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Chapter 3. GR and FLRW cosmological spacetimes

Coordinates and transformation rules

Let (φ,M∆) be a local coordinate chart for the n-dimensional smooth manifold M.
Denote the coordinate component functions by xκ = φκ, and let q ∈ M∆.
Define a basis (dx1|q , . . . , dxn|q) of T ∗q M by setting

dxκ|q(γ̇|q) =
d
ds

∣∣∣∣
s=0

xκ(γ(s))

for any smooth curve γ : (−ε, ε)→ M with γ(0) = q.
The dual basis is a basis of TqM (note that for any finite-dimensional vector space,
there is a canonical identification of the double dual space with the space itself),
denoted by (∂x1 |q , . . . , ∂xn |q); it is defined by

dxκ|q(∂xλ |q) = δκλ

Notation: Usually, the |q , indicating at which point in M∆ these basis elements are
“affixed”, is dropped from the notation – but it should be kept in mind that they depend
on q.
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Then, any A = Aq ∈ (T r
s )qM can be expanded in these bases, with expansion

coefficients, or coordinate components,

Aκ1,...,κr
λ1,...,λs = A(dxκ1 , . . . , dxκr , ∂xλ1 , . . . , ∂xλs )

i.e. one has

(?) A =
∑

κ...,λ...

Aκ1,...,κr
λ1,...,λs∂xκ1 ⊗ · · · ⊗ ∂xκr ⊗ dxλ1 ⊗ · · · ⊗ dxλs

At this point, it is customary in the GR literature to introduce the summation
convention (going back to Einstein): Instead of (?), drop the summation sign and
instead write simply

A = Aκ1,...,κr
λ1,...,λs∂xκ1 ⊗ · · · ⊗ ∂xκr ⊗ dxλ1 ⊗ · · · ⊗ dxλs

so the summation convention means: Doubly appearing indices (one of them an upper
index, the other a lower index) are understood as being summed over (unless
otherwise indicated).
Thus, expressions like Yκ

λyλ actually mean
∑
λ Yκ

λyλ, etc.

The summation convention will from now on be applied without explicit notice
(unless indicated otherwise).
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The next step is to consider the relation of coordinate components of tangent tensors
defined with respect to different local coordinates. Thus, let (φ,M∆) and (φ,M∆) be
two local coordinate charts for the n-dimensional smooth manifold M, and let
q ∈ M∆ ∩M∆.
Denote the coordinate component functions by xκ = φκ and xκ = φ

κ
. The coordinate

change maps are Ψ = φ ◦ φ−1
and Ψ−1 = φ ◦ φ−1 (defined on suitable open subsets

of Rn).
DΨ = (DΨκ

λ) Jacobi-matrix of Ψ

DΨ−1 = (DΨ−1α
β) Jacobi-matrix of Ψ−1

This is usually written in the form

DΨκ
λ =

∂xκ

∂xλ
, DΨ−1α

β =
∂xα

∂xβ

Then it holds that

∂xλ =
∂xκ

∂xλ
∂xκ , ∂xβ =

∂xα

∂xβ
∂xα

dxα =
∂xα

∂xβ
dxβ , dxλ =

∂xλ

∂xκ
dxκ
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The coordinate components of tangent tensors transform accordingly under a change
of local coordinates.
E.g. if

A = Aκασ∂xκ ⊗ dxα ⊗ dxσ = A
κ
ασ∂xκ ⊗ dxα ⊗ dxσ

then the coordinate components transform according to

A
κ
ασ =

∂xκ

∂x%
∂xξ

∂xα
∂xδ

∂xσ
A%ξδ

Tensorfields can then be defined as follows: An (r
s ) -tensorfield is a map which

assigns to any q ∈ M an Aq ∈ (T r
s )qM with the property that in any local coordinate

chart, the coordinate component functions

q 7→ Aκ1,...,κr
λ1,...,λs (q) of Aq are C∞

This means, in the local coordinate chart (φ,M∆), that all the real-valued coordinate
component functions

z 7→ Aκ1,...,κr
λ1,...,λs (φ−1(z)) (z ∈ ∆ ⊂ Rn) are C∞

(A mathematically fully satisfactory definition of tensor fields would require introducing
tangent tensor bundles, and their smooth sections, but we will not do this here.)
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Chapter 3. GR and FLRW cosmological spacetimes(1
0
)
-tensorfields are also called vectorfields, and

(0
1

)
-tensorfields are called

covectorfields or 1-form fields. In particular, for any local coordinate chart (φ,M∆) with
coordinate component functions xκ = φκ,

q 7→ ∂xκ |q (κ = 1, . . . , n) are vectorfields,
q 7→ dxκ|q (κ = 1, . . . , n) are covectorfields.

However, they are in general not defined on all of M, but only for q ∈ M∆. Therefore,
they are usually called local co/vectorfields.
It is also customary in GR to write (r

s)-tensorfields by writing their “general coordinate
components”, i.e. if A is an

(1
2
)
-tensorfield, then one denotes it by Aκασ instead of A.

This has the advantage that the tensor type is always visible in the notation. Note that
it should be written as Aκασ and not, e.g. as Aκασ since that can lead to ambiguities
when carrying out operations on tensor fields like tensor products or contractions.
For tensor products, if e.g. A is a

(1
2
)
-tensorfield and B is a

(2
2
)
-tensorfield, then

C = A⊗ B is a
(3

4

)
-tensorfield, and in coordinate components one has

Cα%σ
βδξτ = AαβδB%σξτ

Note that here all index symbols need to be different, as otherwise summation over
doubly appearing indices would be implied, or the expression is ambiguous.
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The general coordinate component notation, or “index notation”, for tensor fields has
another advantage: Contractions can be written very simply and efficiently.
Suppose that v is a vectorfield and ω is a covectorfield. Then ω(v) is a function on the
manifold, obtained by evaluating, at every q ∈ M, ω|q ∈ T ∗q M on v |q ∈ TqM:
ω(v)|q = ω|q(v |q). In the coordinate component notation, this can be very simply
written as

ω(v) = ωκvκ

and that is really what it is – keeping the summation convention in mind.

At this point, the advantage of the abstract index notation is not fully visible. But one
can also think of ω(v) as forming the trace on ω ⊗ v : The coordinate components of
ω ⊗ v are ωκvλ, and forming the trace means summing over the diagonal elements of
that component matrix, giving ωκvκ. Since it is a trace, it is already clear that it is a
quantity which is independent of the dual/basis with respect to which ω and v are
expanded (at every point q). This an example of a contraction, in this case of a(1

1
)
-tensorfield. It can be generalized to (r

s)-tensorfields if r ≥ 1 and s ≥ 1: E.g.
suppose that B%σξτ is a

(2
2
)
-tensorfield, then one can contract e.g. with respect to the

first upper and the second lower index, to yield the
(1

1
)
-tensorfield Cσ

ξ = B%σξ%.
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Metric on a manifold

Suppose that M is an n-dimensional smooth manifold. Then a metric on M is a(0
2

)
-tensorfield gµν on M (using index notation) with the properties

Symmetry: gµν = gνµ
Non-degeneracy: gµνvµv ′ν = 0 for all vectorfields v ′ν implies vµ = 0

Clearly, non-degeneracy can also be expressed as det(gµν) 6= 0, so the coordinate
component matrix of a metric is invertible (in any local coordinate chart, and for all
q ∈ M).
If one wishes to write the symmetry property more abstractly without the use of
indices, then it would read g|q(v |q , v ′|q) = g|q(v ′|q , v |q) at every point q ∈ M for all
vectorfields v and v ′ on M. Similarly, the non-degeneracy means that, whenever v ′ is
a vectorfield which is nowhere zero (v ′|q 6= 0 for all q ∈ M), then the covectorfield
given by

v 7→ g(v , v ′) is nowhere zero (i.e. there is some v with g(v , v ′) 6= 0 at any q) .

As the coordinate component matrix (gµν) of a metric is symmetric and invertible at
every point q ∈ M, its normal form is a diagonal matrix with diagonal entries taking the
values ±1, and all off-diagonal entries equal to 0,

diag(ε1, . . . , εn) , εj = ±1
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For a metric gµν on a manifold, the numbers n± = (number of the εj = ±1) are
constant over the manifold (as a consequence of the smoothness of the metric, being
a tensorfield).
The pair of numbers n+, n− is therefore a characteristic feature of the metric, called
the signature of the metric. Note that n+ + n− = n (manifold dimension).
The most important cases (certainly for physics, but largely also in mathematics) are:

n+ = n, n− = 0. In this case the metric gµν is called a Riemannian metric
n+ = 1, n− = n − 1. In this case the metric gµν is called a Lorentzian metric

Remark. Of course, whenever one can make a choice of sign, then around 50% of the
authors make opposite choices. That is to say, a metric with signature n+ = n − 1,
n− = 1 is also called a Lorentzian metric. For the purposes of GR, it doesn’t matter
which choice of Lorentzian signature is made – the results don’t depend on that
choice, but there is a fair number of sign changes that one needs to keep track of
when comparing the formulas referring to different signature conventions.

I will choose the signature convention n+ = 1, n− = n − 1 since it has the advantage
that energies are always naturally positive, which is an advantage in cosmology. That
said, many textbooks on GR actually use the opposite signature convention. Thus,
whenever reading textbooks or articles related to GR or cosmology, always check
carefully which signature convention is used by the authors.
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Spacetime

Any pair (M, gµν) where M is a 4-dimensional smooth manifold and gµν is a
Lorentzian metric on M is called a spacetime.
A particular spacetime is, e.g., M = R4, with the metric
gµν = ηµν = diag(1,−1,−1,−1) with respect to any inertial coordinate system for M :
This is the Minkowski spacetime of special relativity.
Therefore, we see in what way the concept of spacetime generalizes special relativity:
The manifold M of “events” (the markers of points in space and time) can be more
general than R4 (but it is still 4-dimensional, corresponding to 1 dimension for a
time-coordinate and 3 dimensions for space-coordinates), and the metric may vary
from any spacetime point to another.
Futhermore, given any q ∈ M, one can find a local coordinate chart (φ,M∆) with
q ∈ M∆ so that the coordinate matrix (gµν(q)) at that point takes the normal form, i.e.

(∗) gµν(q) = ηµν

so that, at the point q, one recovers special relativity upon use of that particular
coordinate chart.
Caution: In general, equation (∗) will only hold at the single point q, not for all q of an
open set with the coordinate components gµν of the metric referring to the same, fixed
coordinate chart. We will see the reason for this a bit later.
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