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Chapter 3. GR and FLRW cosmological spacetimes

Geodesics

Let (M, gµν) be a spacetime and let ∇ be the covariant derivative of gµν .
Furthermore, let γ : s 7→ γ(s) ∈ M (s in an interval S) be a smooth curve.

γ is called an affinely parametrized geodesic if

γ̇µ∇µγ̇ν = 0 all along the curve γ

Strictly speaking, this geodesic equation is abuse of notation, since γ̇µ isn’t a smooth
vectorfield on M. However, in this equation, one can think of γ̇µ as being replaced by
any smooth vectorfield vµ on M which agrees with γ̇µ along γ (v |γ(s) = γ̇(s) for all
s ∈ S); there are many such vector fields. Since the covariant derivative is only taken
“in the direction of γ̇”, the geodesic equation does not depend on how γ̇µ is extended
to a smooth vectorfield away from the curve γ, and therefore there is actually no
ambiguity upon writing the geodesic equation in the form as above.

In a coordinate chart (φ,M∆), writing γµ(s) = xµ(γ(s)) where as usual, xκ = φκ

denote the chart’s coordinate components, the geodesic equation taskes the form

d2

ds2 γ
µ(s) + Γµλ%(γ(s))

(
d
ds
γλ(s)

)(
d
ds
γ%(s)

)
= 0 (s ∈ S)
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It is worth mentioning that the geodesic equation given here in the “affinely
parametrized” form depends on the curve parametrization and that it is preserved
exactly under affine re-parametrizations of the form s 7→ s̃ = as + b with a, b ∈ R,
a 6= 0. For more details on this point, please refer to textbooks on GR.

To address the significance of the goedesic equation, think of (M, gµν) as being
Minkowski spacetime. Choosing the xµ as inertial coordinates, the metric is the
constant Minkowski metric, gµν = ηµν . Since it is constant (independent of the
coordinate positions (x0, . . . , x3)T ), and as the Christoffel symbols are formed from
derivatives of the metric w.r.t. the xµ, we see that Γµλ% = 0 everywhere on Minkowski
spacetime (in inertial coordinates). Thus, in inertial coordinates on Minkowski
spacetime, the geodesic equation reduces to

d2

ds2 γ
µ(s) = 0

and therefore, on Minkowski spacetime, geodesics are straight lines in inertial
coordinates.
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The following observations may be drawn from this:
For a more general metric gµν , geodesics are the generalization of “straight
lines” with respect to the geometry described by the metric. We will soon see this
point of view corroborated by the fact that geodesics characterize curves of
extremal metric length.
For Minkowski spacetime, consider a curve γ0(t) = t , γk (t) = xk (t) (k = 1, 2, 3)
where t is the inertial time coordinate. We think of x(t) = (x1(t), x2(t), x3(t))T as
the space trajectory of a test particle, assuming non-relativistic velocities with
respect to the chosen inertial coordinate system. If the particle is subject to a
conservative, static force F (x) = −gradU(x), then Newton’s equation is

d2

dt2 γ
k (t) +

1
m
δkj ∂

∂x j U(γ(t))

(
dγ0(t)

dt

)(
dγ0(t)

dt

)
= 0

since dγ0(t)/dt = 1. This shows that there is a close formal relationship between the
geodesic equation and Newton’s equation and that derivatives of the potential may be
identified with the Christoffel symbols of a suitable, non-constant (in inertial
coordinates) metric to describe gravitational effects. At this point, the identification
dγ0(t)/dt = 1 may appear a bit arbitrary, but this turns out as the right ansatz – again,
I must refer to textbooks on GR for considerable further discussion.
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Let again (M, gµν) be a spacetime, and let γ : [a, b]→ M, s 7→ γ(s) be a smooth
curve. (a < b are real numbers.)

The length of the curve γ (w.r.t. the metric gµν ) is defined as

`(γ) =

∫ b

a
|gµν(γ(s))γ̇µ(s)γ̇ν(s)|1/2 ds

It is a popular exercise to show that this quantity is independent of the parametrization
of the curve.

Geodesics are curves of extremal length

Let p, q be to points in M. A smooth curve γ : [a, b]→ M, with γ(a) = p and γ(b) = q
is said to connect p and q. A standard result in differential geometry (usually explained
and (sort of) proved in most GR textbooks) states the following (which applies to
Riemannian as well as Lorentzian metrics):

Let p and q be two points in M. Then a smooth curve
×
γ : [a, b]→ M connecting p and

q locally extremalizes the length `(γ) among all smooth curves γ connecting p and q if
and only if

×
γ is – possibly up to a non-affine re-parametrization – a geodesic (i.e. it

fulfills the geodesic equation after a suitable re-parametrization).
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Note the qualifier locally extremalizes – this has to do the fact that in general, there are
many geodesics connecting (separate) points q and p in M.

(Think e.g. of the cylinder R× S1 with its natural Riemannian metric which agrees with
the Euclidean metric on R2 when “unrolling” the cylinder; if p = (h1, φ1) and
q = (h2, φ2) with h1 < h2 are two points on the cylinder, there are infinitely many
geodesics connecting the points: “Screwlines” with constant inclination, wrapping
multiple times around the cylinder. They are geodesics because their “unrolled”
counterparts are straight lines.)

More precisely, it means: There is an open neighbourhood N of (the image of)
×
γ so

that either `(
×
γ) ≥ `(γ) or `(

×
γ) ≤ `(γ) for all smooth curves γ : S → N connecting p

and q (S any closed interval). This is similar to Hamilton’s principle of extremal action
in mechanics.

However, locally, geodesics connecting pairs of points are unique: One can show that
every point q′ ∈ M possesses open neighbourhoods N so that, whenever p, q ∈ N,
there is a unique geodesic

×
γ in N (up to affine re-parametrization) connecting p and q.

Any such neighbourhood is called a convex normal neighbourhood (of q′).
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If a geodesic
×
γ connects two points p and q in a convex normal neighbourhood N, one

has:
~ If the metric gµν is Riemannian:
×
γ minimizes the length `(γ) among all curves γ in N connecting p and q.

~ If the metric gµν is Lorentzian (i.e. (M, gµν) is a spacetime), there are the
following cases:

? If
×
γ is lightlike, then it is the only lightlike curve in N connecting p and q.

? If
×
γ is timelike, then it maximizes the length `(γ) among all timelike curves γ

in N connecting p and q.

? If
×
γ is spacelike, then it minimizes the length `(γ) among all spacelike

curves γ in N connecting p and q.

Running ahead a little bit – the worldlines of lightsignals (“lightrays”) will be described
as lightlike geodesics in GR. Therefore, to describe a gravitational lensing effect in GR
which leads to multiple imaging – as is observed in astronomy, and is significant in
certain contexts of cosmology – the spacetime point of the source p and of the
observer q cannot lie in a convex normal neighbourhood of the spacetime metric.
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Curvature

Again, our standing assumption is that (M, gµν) is a spacetime.
Consider any coordinate chart with coordinate component functions xµ.
The coordinate components of 2nd (and even higher order) coordinate derivatives on
vector fields vν commute, i.e. it holds that

∂

∂xλ
∂

∂xµ
vν =

∂

∂xµ
∂

∂xλ
vν

But in general, for 2nd covariant derivatives, this will not be the case: Typically (except
for very special cases),

∇λ(∇µvν) 6= ∇µ(∇λvν)

It turns out that the difference of the order-interchanged 2nd covariant derivatives are
linear in vν and can be expressed by a tensor field, the Riemannian curvature tensor

The Riemannian curvature tensor, properties and descendants

There is a
(1

3
)

tensor field R on M so that

Rν
σλµvσ = ∇λ(∇µvν)−∇µ(∇λvν)

for all vectorfields vν on M. This tensor field is called the Riemannian curvature
tensor of the metric gµν (or simply Riemann tensor).
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In any coordinate chart, it holds that

Rν
σλµ =

∂

∂xλ
Γνσµ −

∂

∂xµ
Γνσλ + ΓνλβΓβσµ − ΓνµβΓβσλ

Please check the formulas with the literature, as they are prone to typing errors.

When doing so, please note that there are different conventions in use for
defining the Riemannian curvature tensor. One deviating convention w.r.t. the
one used here is to define the Riemannian curvature tensor with a minus sign
(i.e. the negative of our definition). Another deviation is to put the index σ on
which the vectorfield index is contracted as the rightmost lower index (whereas
we have put it leftmost). Unfortunately, practically all possible conventions are in
use, so check carefully which conventions for curvature quantities are used
by the authors! (Unfortunately, the authors do not always indicate which
conventions they are using.)

The Riemannian curvature tensor fulfills some important identities:

(i) Rν
σλµ = −Rν

σµλ

(ii) Rν
σλµ + Rν

λµσ + Rν
µσλ = 0 (1st Bianchi identity)

(iii) ∇%Rν
σλµ +∇λRν

σµ% +∇µRν
σ%λ = 0 (2nd Bianchi identity)
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There are two further, important curvature quantities which can be formed from the
Riemannian curvature tensor upon contraction:

Ricσµ = Rσµ = Rλ
σλµ the Ricci tensor

R = gσµRσµ the scalar survature

Note:

Ricσµ and Rσµ are synonymous notations for the Ricci tensor. The latter is
usually not used for blackbord presentations since in handwriting, R and R are
very similar. Many authors also use Rσµ to denote the Ricci tensor.

Again, different sign convention are in use: Some authors define the Ricci tensor
as the negative of our definition. So once more, check the sign conventions
when comparing formulas!
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