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Chapter 3. GR and FLRW cosmological spacetimes

Given a spacetime (M, gµν), one can distinguish smooth curves γ : s 7→ γ(s) ∈ M
(s in an interval S) according to the properties of their tangent vectors γ̇(s) = γ̇|γ(s), in
complete analogy to Minkowski spacetime:

(a) γ is timelike if gµν γ̇µγ̇ > 0

(b) γ is spacelike if gµν γ̇µγ̇ < 0

(c) γ is lightlike if gµν γ̇µγ̇ = 0 and γ̇ 6= 0

(d) γ is causal if gµν γ̇µγ̇ ≥ 0 and γ̇ 6= 0

Note that these conditions are supposed to hold at every point along the curve γ, i.e.
for all curve parameters s ∈ S.

One could also write g(γ̇, γ̇) in an index-free notation instead of gµν γ̇µγ̇ .

Similarly, one can define timelike, spacelike, lightlike and causal tangent vectors at
any point in the spacetime.

Some authors use the terminology null instead of lightlike.
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Chapter 3. GR and FLRW cosmological spacetimes

Covariant derivative

Given a manifold M (n-dimensional) one would like to define derivatives of tensor
fields X .

If one starts by defining derivatives of the coordinate components of a tensor field with
respect to a coordinate chart (φ,M∆), like e.g.

∂

∂xµ
Xα1...αr

β1...βs (φ−1(x)) (x ∈ ∆)

there arises the problem that such a definition depends on the choice of the
coordinate chart in that such expressions do not transform as the coordinate
components of a tensor field under a change of the coordinate chart.

Similarly, the definition of derivatives of tensor fields should not depend on the
particular embedding of an n-dimensional manifold into an ambient RN .

Once a manifold is endowed with a metric, one can define a unique concept of a
derivative of tensor fields which is not dependent on choices of coordinate charts or
embeddings: The covariant derivative associated to a metric.
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Chapter 3. GR and FLRW cosmological spacetimes

We continue with the definition of several quantities which are important for
introducing the covariante derivative.

Let (M, gµν) be a spacetime, and let (φ,M∆) be a coordinate chart; the coordinate
component functions are, as usual, denoted by xκ(= φκ).

A
(2

0
)

tensor field g̃ = g̃µν on M will be defined by defining the coordinate component
matrix (g̃µν) as the inverse matrix of the coordinate component matrix (gµν) of the
spacetime metric so that

g̃µσgσν = δµν

is the definining condition of g̃ in any coordinate chart.

One can show that with this definition, the g̃µν indeed transform like the coordinate
components of a

(2
0
)

tensor field (a popular exercise problem).

It is customary to write gµν instead g̃µν , and surprisingly this leads, in practice, not to
much confusion (once one is experienced enough with the index notation).

Using the tensor fields gµν and gµν , one can “raise and lower indices” of tensor fields,
e.g. convert a vector field vν in a covector field ωµ = gµνvν by contraction; similarly,
convert a covector field ξλ into a vector field wσ = gσλξλ, or e.g. a

(1
2
)

tensor field
Bτ %δ into a

(1
2
)

tensor field Bµνδ = gµτgν%Bτ %δ. Mind the order of the indices here !!

Rainer Verch 4 / 9



Chapter 3. GR and FLRW cosmological spacetimes

Let again (M, gµν) be a spacetime, and let (φ,M∆) be a coordinate chart, with
coordinate component functions xκ(= φκ).

Given the coordinate chart, the (generalized) Christoffel symbols of the metric gµν
with respect to the coordinate chart are given by

Γσλρ =
1
2

gσα
(

∂

∂xρ
gλα −

∂

∂xα
gλρ +

∂

∂xλ
gρα
)

Caution: Despite the notation, the Γσλρ are not the coordinate components of a
(1

2
)

tensor field! In that sense, they depend on the choice of a coordinate chart.

It follows from the symmetry of the metric, gµν = gνµ, that the Christoffel symbols are
also symmetric in the lower indices (in any coordinate chart):

Γσλρ = Γσρλ

The definition of the Christoffel symbols seems a bit ad hoc. However, it turns out that
the failure of the Γσλρ to transform as a tensor field can be used to compensate the
failing tensor transformation property of expressions like ∂

∂xµ Xα1...αr
β1...βs (φ−1(x)).

This is basically what is behind the definition of the covariant derivative, appearing
next.
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Chapter 3. GR and FLRW cosmological spacetimes

Definition and properties of the covariant derivative

As before (M, gµν) is a spacetime, and (φ,M∆) is an arbitrary coordinate chart for M,
with xκ = φκ denoting the coordinate component functions. Γσλρ are the Christoffel
symbols in the coordinate chart.

(i) Let vµ be a vector field on M. Then the functions

Y ν
µ(q) =

∂

∂xµ
vν(φ−1(x))

∣∣∣∣
x=φ(q)

+ (Γνµ%v
%)(q) (q ∈ M∆))

transform like the coordinate component functions of a
(1

1
)

tensor field under
change of the coordinate chart.

(ii) One writes
∇µvν = Y νµ

which is actually a slight abuse of notation since instead of ∇µvν one should
write (∇v)νµ (or (∇v)µ

ν , at this point it is a matter of convention) – because
there is no sense in which ∇µ could be viewed as the coordinate components of
a covector field. Nevertheless, the notation ∇µvν is customary.

Rainer Verch 6 / 9



Chapter 3. GR and FLRW cosmological spacetimes

(iii) Therefore, ∇ is a linear map taking vectorfields v on M to
(1

1
)

tensor fields ∇v
and in any local coordinate chart, the coordinate components of ∇v are

∇µvν (= (∇v)νµ ) =
∂

∂xµ
vν + Γνµ%v

%

This map ∇ is called the covariant derivative of the metric gµν (on vectorfields).
As mentioned before, the failures of ∂

∂xµ vν and of Γνµ%v% to transform
(individually) as components of a

(1
1
)

tensor field just compensate, so that the
definition of the covariant derivative renders ∇µvν as the coordinate
components of a

(1
1
)

tensor field.

(iv) The definition of the covariant derivative of a metric can be extended to tensor
fields of any degree. To begin, in any coordinate chart one defines

∇µf =
∂

∂xµ
f

for smooth, real-valued functions f : M → R – the “tensor fields of degree
(0

0

)
”.

Then one proceeds by requiring that the covariant derivative on tensor fields
should fulfill the Leibniz rule, commute with contractions and that the metric
should be “covariantly constant” with respect to ∇, i.e. ∇σgµν = 0.
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Chapter 3. GR and FLRW cosmological spacetimes

(v) For covectorfields ων this means, concretely,

∇µων =
∂

∂xµ
ων − Γλµνωλ

ie. ∇ω is a
(0

2

)
tensor field with the coordinate components given in the previous

equation.

(vi) More generally, a (r
s) tensor field X is mapped under the covariant derivative to a

(r
s+1) tensor field ∇X whose general coordinate components are given by

∇µXλ1...λr
ν1...νs =

∂

∂xµ
Xλ1...λr

ν1...νs

+
r∑

r̂=1

Γ
λr̂
λ̂µ

Xλ1...λ̂...λr
ν1...νs (λ̂ at r̂ -th position)

−
s∑

ŝ=1

Γν̂νŝµ
Xλ1...λr

ν1...ν̂...νs (ν̂ at ŝ-th position)
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Chapter 3. GR and FLRW cosmological spacetimes

(vii) The properties

∇σgµν = 0 the metric is “covariantly constant” ,

∇(X ⊗ Y ) = (∇X )⊗ Y + X ⊗ (∇Y ) Leibniz rule for tensor fields (any degree),

∇µ(ω%v%) = (∇µω%)v% + ω%(∇µv%) commutativity with contractions

(also for all tensor field degrees)

can then be shown to hold for the covariant derivative of a metric.

Furthermore, the covariant derivative is torsion-free, which means that
∇µ∇ν f = ∇ν∇µf for all smooth functions f : M → R, as a consequence of
having required ∇µf = ∂

∂xµ f .

One can show that there is a unique covariant derivative having all these
properties — which is given in (i) above.

In the mathematical literature, the covariant derivative of a metric is also called
the Levi-Civitá derivative.
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