases
when the galaxies are further apart because increasing r? implies increasing τ?(1).

It should be noted that the redshift factor is in general not constant in τ since a(τ?(1))
a(τ∗(1))

depends on the cosmic time τ∗(1) at which the light signal is being emitted.
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