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Chapter 3. GR and FLRW cosmological spacetimes

General Relativity: Kinematical Principle

The kinematical principle of General relativity consists of the following elements:

Spacetime ( = the “catalogue of all events”) is described by (M, gµν), a
4-dimensional manifold with a Lorentzian metric. (Already before we have
referred to any such (M, gµν) as a spacetime.)

In the absence of other than gravitational interactions:

? The worldlines of material particles (pointlike idealized) are timelike
geodesics

? The worldlines of light signals are lightlike geodesics.

As already indicated when the geodesic equation made its appearance, the effects of
a gravitational field on test objects – the material point particles and light signals
mentioned are, in this sense, test objects which are assumed not to act as a source of
gravitational fields – are thereby described via a non-constant metric; more precisely,
by non-vanishing Christoffel symbols. In fact, a spacetime (M, gµν) is called flat if the
Riemann tensor vanishes, i.e. if Rν

σλµ = 0. One can show (again, a popular exercise)
that this implies that the manifold M can be covered by coordinate charts in each of
which the Christoffel symbols vanish, Γλ

µν = 0.
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Therefore, gravitational effects in the sense that, no matter which coordinates are
chosen, timelike or lightlike geodesics will deviate from straight coordinate lines, are
related to the presence of a non-vanishing Riemann tensor, that is to say, non-trivial
curvature.

Moreover, the gravitational deflection of test particles or light rays in an external
gravitational field can be understood as an effect of curvature of the spacetime
(M, gµν). To this end, consider two very closely neighbouring timelike geodesics γ and
γδ. Here, δ(t) is the (spacelike) minimal geodesic distance between γ(t) and γδ(t),
while t is the proper time parameter of the geodesic γ, i.e. gµν γ̇

µγ̇ν = 1.
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Using appropriate coordinates, it can be shown that
1
δ

(γµ
δ (t)− γµ(t)) = jµ(t) + O(δ)

in the limit δ → 0, where jµ is a vectorfield along γ which is γ-orthogonal, i.e.
gµν jµγ̇ν = 0. (Very roughly, jµ is indicated by the blue arrow in the previous figure.)

vµ(t) =
d
dt

jµ(t) describes the velocity

aµ(t) =
d2

dt2 jµ(t) describes the acceleration

of “infinitesimally neighbouring” geodesics towards/away from each other, and it holds
that

aν = Rν
σλµγ̇

σγ̇λjµ ( + O(δ)) “Jacobi’s eqn of geodesic deviation”

in other words, the “relative acceleration of infinitesimally neighbouring geodesics” or
“tidal forces” are expressed by the Riemann tensor of the spacetime metric in which
the test particles are placed. This is very much in the spirit of the comparison with
electrodynamics mentioned earlier: The geodesic equation is akin to the Lorentz force
equation on a test charge in an external electromagnetic field, the curvature
resembles the field strength and the metric the potentials.
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There is a geometric analogy shown in the cartoon below. Two marbles on a curved
surface move towards each other or away from each other, depending on the
curvature (where tacitly the picture assumes a gravitational field acting from top to
bottom of the page along the vertical axis). The situation on the left, where the
marbles approach each other, is commonly referred to a positive curvature, whereas
on the right, there is negative curvature, so that the marbles recede from one another.
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However, this doesn’t yet take into account that point like masses – and photons – do
not only react to external graviational fields, but they are also themselves “sources of
curvature”. Taking up on the curved surface analogy of the previous slide, the
curvature would be sourced by the masses present in spacetime. The more massive
they are, the more positive curvature they create, and consequently the gravitational
attraction becomes stronger. This is depicted in the cartoon below.

Rainer Verch 6 / 10



Chapter 3. GR and FLRW cosmological spacetimes

General Relativity: Dynamical Principle

The following dynamical principle incorporates the just mentioned ideas.

The spacetime metric of the spacetime (M, gµν) is not given a priori but is dynamically
coupled with the energy-matter content in spacetime; it is determined dynamically as
a solution to Einstein’s field equations of gravity:

G(Λ)
µν = κTµν , where

G(Λ)
µν = Gµν + Λgµν with Gµν = Ricµν −

1
2

gµν Einstein tensor

Tµν = stress-energy-tensor of all matter/radiation in spacetime

κ =
8πG
c4 with G = Newton’s gravitational constant, if T00 is energy density

Furthermore, the real parameter Λ is called the cosmological constant. Its
appearence signalizes that there is a freedom of choosing a parameter in Einstein’s
equations, which in some way has the flavour of a freedom in choosing a zero-point of
energy.
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One important point here is the underlying assumption that there is a tensor field Tµν

which specifies the mass-energy content of all matter and radiation in spacetime,
called the stress-energy-tensor. This is (in classical GR, without regard for quantum
matter) considered as in the description of macroscopic media in the sense of
continuum mechanics/hydrodynamics.

We will here look at a particular, but very general way of describing a (continuous,
macroscopic) matter distribution in spacetime and its associated stress energy tensor;
it is also the way matter distributions are usually described in standard cosmology.
Quite generally, in order to have a more complete picture of Tµν and Einstein’s field
equations, one would have to specify a matter model. A matter model describes also
the degrees of freedom of the matter and their interactions, other than gravitational.
For most purposes in cosmology (and also in GR, more generally), one works in a
thermodynamic limit where the non-gravitational interactions are subsumed by an
equation of state which characterizes close-to-equilibrium situations of certain classes
of matter.

Once a matter model is chosen, Einstein’s equation’s (together with eqns of motion
due to other interactions) are to be viewed as an initial value problem. At some initial
(global) time, specify matter distribution and spacetime metric consistently (together
with first time-derivatives); then find solutions to Einstein’s equations compatible with
the initial conditions.
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The picture below is a sketch of a continuous matter distribution – best thought of as a
cloud of gas or a big liquid “drop”. At some initial time (t = 0), the matter distribution
occupies some volume, indicated as the area encircled by the purple line (in the
picture, one space dimension is suppressed). Sketched are the worldlines of
“infinitesimal volume elements” of the matter distribution, they are parametrized by the
continuous spacepoints x (one has been denoted y for distinction) within the initially
occupied volume. At every point γx(t) along such a worldline, there is the tangent
vector uµ|γx (t) = γ̇µ

x (t). We assume that the worldlines are timelike and that t is a
common proper time parameter for all of them, so that gµνuµuν = 1. In other words,
the worldlines γx are the integral curves of the timelike vectorfield uµ.
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In the situation just described, the matter distribution is called an ideal fluid in
equilibrium if

the γx are geodesics

the stress-energy tensor has the form

Tµν(q) = (%+ p)(q)uµ(q)uν(q)− p(q)gµν(q)

at any spacetime point q within the mass distribution
(i.e. q = γx(t) for some t , x).
Recall uµ = gµνuν .
The function % is called the energy density and the function p is called the
isotropic pressure of the ideal fluid.
Upon choosing at q = γx(t) a coordinate chart so that ∂x0 |q = u|q with
g(∂xµ |q , ∂xν |q) = ηµν , the stress energy tensor has the form an ideal fluid takes
in special relativity for the case that the “infinitesimal volume element” is
“momentarily at rest” with respect to the chosen coordinates at q. Therefore,
there appear no current-like quantities in this description of the fluid: It is
described in its “co-moving rest frame”, or what comes closest to it in general
relativity. Note, however, that the energy density and pressure may vary in time
and space.
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