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Chapter 2. Observations

The age of the Universe

There are several methods of determining the age of the Universe, where in many
cases it is easier to set lower limits than upper limits.

Distance determination of stellar objects at the largest observable distances together
with the finite velocity of light sets a lower limit for the age of the visible Universe
between 13 and 14 G years.

Other indications come from the relative abundances of isotopes with different decay
times. This is described on the pages by E. Wright, see the link on the web-page for
the course. The results indicate an age of the Universe of around 13 G years.

A very crude lower limit can be derived from the fact that heavier elements which are
bred in stars by nuclear fusion don’t leave the star atmosphere. Therefore, they are
only released (and for some part, formed) and form asteroids, planets etc when a star
undergoes a supernova explosion at the end of its life cycle. For main sequence stars,
that means that several G years must have passed before heavier elements can have
formed. That is consistent with nucleosynthesis results in the hot big bang scenario:
The most abundant elements at the end of the hot big bang phase are Hydrogen and
Helium, heavier elements appear only in tiny fractions.
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Chapter 3. GR and FLRW cosmological spacetimes

Problems with Special Relativity and Newtonian Gravity at large scales

The observations show:

At large scales (≈ 10G`y ) the Universe appears homogeneous and isotropic.

Combining this with Olbers’ paradoxon: The Universe cannot have been like this
forever (with an almost constant density of luminous matter averaged over
sufficiently large scales of distance and time) because we see a “dark” night sky.

The redhift of galaxies and the Hubble relation support the view that the
Universe is not static. The galaxies recede from each other with increasing time.
If the Hubble law holds for all times and distances, then –

(?) With incrasing time, the recession velocity increases, approaching
asymptotically the velocity of light.

(??) With decreasing time, i.e. going back to the past, the galaxies must have
been much closer together; further in the past, the Universe must have been
very dense and hot.
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Chapter 3. GR and FLRW cosmological spacetimes

Problems with Special Relativity and Newtonian Gravity at large scales

Item (?) and the observed large-scale homogeneity and isotropy of the (luminous)
mass distribution in the Universe pose a problem if the dominant “force” between
mass distributions at lage scales is Newtonian gravity.

Newtonian gravity is always attractive — so why does the recession velocity
grow with distance (and grow in time)? The recession velocity should rather slow
down than increase.

Since the large-scale mass distribution is homogeneous and isotropic, an “outer”
mass distribution cannot excert a “gravitational pull” on an “inner” mass
distribution.

Therefore, the Hubble law, if valid on all time- and distance scales, appears
paradoxical in the setting of Special Relativity and Newtonian gravity.
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Chapter 3. GR and FLRW cosmological spacetimes

Problems with Special Relativity and Newtonian Gravity at large scales

There may be ways of overcoming this paradox in cosmology by introducing other
kinds of forces, new rules of light propagation at large scales, etc. (For some
discussion of such approaches, see e.g. Weinberg’s book.) However, Newtonian
gravity and Special Relativity are inconsistent on any scale (not just cosmological
scales) as had been noticed by Einstein, and that observation provided motivation for
him to develop General Relativity (GR). In the setting of GR, the cosmological
spacetime models of Friedmann, Lemaître, Robertson and Walker (FLRW)
consistently describe cosmological expansion for large-scale homogeneous and
isotropic mass distributions. While initially met with some scepticism, these spacetime
models now underlie the mainstream discussion in cosmology; in particular, the
present standard cosmological model. Therefore, we will next introduce some basics
of GR, and look at the FLRW spacetimes in more detail.

Rainer Verch 5 / 8



Chapter 3. GR and FLRW cosmological spacetimes

Some basics of GR, Part 1: Motivations

Newton’s law of gravity is not compatible with Special Relativity: It is not Lorentz
covariant, and it implies “action-at-a-distance”: Any local change of a mass
distribution changes the gravitational field it creates instantaneously everywhere
in space, i.e. gravitational effects propagate, according to Newton’s law, faster
than the speed of light.

The mass-energy equivalence of Special Relativity implies that in the presence
of inhomogeneous gravitational fields, there cannot be global inertial systems
(only “local approximations”).

The equivalence of inertial mass and gravitational mass implies that light is
deflected by gravitational fields.

The way in which Einstein modified Special Relativity addressing all these points —
and removing the difficulties — has some formal similarities to the generalization of
electro- and magnetostatics into electrodynamics. One of the key points is to replace
the “rigid” Minkowski metric, which in all inertial coordinate systems takes the form
(ηµν) = diag(1,−1,−1,−1) by a “dynamical” generalization, changing in space and
time.
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Chapter 3. GR and FLRW cosmological spacetimes

To see an analogy: In electrodynamics, the electrostatic potential ϕ and magnetostatic
vector potential ~A are made dynamical by observing that charge densities % and
current densities~j not only react (as “test objects”) to the force fields generated by the
potentials, but simultaneously they act as sources for the potentials.

Maxwell’s equations are the dynamical equations of that mutual interaction.

In Special Relativity, the Minkowski metric (ηµν) determines, in particular, the
propagation of light. As (ηµν) is constant in inertial coordinates, the light propagation
is along straight lightlike lines in inertial coordinates.

Light is deflected by gravitational fields. Therefore, as an ansatz, one may, in the
presence of gravitational fields, replace the constant (ηµν) by a metric (gµν(x))
(x = (x0, x1, x2, x3)) which depends on time- and space-coordinates.

Then one can set up an analogy

electrodynamic potential Aµ(x) ←→ dynamical metric gµν(x)

charge-current density jµ(x) ←→ mass-energy distribution T??(x)

The ?? have been put here because at this stage it is isn’t obvious what kind of
quantity T??(x) actually is (what type of tensor).
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Chapter 3. GR and FLRW cosmological spacetimes

To pursue the analogy further, the Maxwell-equations have the form,

∂µFµν(x) =
4π
c

jν(x) , ∂λFµν + ∂µFνλ + ∂νFλµ = 0

where a general tensor index notation is used – it will be clarified later – and doubly
appearing indices are understood as being summed over (Einstein’s summation
convention); the electromagnetic field tensor Fµν(x) appearing here is given as

Fµν(x) = ∂µAν(x)− ∂νAµ(x) .

The Maxwell-equations show that there is a dynamical coupling between
electromagnetic field tensor and the charge-current-density jµ(x), and also –
expressed by the second of the Maxwell-equations – that Fµν is, mathematically, a
kind of “curvature” deriving from the electrodynamic potential Aµ(x).

Following this analogy, one may guess that the dynamical metric gµ(x) is in a similar
way dynamically coupled to the mass-energy distribution by an equation of the form

[curvature quantity derived from gµν(x)]?? = κ · T??(x)

This turns out to be a successful step. To discuss it in more detail, the next step will be
to introduce basic elements of the mathematical setting in which GR is placed –
manifolds, tensor fields, and Lorentzian metrics.
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