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Chapter 2. Observations (40)

Relativistic Doppler Effect

Suppose that an inertial system S is moving with respect to another one, S, with a
velocity v along the x1 direction (of S).
Let an event (like the emission of a flash of light) have coordinates

x0

x1

x2

x3

 w.r.t. S and


x0

x1

x2

x3

 w.r.t. S

Presently, we consider the setting of special relativity; the x0 and x0 coordinates are
the time-coordinates multiplied with c (velocity of light): x0 = ct , x0 = ct in the inertial
systems. Our sign convention for the Minkowski metric η is

η(w , z) = w0z0 − w1z1 − w2z2 − w3z3

According to special relativity,

x0 = γ(x0 − v
c

x1) , x1 = γ(x1 − v
c

x0)

xk = xk (k = 2, 3) , γ =
1√

1− ( v
c )2
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Chapter 2. Observations (41)

The Lorentz transformation relating the inertial coordinates of S and S can also be
written in the form 

x0

x1

x2

x3

 =


γ − v

c γ 0 0
− v

c γ γ 0 0
0 0 1 0
0 0 0 1




x0

x1

x2

x3


c is the velocity of light in vacuum. Commonly it is set equal to 1, so all velocities are
given in units of c.

The Doppler effect is illustrated on the next slide in a spacetime diagram, where in fact
we use the convention that c = 1.
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Chapter 2. Observations (42)

Spacetime diagram illustrating the Doppler effect. c = 1 so lightrays are at 45◦ inclination. The experimenter located at

x1 = x2 = x3 = 0 in S emits light pulses at events A and B with proper time difference ∆x0 = 1, they propagate as the golden

lightrays shown. The experimenter in S is at rest at x1 = x2 = x3 = 0 and records the arrival of the light pulses. At event A with

x0 = 0 = x0 the experimenters happen to be coincident. The experimenter in S records the light pulse emitted at B in the event

B. However, the event corresponding to ∆x0 = 1 in proper time from the event A in S is at B∗ where the x0-axis intersects the

hyperbola η(x, x) = 1 = η(x, x). This is prior to B on the x0 axis.
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Chapter 2. Observations (43)

In the further analysis of the spacetime diagram, we ignore the x2, x3 and x2, x3

coordinates as they always remain equal to 0.
Coordinates of A in S and S:(

x0(A)

x1(A)

)
=

(
0
0

)
,

(
x0(A)

x1(A)

)
=

(
0
0

)
Coordinates of B in S: (

x0(B)

x1(B)

)
=

(
1
0

)
Next determine the coordinates of B in S:(

x0(B)

x1(B)

)
is the intersection of the line τ 7→

(
1
v

)
· τ ,

i.e. the x0-coordinate axis, with the lightray

λ 7→
(

1
1

)
· λ+

(
1
0

)
emitted at B

Rainer Verch 5 / 13



Chapter 2. Observations (44)

The condition of intersection determines

τ =
1

1− v
and λ = vτ , hence

(
x0(B)

x1(B)

)
=

( 1
1−v

v
1−v

)
⇒

(
x0(B)

x1(B)

)
=

( √
1+v√
1−v
0

)

The frequency of light pulse emission in S is

ν =
1

x0(B)− x0(A)
=

1
x0(B)

= 1 ,

The frequency of light pulse recording in S is

ν =
1

x0(B)− x0(A)
=

1
x0(B)

=

√
1− v√
1 + v
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Chapter 2. Observations (45)

Summarizing the previous discussion, we have derived the

Doppler frequency shift formula in special relativity:

Assume light signals are emitted with angular frequency ω in an inertial system S. If
another inertial system S moves relative to S with constant velocity v in the (fixed)
direction of propagation of the light signals, then the light signals are recorded in S
with angular frequency

ω =

√
1− v/c√
1 + v/c

ω

Note: We have reinserted c, the velocity of light, to facilitate comparison with the
literature.
The velocity v can be positive or negative. If v > 0 then S moves away from S, if
v < 0 then S moves towards S. Correspondingly, recorded light is redshifted in S if
v > 0, and blueshifted if v < 0.
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Chapter 2. Observations (46)

Redshift

The redshift effect in cosmology is the effect that spectral lines of distant stellar objects
appears redshifted: The gaps between characteristic emission spectra of chemical
elements are broadened, and correspondingly the spectral lines are shifted to higher
wavelengths, as illustrated in the cartoon (taken from physics.stackexchange):

To conclude that the redshift is due to a recession velocity relative to the observer on
Earth, one must, of course, assume that the spectral lines in the rest system of the
stellar object are the same as would be observed on Earth, in Earth’s rest system.
This is part of the Copernicanian principle already mentioned before.
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Chapter 2. Observations (47)

Suppose a spectral line has on Earth the (angular) frequency ω(0). If the same spectral
line is emitted in the rest system S of a stellar object, and if the Earth is moving with
velocity v away from the stellar object, then the frequency of the spectral line emitted
from the stellar object is, according to the Doppler shift formula, seen on Earth (at rest
in S) with the frequency

ω(0) =

√
1− v/c√
1 + v/c

ω(0)

Using wavelegths λ = 2πc/ω instead of frequencies,

λ
(0)

=

√
1 + v/c√
1− v/c

λ(0)

The relative shift in wavelength,

z =
λ

(0) − λ(0)

λ(0)
=

√
1 + v/c√
1− v/c

− 1 =
v
c

+ O((v/c)2)

is called the redshift of the spectral line.
It is, in fact, independent of the wavelength λ(0).

Rainer Verch 9 / 13



Chapter 2. Observations (48)

The Hubble law – distance-redshift relation

In his observations ∼ 1927-29, Edwin Hubble has found a linear relation between the
redshift z of spectral lines and luminosity distance dL for galaxies in the
neighbourhood of our galaxy:

c · z = H0 · dL (z ≤ 0.1)

Here, dL = d is he luminosity distance appearing in the relation between absolute
luminosity L and apparent luminosity ` of the stellar object (lecture 5, p 27). For small
z ≤ 0.1, H0 is to good approximation constant, and called the Hubble constant. Its
value is

H0 = 71± 6
km

s ·Mpc
≈ h · 100

km
s ·Mpc

where h = 0.7 is a dimensionless constant in common use in cosmology (not to be
confused with Planck’s constant).
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Chapter 2. Observations (49)
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Chapter 2. Observations (50)

Redshift as distance indicator

If the relation between luminosity distance and redshift is assumed to be valid for more
distant stellar objects than nearby galaxies, it can serve at a distance indicator if there
is no way to determine the absolute luminosity of the stellar object.

Doing so is not without problems since for larger distances (higher z), there is no more
a linear relation between z and dL. This is an indication for “dark energy”, or the Λ-term
in the ΛCDM standard cosmological model. We will come back to this in a while.

For the time being – where we assume that the Universe can be modelled by
Minkowski spacetime up to the largest observable scales – we take it that the Hubble
law (or if needed, a corrected relation between luminosity distance and redshift) is
valid for any value of z.
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Chapter 2. Observations (51)

Cosmic distance ladder

What then results is the cosmic distance ladder – the point is that there are different
methods of distance determination which are effective at different distance scales.
The higher scale methods use the lower scale methods as input, and are calibrated at
the overlaps of the scale boundaries, as described before.
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