REMARKS CONCERNING THE RELATION BETWEEN VECTORS AND COORDINATES, RESP. BETWEEN LINEAR MAPS AND MATRICES

JÜRGEN TOLKSDORF

NOVEMBER 14, 2012

1. Abstract vector spaces versus coordinate spaces

Let V be a real vector space of finite dimension $n \geq 1$.
For instance, $V:=\mathbb{R}^{n}$. In the sequel we always regard \mathbb{R}^{n} as an "abstract" vector space. That is, as a set $\mathbb{R}^{n}=\mathbb{R} \times \mathbb{R} \times \cdots \times \mathbb{R}$ is the n-fold cartesian product of the field of real numbers. The linear structure on this set is then defined in terms of the linear structure of \mathbb{R} : For $\vec{x} \equiv\left(x_{1}, x_{2}, \ldots, x_{n}\right), \vec{y} \equiv\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$ and all $\lambda \in \mathbb{R}$ one sets: $\vec{x}+\lambda \vec{y}:=\left(x_{1}+\lambda y_{1}, x_{2}+\lambda y_{2}, \ldots, x_{n}+\lambda y_{n}\right) \in \mathbb{R}^{n}$. It is straightforward to prove that with respect to this defined linear structure the set \mathbb{R}^{n} becomes a real vector space of dimension n. However, \mathbb{R}^{n} is not just an n-dimensional vector space. It also is endowed with a distinguished basis: $\vec{e}_{1} \equiv(1,0, \ldots, 0), \vec{e}_{2} \equiv(0,1, \ldots, 0), \ldots, \vec{e}_{n} \equiv$ $(0,0, \ldots, 1) \in \mathbb{R}^{n}$. Indeed, by construction of \mathbb{R}^{n} any vector $\vec{x} \equiv\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ may be uniquely decomposed as

$$
\begin{align*}
\vec{x} \equiv\left(x_{1}, x_{2}, \ldots, x_{n}\right) & =x_{1} \vec{e}_{1}+x_{2} \vec{e}_{2}+\cdots+x_{n} \vec{e}_{n} \\
& \equiv \sum_{1 \leq k \leq n} x_{k} \vec{e}_{k} \tag{1}
\end{align*}
$$

In this context, the real numbers $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}$ are called the cartesian coordinates of the vector $\vec{x} \in \mathbb{R}^{n}$ with respect to the basis $\vec{e}_{1}, \vec{e}_{2}, \ldots, \vec{e}_{n} \in \mathbb{R}^{n}$. Apparently, we may also choose an arbitrary basis $\vec{b}_{1}, \vec{b}_{2}, \ldots, \vec{b}_{n} \in \mathbb{R}^{n}$, such that

$$
\begin{equation*}
\vec{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{1 \leq k \leq n} \lambda_{k} \vec{b}_{k} . \tag{2}
\end{equation*}
$$

Here, the real numbers $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n} \in \mathbb{R}$ are referred to as the coordinates of the vector $\vec{x} \in \mathbb{R}^{n}$ with respect to the basis $\vec{b}_{1}, \vec{b}_{2}, \ldots, \vec{b}_{n} \in \mathbb{R}^{n}$. Again, these coordinates are uniquely determined by the choice of the basis.

Notice that both coordinates $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}$ and $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n} \in \mathbb{R}$ represent the same vector $\vec{x} \in \mathbb{R}^{n}$, however, with respect to different basis in \mathbb{R}^{n}, i.e.

$$
\begin{equation*}
\sum_{1 \leq k \leq n} x_{k} \vec{e}_{k}=\sum_{1 \leq k \leq n} \lambda_{k} \vec{b}_{k} \tag{3}
\end{equation*}
$$

Clearly, every vector $\vec{b}_{k} \in \mathbb{R}^{n}$ can be uniquely written as

$$
\begin{equation*}
\vec{b}_{k} \equiv\left(b_{1 k}, b_{2 k}, \ldots, b_{n k}\right)=\sum_{\substack{1 \leq i \leq n \\ 1}} b_{i k} \vec{e}_{i}, \quad(k=1, \ldots, n) . \tag{4}
\end{equation*}
$$

Likewise, since $\vec{b}_{1}, \vec{b}_{2}, \ldots, \vec{b}_{n} \in \mathbb{R}^{n}$ is supposed to form a basis, it follows that for all $k=1, \ldots, n$ every vector \vec{e}_{k} can be uniquely decomposed as

$$
\begin{equation*}
\vec{e}_{k}=\sum_{1 \leq i \leq n} a_{i k} \vec{b}_{i} . \tag{5}
\end{equation*}
$$

Since on both sides of (11) the decomposition is unique the coordinates $x_{1}, x_{2}, \ldots, x_{n} \in$ \mathbb{R} and $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n} \in \mathbb{R}$ of the vector $\vec{x} \in \mathbb{R}^{n}$ are related by

$$
\begin{align*}
& x_{k}=\sum_{1 \leq j \leq n} b_{k i} \lambda_{i}, \\
& \lambda_{k}=\sum_{1 \leq j \leq n} a_{k i} x_{i} . \tag{6}
\end{align*}
$$

Furthermore, the real numbers $a_{i j}, b_{i j} \in \mathbb{R}(1 \leq i, j \leq n)$ fulfill: $\sum_{1 \leq k \leq n} a_{i k} b_{k j}=\delta_{i j}$. Again, this is because of the unique decomposition of a vector with respect to a chosen basis.

Another example of a real vector space of dimension $n=k l$, consider the vector space of real matrices of size $k \times l$. That is,

$$
V:=\mathbb{R}^{k \times l} \equiv\left\{\left.\vec{x} \equiv\left(\begin{array}{cccccccc}
x_{11} & x_{12} & \cdot & \cdot & . & \cdot & \cdot & x_{1 l} \tag{7}\\
x_{21} & x_{22} & \cdot & \cdot & \cdot & \cdot & \cdot & x_{2 l} \\
\cdot & \cdot \\
\cdot & \cdot \\
x_{k 1} & x_{k 2} & \cdot & \cdot & . & . & \cdot & x_{k l}
\end{array}\right) \right\rvert\, x_{i j} \in \mathbb{R}, 1 \leq i \leq k, 1 \leq j \leq l\right\}
$$

where the linear structure $\vec{x}+\lambda \vec{y}$ is provided by the usual adding of real matrices and the usual multiplication of a real matrix with a real number.

Again, due to its construction the real vector space $\mathbb{R}^{k \times l}$ comes equipped with a distinguished basis: $\vec{e}_{11}, \vec{e}_{12}, \ldots, \vec{e}_{1 l}, \ldots, \vec{e}_{k 1}, \ldots, \vec{e}_{k l}$, where $\vec{e}_{i j}$ is the matrix with entry 1 at the position i, j and zero otherwise, for all $1 \leq i \leq k$ and $1 \leq j \leq l$.

However, not every vector space comes equipped with respect to a distinguished basis. Indeed, the fact that both vector spaces \mathbb{R}^{n} and $\mathbb{R}^{k \times l}$ allow for a "natural choice of a basis" strongly depends on how the respective underlying sets are endowed with a linear structure. In the case of an abstract vector space V, however, the underlying set is always supposed to have a linear structure. Therefore, an abstract vector space does not allow for a distinguished basis, in general, which can be used as a "reference basis". However, one has the following statement:

Proposition 1.1. Every real vector space of finite dimension $n \geq 0$ is isomorphic to \mathbb{R}^{n}.

Proof. Let $\vec{v}_{1}, \ldots, \vec{v}_{n} \in V$ be a basis. The mapping

$$
\begin{align*}
\beta: V & \longrightarrow \mathbb{R}^{n} \\
\vec{x}=\sum_{1 \leq k \leq n} x_{k} \vec{v}_{k} & \mapsto\left(x_{1}, \ldots, x_{n}\right) \tag{8}
\end{align*}
$$

is linear and bijective with the inverse being given by $\beta^{-1}\left(x_{1}, \ldots, x_{n}\right):=\sum_{1 \leq k \leq n} x_{k} \vec{v}_{k}$.

The point to be stressed here is that the isomorphism β strongly depends on the chosen basis $\vec{v}_{1}, \ldots, \vec{v}_{n} \in V$. This is, because the coordinates $x_{1}, \ldots, x_{n} \in \mathbb{R}$ of $\vec{x} \in V$ do so! In fact, the isomorphism (8) is fully determined by the identification

$$
\begin{equation*}
V \ni \vec{v}_{k} \leftrightarrow \vec{e}_{k} \in \mathbb{R}^{n} \quad(k=1, \ldots, n) \tag{9}
\end{equation*}
$$

Since there is no preferred basis available in V one may choose another basis $\vec{u}_{1}, \ldots, \vec{u}_{n} \in V$ to obtain a correspondingly alternative isomorphism

$$
\begin{align*}
\alpha: V & \longrightarrow \mathbb{R}^{n} \\
\vec{x}=\sum_{1 \leq k \leq n} y_{k} \vec{u}_{k} & \mapsto\left(y_{1}, \ldots, y_{n}\right) . \tag{10}
\end{align*}
$$

Notice again that similar to (11)

$$
\begin{equation*}
\sum_{1 \leq k \leq n} x_{k} \vec{v}_{k}=\sum_{1 \leq i \leq n} y_{i} \vec{u}_{i} . \tag{11}
\end{equation*}
$$

It may thus not come as a big surprise that the coordinate transformation

$$
\begin{align*}
\alpha \circ \beta^{-1}: \mathbb{R}^{n} & \xrightarrow{\simeq} \mathbb{R}^{n} \\
\left(x_{1}, \ldots, x_{n}\right) & \mapsto\left(y_{1}, \ldots, y_{n}\right) \tag{12}
\end{align*}
$$

is given by

$$
\begin{equation*}
y_{i}=\sum_{1 \leq k \leq n} a_{i k} x_{k} . \tag{13}
\end{equation*}
$$

Here, the real numbers $a_{11}, \ldots, a_{n n} \in \mathbb{R}$ are fully determined by

$$
\begin{equation*}
\vec{v}_{k}=: \sum_{1 \leq i \leq k} a_{i k} \vec{u}_{i}, \quad(k=1, \ldots, n) \tag{14}
\end{equation*}
$$

since both $\vec{u}_{1}, \ldots, \vec{u}_{n} \in V$ and $\vec{v}_{1}, \ldots, \vec{v}_{n} \in V$ form a basis in V. Accordingly, the inverse of the coordinate transformation (12) is provided by

$$
\begin{equation*}
x_{k}=\sum_{1 \leq j \leq n} b_{k i} y_{i}, \tag{15}
\end{equation*}
$$

where the real numbers $b_{11}, \ldots, b_{n n} \in \mathbb{R}$ are now fully determined by

$$
\begin{equation*}
\vec{u}_{i}=: \sum_{1 \leq k \leq n} b_{k i} \vec{v}_{k}, \quad(k=1, \ldots, n) . \tag{16}
\end{equation*}
$$

Again, it follows that $\sum_{1 \leq k \leq n} a_{i k} b_{k j}=\delta_{i j},(1 \leq i, j \leq n)$, since $\left(\alpha \circ \beta^{-1}\right) \circ\left(\alpha \circ \beta^{-1}\right)^{-1}=$ $\left(\alpha \circ \beta^{-1}\right) \circ\left(\beta \circ \alpha^{-1}\right)$ equals the identity map on \mathbb{R}^{n}.

Notation: The (basis-dependent) isomorphism (8) is called a coordinate map. Accordingly, $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ are referred to as the coordinates of the vector $\vec{x} \in V$ with respect to the chosen basis $\vec{v}_{1}, \ldots, \vec{v}_{n} \in V$. Similarly, the (again basis dependent) isomorphism (10) provides another coordinate map. It allows to identify the same vector $\vec{x} \in V$ with the new coordinates $\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$. The coordinates $\left(x_{1}, \ldots, x_{n}\right)$ and $\left(y_{1}, \ldots, y_{n}\right)$ are related to each other by the coordinate transformation $\alpha \circ \beta^{-1}$ and and its inverse $\beta \circ \alpha^{-1}$, both being isomorphisms on the coordinate space \mathbb{R}^{n}. Using this
notation, \mathbb{R}^{n} may be interpreted both as an abstract vector space and as its coordinate space, where the natural isomorphism is given by the identity map:

$$
\vec{x} \equiv\left(x_{1}, \ldots, x_{n}\right)=\sum_{1 \leq k \leq n} x_{k} \vec{e}_{k} \mapsto\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} .
$$

Of course, with respect to the standard basis $\vec{e}_{1}, \ldots, \vec{e}_{n} \in \mathbb{R}^{n}$ the distinction between the interpretation of \mathbb{R}^{n} as abstract vector space (similar to V) and its coordinate space becomes somehow redundant. However, notice that also on the vector space \mathbb{R}^{n} one may choose an arbitrary basis $\vec{b}_{1}, \ldots, \vec{b}_{n} \in \mathbb{R}^{n}$. Then, (17) reads:

$$
\vec{x} \equiv\left(x_{1}, \ldots, x_{n}\right)=\sum_{1 \leq k \leq n} \lambda_{k} \vec{R}^{n} \vec{b}_{k} \mapsto\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{R}^{n} .
$$

2. Linear maps and matrices

Let W be another real vector space of finite dimension $m \geq 1$, maybe different from $n=\operatorname{dim} V$.

First, let us call in mind that every linear map $f: V \longrightarrow W$ is fully determined by the image of a chosen basis $\vec{v}_{1}, \ldots, \vec{v}_{n} \in V$ with respect to f. Indeed, let $\vec{w}_{k}:=f\left(\vec{v}_{k}\right) \in$ W be given for all $k=1, \ldots, n$. Notice that includes the case $\vec{w}_{k}=\overrightarrow{0} \in W$ for some (or even all) $k \in\{1, \ldots, n\}$. In fact, let $\vec{x}=\sum_{1 \leq k \leq n} x_{k} \vec{v}_{k} \in V$ be arbitray. We may set $f(\vec{x}):=\sum_{1 \leq k \leq n} x_{k} \vec{w}_{k} \in W$. By construction, the thus defined map $f: V \rightarrow W$ is linear. Let now $g: V \rightarrow W$ be any linear map which fulfills $g\left(\vec{v}_{k}\right)=\vec{w}_{k} \in W$ for all $k=1, \ldots, n$. It follows that for all $\vec{x}=\sum_{1 \leq k \leq n} x_{k} \vec{v}_{k} \in V$ the map

$$
\begin{align*}
(g-f)(\vec{x}) & :=g(\vec{x})-f(\vec{x})=\sum_{1 \leq k \leq n} x_{k} g\left(\vec{v}_{k}\right)-\sum_{1 \leq k \leq n} x_{k} \vec{w}_{k} \tag{19}\\
& =\overrightarrow{0} \in W .
\end{align*}
$$

In other words, $g-f$ equals the "null-map" (i.e. the unique mapping which maps every $\vec{x} \in V$ into the zero-vector $\overrightarrow{0} \in W)$. Therefore, $g=f$, which was to be demonstrated.

Notice that despite its definition, the linear map f does not depend on the choice of the basis $\vec{v}_{1}, \ldots, \vec{v}_{n} \in V$. Also notice that the constant mapping $f\left(\vec{v}_{k}\right):=\vec{w}$, where $\vec{w} \in W$ denotes some fixed vector, does not give rise to a linear map unless $\vec{w}=\overrightarrow{0}$.

In order to characterize a linear map $f: V \rightarrow W$, one has to distinguish the following two cases:
(1) $n \leq m$: In this case, f is injective if and only if $f\left(\vec{v}_{1}\right), \ldots, f\left(\vec{v}_{n}\right) \in W$ are linear independent. In fact, $\vec{x}=\sum_{1 \leq k \leq n} x_{k} \vec{v}_{k} \in V \in \operatorname{ker}(f)$ implies that $\overrightarrow{0}=f(\vec{x})=\sum_{1 \leq k \leq n} x_{k} f\left(\vec{v}_{k}\right) \in W$. Hence, it follows from the very definition of linear independency that $x_{1}=\cdots=x_{n}=0 \in \mathbb{R}$. That is, $f(\vec{x})=\overrightarrow{0}$ implies $\vec{x}=\overrightarrow{0} \in V$. Consequently, the linear independency of $f\left(\vec{v}_{1}\right), \ldots, f\left(\vec{v}_{n}\right) \in W$ yields $\operatorname{ker}(f)=\{\overrightarrow{0}\} \subset V$.

Conversely, let us assume that $\operatorname{ker}(f)=\{\overrightarrow{0}\} \subset V$. That is, $\overrightarrow{0} \in V$ is the only vector which is mapped into $\overrightarrow{0} \in W$ by f. Therefore, $\overrightarrow{0}=\sum_{1 \leq k \leq n} x_{k} f\left(\overrightarrow{v_{k}}\right)=$ $f\left(\sum_{1 \leq k \leq n} x_{k} \vec{v}_{k}\right)$. This implies that $\sum_{1 \leq k \leq n} x_{k} \vec{v}_{k}=\overrightarrow{0} \in V$. Since $\vec{v}_{1}, \ldots, \vec{v}_{n} \in$
V is a basis, one infers that $x_{1}=\cdots=x_{n}=0$. This in turn proves that $f\left(\vec{v}_{1}\right), \ldots, f\left(\vec{v}_{n}\right) \in W$ are linear independent.
(2) $n>m$: We prove that f is surjective if and only if

$$
\begin{equation*}
\operatorname{span}_{\mathbb{R}}\left(f\left(\vec{v}_{1}\right), \ldots, f\left(\vec{v}_{n}\right)\right):=\left\{\vec{y}=\sum_{1 \leq k \leq n} \lambda_{k} f\left(\vec{v}_{k}\right) \mid \lambda_{k} \in \mathbb{R}\right\}=W . \tag{20}
\end{equation*}
$$

First, notice that in the case considered $f\left(\vec{v}_{1}\right), \ldots, f\left(\vec{v}_{n}\right) \in W$ cannot be linear independent.

Assume that 20 holds true. We may put $\vec{x}:=\sum_{1 \leq k \leq n} \lambda_{k} \vec{v}_{k} \in V$ to get $f(\vec{x})=\vec{y} \in W$ for every $\vec{y} \in W$. Conversely, assume that for all $\vec{y} \in W$ there exists $\vec{x} \in V$, such that $\vec{y}=f(\vec{x})$. In this case, the decomposition $\vec{x}=\sum_{1 \leq k \leq n} \lambda_{k} \vec{v}_{k}$ yields (20).
As a consequence, one infers that a linear map $f: V \rightarrow W$ is an isomorphism if and only if $m=n$ and f is injective.

Let, respectively, $\alpha: V \xrightarrow{\simeq} \mathbb{R}^{n}, \vec{x}=\sum_{1 \leq k \leq n} x_{k} \vec{v}_{k} \mapsto\left(x_{1}, \ldots, x_{n}\right)$ and $\beta: W \xrightarrow{\simeq}$ $\mathbb{R}^{m}, \vec{y}=\sum_{1 \leq k \leq m} y_{k} \vec{w}_{k} \mapsto\left(y_{1}, \ldots, y_{m}\right)$ be coordinate maps with respect to the chosen basis $\vec{v}_{1}, \ldots, \vec{v}_{n} \in V$ and $\vec{w}_{1}, \ldots, \vec{w}_{m} \in W$.

A linear map $f: V \longrightarrow W$ may then be represented by the linear map

$$
\begin{align*}
f_{\alpha \beta}: \mathbb{R}^{n} & \longrightarrow \mathbb{R}^{m} \\
\left(x_{1}, \ldots, x_{n}\right) & \mapsto\left(y_{1}, \ldots, y_{m}\right):=\beta\left(f\left(\alpha^{-1}\left(x_{1}, \ldots, x_{n}\right)\right)\right), \tag{21}
\end{align*}
$$

i.e.

$$
\begin{equation*}
f_{\alpha \beta}=\beta \circ f \circ \alpha^{-1} \tag{22}
\end{equation*}
$$

Notice that the coordinate map $f_{\alpha \beta}$ depends on the choice of basis in V and W. In contrast, the mapping f itself does not refer to any such choice.

The advantage of the representation of f by $f_{\alpha \beta}$ is provided by the following isomorphism between the real vector space \mathbb{R}^{n} and the real vector space $\mathbb{R}^{n \times 1}$ of matrices of size $n \times 1$:

$$
\begin{array}{r}
\sigma_{n}: \mathbb{R}^{n} \xrightarrow{\simeq} \mathbb{R}^{n \times 1} \\
\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right), \tag{23}
\end{array}
$$

Clearly, for every finite $n>0$ this mapping is linear and injective. Furthermore, both real vector spaces have the same dimension. Hence, according to the forgoing remark, the mapping σ_{n} provides an isomorphism. This holds true for any $0<n<\infty$.

We put $\mathbf{e}_{k}:=\sigma_{n}\left(\vec{e}_{k}\right) \in \mathbb{R}^{n \times 1}$ for all $1 \leq k \leq n$ and every $0<n<\infty$. That is, there is no notational distinction made between $\mathbf{e}_{k} \in \mathbb{R}^{n \times 1}$ and $\mathbf{e}_{k} \in \mathbb{R}^{m \times 1}$ even if $n \neq m$. Also we write $\sigma_{\alpha}: V \xrightarrow{\simeq} \mathbb{R}^{n \times 1}, \vec{x}=\sum_{1 \leq k \leq n} x_{k} \vec{v}_{k} \mapsto \sigma_{n}\left(x_{1}, \ldots, x_{n}\right)=\sum_{1 \leq k \leq n} x_{k} \mathbf{e}_{k}$. Likewise, we write $\sigma_{\beta}: W \xrightarrow{\simeq} \mathbb{R}^{m \times 1}, \vec{y}=\sum_{1 \leq k \leq m} y_{k} \vec{w}_{k} \mapsto \sigma_{m}\left(y_{1}, \ldots, y_{m}\right)=\sum_{1 \leq k \leq m} y_{k} \mathbf{e}_{k}$.

When taking advantage of these mappings, the action of the coordinate map (21) (and thus also of f) can be realized in terms of matrix multiplication. In fact, one has

$$
\begin{equation*}
\vec{y}=f(\vec{x}) \Leftrightarrow f_{\alpha \beta}\left(x_{1}, \ldots, x_{n}\right)=\left(y_{1}, \ldots, y_{n}\right) \Leftrightarrow \sigma_{\beta}(\vec{y})=\mathbf{F} \sigma_{\alpha}(\vec{x}), \tag{24}
\end{equation*}
$$

where the matrix $\mathbf{F} \in \mathbb{R}^{m \times n}$ is given by

$$
\mathbf{F}:=\left(\begin{array}{cccccccc}
f_{11} & f_{12} & \cdot & \cdot & \cdot & \cdot & \cdot & f_{1 n} \tag{25}\\
f_{21} & f_{22} & \cdot & \cdot & \cdot & \cdot & \cdot & f_{2 n} \\
\cdot & \cdot \\
\cdot & \cdot \\
f_{m 1} & f_{m 2} & \cdot & \cdot & \cdot & \cdot & \cdot & f_{m n}
\end{array}\right)
$$

and

$$
\begin{equation*}
f\left(\vec{v}_{j}\right)=f\left(\sigma_{\alpha}^{-1}\left(\mathbf{e}_{j}\right)\right)=: \sum_{1 \leq i \leq m} f_{i j} \vec{w}_{i}=\sum_{1 \leq i \leq m} f_{i j} \sigma_{\beta}^{-1}\left(\mathbf{e}_{i}\right) \quad(1 \leq j \leq n) . \tag{26}
\end{equation*}
$$

The advantage to realize the action of a linear map by matrix multiplication is indeed the main motivation to identify the vector space \mathbb{R}^{n}, consisting of real n-tuples, with the vector space $\mathbb{R}^{n \times 1}$ of real matrices of size $n \times 1$ according to (23). It just simplifies calculations!

Notice that for all $j=1, \ldots, n$:

$$
\sigma_{\beta}\left(f\left(\vec{v}_{j}\right)\right)=\sigma_{\beta}\left(f\left(\sigma_{\alpha}^{-1}\left(\mathbf{e}_{j}\right)\right)\right)=\sum_{1 \leq i \leq m} f_{i j} \mathbf{e}_{i}=\left(\begin{array}{c}
f_{1 j} \tag{27}\\
\vdots \\
f_{m j}
\end{array}\right) \in \mathbb{R}^{m \times 1} .
$$

Hence, the matrix representative of f may be written as

$$
\begin{equation*}
\mathbf{F}=\left(\sigma_{\beta}\left(f\left(\vec{v}_{1}\right)\right), \sigma_{\beta}\left(f\left(\vec{v}_{2}\right)\right), \ldots, \sigma_{\beta}\left(f\left(\vec{v}_{n}\right)\right)\right) \in \mathbb{R}^{m \times n} \tag{28}
\end{equation*}
$$

Once more, the matrix representative \mathbf{F} of the linear mapping f always refers to the basis chosen in V and W. In contrast, the linear mapping itself does not refer to such a choice. The main reason to introduce \mathbf{F} is that the abstract action of a linear map f can then be simply realized by matrix multiplication.

Example:

Let $V:=\left\{\vec{x}:=x_{1}+x_{2} t+x_{3} t^{2} \mid x_{1}, x_{2}, x_{3} \in \mathbb{R}\right\}$ be the three-dimensional real vector space of real polynomials of second order in one variable t. Likewise, we may also consider the two-dimensional real vector space $W:=\left\{\vec{y}:=y_{1}+y_{2} s \mid y_{1}, y_{2} \in \mathbb{R}\right\}$ of real polynomials of first order in one variable s.

Let

$$
\begin{align*}
f: V & \longrightarrow W \\
x_{1}+x_{2} t+x_{3} t^{2} & \mapsto\left(x_{1}+x_{3}\right)+x_{2} s . \tag{29}
\end{align*}
$$

Hence, the linear map is fully determined by

$$
\begin{equation*}
f(1)=f\left(t^{2}\right):=1, f(t):=s \tag{30}
\end{equation*}
$$

Clearly, the map f is surjective and $\operatorname{ker}(f)=\left\{\lambda\left(1-t^{2}\right) \mid \lambda \in \mathbb{R}\right\} \subset V$.
We may set $\sigma_{\alpha}(1):=\mathbf{e}_{1}, \sigma_{\alpha}(t):=\mathbf{e}_{2}, \sigma_{\alpha}\left(t^{2}\right):=\mathbf{e}_{3} \in \mathbb{R}^{3 \times 1}$ and $\sigma_{\beta}(1):=\mathbf{e}_{1}, \sigma_{\beta}(s):=$ $\mathbf{e}_{2} \in \mathbb{R}^{2 \times 1}$. With respect to this choice the linear map 29 is easily seen to be represented by the matrix

$$
\mathbf{F}=\left(\begin{array}{lll}
1 & 0 & 1 \tag{31}\\
0 & 1 & 0
\end{array}\right) \in \mathbb{R}^{2 \times 3}
$$

Indeed, one gets

$$
\begin{equation*}
\mathbf{F e}_{1}=\mathbf{F e}_{3}=\mathbf{e}_{1}, \mathbf{F e}_{2}=\mathbf{e}_{2} \in \mathbb{R}^{2 \times 1} \tag{32}
\end{equation*}
$$

which corresponds to (30).
We still have to clarify what happens if one changes the basis in V and/or W. For this let $\vec{v}_{1}, \ldots, \vec{v}_{n} \in V$ and $\vec{v}_{1}^{\prime}, \ldots, \vec{v}_{n}^{\prime} \in V$ be a basis in V. Likewise, let $\vec{w}_{1}, \ldots, \vec{w}_{n} \in W$ and $\vec{w}_{1}^{\prime}, \ldots, \vec{w}_{n}^{\prime} \in W$ be a basis in W. These choices allow for the following isomorphisms:

$$
\begin{gather*}
\alpha: V \xrightarrow{\simeq} \mathbb{R}^{n} \\
\vec{x}=\sum_{1 \leq k \leq n} x_{k} \vec{v}_{k} \mapsto\left(x_{1}, \ldots, x_{n}\right), \\
\vec{x}=\sum_{1 \leq k \leq n} x_{k}^{\prime} \vec{v}_{k}^{\prime} \mapsto\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right) . \\
\beta: W \xrightarrow{\simeq} \mathbb{R}^{n} \\
\vec{y}=\mathbb{R}^{m} \tag{33}\\
1 \leq k \leq m \\
y_{k} \vec{w}_{k} \mapsto\left(y_{1}, \ldots, y_{m}\right), \\
\vec{y}=\sum_{1 \leq k \leq n} y_{k}^{\prime} \vec{w}_{k}^{\prime} \mapsto\left(y_{1}^{\prime}, \ldots, y_{m}^{\prime}\right) .
\end{gather*}
$$

The respective coordinate transformations

$$
\begin{align*}
& \alpha^{\prime} \circ \alpha^{-1}: \mathbb{R}^{n} \xrightarrow{\simeq} \mathbb{R}^{n} \\
&\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right) \\
& \beta^{\prime} \circ \beta^{-1}: \mathbb{R}^{m} \xrightarrow{\simeq} \mathbb{R}^{m} \tag{34}\\
&\left(y_{1}, \ldots, y_{n}\right) \mapsto\left(y_{1}^{\prime}, \ldots, y_{n}^{\prime}\right)
\end{align*}
$$

are given by

$$
\begin{align*}
& x_{i}^{\prime}=\sum_{1 \leq j \leq n} a_{i j} x_{j} \\
& y_{i}^{\prime}=\sum_{1 \leq j \leq m} b_{i j} y_{j} \quad(i=1, \ldots, n) \tag{35}\\
&
\end{align*} \quad(i=1, \ldots, m) .
$$

The expansion coefficients $a_{i j}, b_{i j} \in \mathbb{R}$ are defined as

$$
\begin{array}{ll}
\vec{v}_{j}=: \sum_{1 \leq i \leq n} a_{i j} \vec{v}_{i}^{\prime} \quad(j=1, \ldots, n), \\
\vec{w}_{j}=: \sum_{1 \leq i \leq m} b_{i j} \vec{w}_{i}^{\prime} \quad(j=1, \ldots, m) . \tag{36}
\end{array}
$$

Let again $f: V \longrightarrow W$ be a linear map. According to (21) it can be represented either as

$$
\begin{align*}
f_{\alpha \beta}: \mathbb{R}^{n} & \longrightarrow \mathbb{R}^{m} \\
\left(x_{1}, \ldots, x_{n}\right) & \mapsto\left(y_{1}, \ldots, y_{m}\right):=\beta\left(f\left(\alpha^{-1}\left(x_{1}, \ldots, x_{n}\right)\right)\right), \tag{37}
\end{align*}
$$

i.e.

$$
\begin{equation*}
f_{\alpha \beta}=\beta \circ f \circ \alpha^{-1}, \tag{38}
\end{equation*}
$$

or as

$$
\begin{align*}
f_{\alpha^{\prime} \beta^{\prime}}: \mathbb{R}^{n} & \longrightarrow \mathbb{R}^{m} \\
\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right) & \mapsto\left(y_{1}^{\prime}, \ldots, y_{m}^{\prime}\right):=\beta^{\prime}\left(f\left(\alpha^{\prime-1}\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)\right)\right), \tag{39}
\end{align*}
$$

i.e.

$$
\begin{align*}
f_{\alpha^{\prime} \beta^{\prime}} & =\beta^{\prime} \circ f \circ \alpha^{\prime-1} \tag{40}\\
& =\left(\beta^{\prime} \circ \beta^{-1}\right) \circ f_{\alpha \beta} \circ\left(\alpha^{\prime} \circ \alpha^{-1}\right)^{-1} .
\end{align*}
$$

Similarly to (28) one thus obtains the following two matrices representing f with respect to the chosen basis:

$$
\begin{gather*}
\mathbf{F}=\left(\sigma_{\beta}\left(f\left(\sigma_{\alpha}^{-1}\left(\mathbf{e}_{1}\right)\right)\right), \sigma_{\beta}\left(f\left(\sigma_{\alpha}^{-1}\left(\mathbf{e}_{2}\right)\right)\right), \ldots, \sigma_{\beta}\left(f\left(\sigma_{\alpha}^{-1}\left(\mathbf{e}_{n}\right)\right)\right)\right) \in \mathbb{R}^{m \times n} . \tag{41}\\
\mathbf{F}^{\prime}=\left(\sigma_{\beta^{\prime}}\left(f\left(\sigma_{\alpha^{\prime}}^{-1}\left(\mathbf{e}_{1}\right)\right)\right), \sigma_{\beta^{\prime}}\left(f\left(\sigma_{\alpha^{\prime}}^{-1}\left(\mathbf{e}_{2}\right)\right)\right), \ldots, \sigma_{\beta^{\prime}}\left(f\left(\sigma_{\alpha^{\prime}}^{-1}\left(\mathbf{e}_{n}\right)\right)\right)\right) \in \mathbb{R}^{m \times n} . \tag{42}
\end{gather*}
$$

These to matrices $\mathbf{F}, \mathbf{F}^{\prime} \in \mathbb{R}^{m \times n}$ are different, in general, although they represent the same linear map f. In fact, $\mathbf{F}, \mathbf{F}^{\prime} \in \mathbb{R}^{m \times n}$ are related to each other as

$$
\begin{equation*}
\mathbf{F}^{\prime}=\mathbf{B F A}^{-1} \tag{43}
\end{equation*}
$$

matrixofmap1
matrixofmap2
where the matrices $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $\mathbf{B} \in \mathbb{R}^{m \times m}$ are given by

$$
\mathbf{A}:=\left(\begin{array}{cccccccc}
a_{11} & a_{12} & . & . & . & . & . & a_{1 n} \tag{44}\\
a_{21} & a_{22} & . & . & . & . & . & a_{2 n} \\
\cdot & \cdot & . & . & . & . & . & \cdot \\
\cdot & \cdot & . & . & . & . & . & . \\
a_{n 1} & a_{m 2} & . & . & . & . & \cdot & a_{n n}
\end{array}\right), \quad \mathbf{B}:=\left(\begin{array}{cccccccc}
b_{11} & b_{12} & . & . & . & . & b_{1 m} \\
b_{21} & b_{22} & . & . & . & . & . & b_{2 m} \\
\cdot & \cdot & . & . & . & . & . & . \\
. & . & . & . & . & . & . & . \\
b_{m 1} & b_{m 2} & . & . & . & . & . & b_{m m}
\end{array}\right) .
$$

That is, the matrix \mathbf{A} represents the coordinate transformation $\alpha^{\prime} \circ \alpha^{-1}$ with respect to the standard basis $\vec{e}_{1}, \ldots, \vec{e}_{n} \in \mathbb{R}^{n}$ and $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n} \in \mathbb{R}^{n \times 1}$. Likewise, the matrix \mathbf{B} represents the coordinate transformation $\beta^{\prime} \circ \beta^{-1}$ with respect to the standard basis $\vec{e}_{1}, \ldots, \vec{e}_{m} \in \mathbb{R}^{m}$ and $\mathbf{e}_{1}, \ldots, \mathbf{e}_{m} \in \mathbb{R}^{m \times 1}$. When this matrix representation is taken into account, the composition of maps (40) is realized by matrix multiplication according to (43).

Let us return to our previous example. We may put $\vec{v}_{1}:=1, \vec{v}_{2}:=t, \vec{v}_{3}:=t^{2} \in V$ and $\vec{w}_{1}:=1, \vec{w}_{2}:=s \in W$ as a basis. Alternatively, we may consider the basis $\vec{v}_{1}^{\prime}:=\vec{v}_{1}, \vec{v}_{2}^{\prime}:=\vec{v}_{2}+\vec{v}_{3}, \vec{v}_{3}^{\prime}:=\vec{v}_{2}-\vec{v}_{3} \in V$ and $\vec{w}_{1}^{\prime}:=2 \vec{w}_{1}, \vec{w}_{2}^{\prime}:=\vec{w}_{1}+\vec{w}_{2} \in W$.

To determine the coordinate transformation one has to calculate the coefficients $a_{i j}, b_{k l} \in \mathbb{R}$. From

$$
\begin{align*}
& \vec{v}_{1}=\vec{v}_{1}^{\prime}, \quad \vec{v}_{2}=\frac{1}{2}\left(\vec{v}_{2}^{\prime}+\vec{v}_{3}^{\prime}\right), \quad \vec{v}_{3}=\frac{1}{2}\left(\vec{v}_{2}^{\prime}-\vec{v}_{3}^{\prime}\right) . \\
& \vec{w}_{1}=\frac{1}{2} \vec{w}_{1}^{\prime}, \quad \vec{w}_{2}=\vec{w}_{2}^{\prime}-\frac{1}{2} \vec{w}_{1}^{\prime} \tag{45}
\end{align*}
$$

one infers that

$$
\begin{array}{ll}
a_{11}=1, & a_{12}=a_{13}=0, \\
a_{21}=0, & a_{22}=a_{23}=1 / 2, \\
a_{31}=0, & a_{32}=-a_{33}=1 / 2 . \tag{46}\\
b_{11}=1 / 2, & b_{12}=-1 / 2, \\
b_{21}=0, & b_{22}=1 .
\end{array}
$$

Hence,

$$
\mathbf{A}=\left(\begin{array}{ccc}
1 & 0 & 0 \tag{47}\\
0 & 1 / 2 & 1 / 2 \\
0 & 1 / 2 & -1 / 2
\end{array}\right) \in \mathbb{R}^{3 \times 3}, \quad \mathbf{B}=\left(\begin{array}{cc}
1 / 2 & -1 / 2 \\
0 & 1
\end{array}\right) \in \mathbb{R}^{2 \times 2}
$$

One therefore obtains for the matrix $\mathbf{F}^{\prime} \in \mathbb{R}^{2 \times 3}$:

$$
\begin{align*}
\mathbf{F}^{\prime} & =\left(\begin{array}{cc}
1 / 2 & -1 / 2 \\
0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & -1
\end{array}\right) \tag{48}\\
& =\left(\begin{array}{ccc}
1 / 2 & 0 & -1 \\
0 & 1 & 1
\end{array}\right) .
\end{align*}
$$

Apparently, this result is quite different from \mathbf{F}. Yet both matrices \mathbf{F} and \mathbf{F}^{\prime} represent the same linear map (29).

Notice that $\mathbf{A}^{-1} \in \mathbb{R}^{3 \times 3}$ can be directly read off from the definition of the basis $\vec{v}_{1}^{\prime} \ldots, \vec{v}_{3}^{\prime} \in V$ in terms of the basis $\vec{v}_{1} \ldots, \vec{v}_{3} \in V$. Also, notice that

$$
\begin{equation*}
\mathbf{F}^{\prime} \mathbf{e}_{1}=\frac{1}{2} \mathbf{e}_{1}, \quad \mathbf{F}^{\prime} \mathbf{e}_{2}=\mathbf{e}_{2}, \quad \mathbf{F}^{\prime} \mathbf{e}_{3}=\mathbf{e}_{2}-\mathbf{e}_{1} \in \mathbb{R}^{2 \times 1} \tag{49}
\end{equation*}
$$

where, again, the same notation is used for both the standard basis in $\mathbb{R}^{n \times 1}$ and $\mathbb{R}^{m \times 1}$.
Let us introduce one more notation: We set $\mathbf{x}:=\sigma_{\alpha}(\vec{x}) \in \mathbb{R}^{n \times 1}=\sum_{1 \leq k \leq n} x_{k} \mathbf{e}_{k}$, resp. $\mathbf{x}^{\prime}:=\sigma_{\alpha^{\prime}}(\vec{x})=\sum_{1 \leq k \leq n} x_{k}^{\prime} \mathbf{e}_{k} \in \mathbb{R}^{n \times 1}$. Notice that both vectors \mathbf{x} and \mathbf{x}^{\prime} of the real n-dimensional vector space $\mathbb{R}^{n \times 1}$ of $(n \times 1)$-matrices represent the same (abstract) vector $\vec{x} \in V$. Likewise, we set $\mathbf{y}:=\sigma_{\beta}(\vec{y})=\sum_{1 \leq k \leq m} y_{k} \mathbf{e}_{k} \in \mathbb{R}^{m \times 1}$, resp. $\mathbf{y}^{\prime}:=\sigma_{\beta^{\prime}}(\vec{y})=\sum_{1 \leq k \leq m} y_{k}^{\prime} \mathbf{e}_{k} \in \mathbb{R}^{m \times 1}$. One has

$$
\vec{y}=f(\vec{x}) \quad \Leftrightarrow \quad\left\{\begin{array}{l}
\mathbf{y}=\mathbf{F x}, \tag{50}\\
\mathbf{y}^{\prime}=\mathbf{F}^{\prime} \mathbf{x}^{\prime} .
\end{array}\right.
$$

Furthermore, since $\mathbf{x}^{\prime}=\mathbf{A x}$ and $\mathbf{y}^{\prime}=\mathbf{B y}$ one obtains (43).
Concerning our previous example, one gets for the coordinate transformations

$$
\begin{align*}
& \mathbf{x}^{\prime}=\left(\begin{array}{l}
x_{1}^{\prime} \\
x_{2}^{\prime} \\
x_{3}^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 / 2 & 1 / 2 \\
0 & 1 / 2 & -1 / 2
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
x_{1} \\
\left(x_{2}+x_{3}\right) / 2 \\
\left(x_{2}-x_{3}\right) / 2
\end{array}\right) \in \mathbb{R}^{3 \times 1}, \tag{51}\\
& \mathbf{y}^{\prime}=\binom{y_{1}^{\prime}}{y_{2}^{\prime}}=\left(\begin{array}{cc}
1 / 2 & -1 / 2 \\
0 & 1
\end{array}\right)\binom{y_{1}}{y_{2}}=\binom{\left(y_{1}-y_{2}\right) / 2}{y_{2}} \in \mathbb{R}^{2 \times 1} .
\end{align*}
$$

Indeed, it is straightforward to verify that

$$
\begin{align*}
\vec{y} & =\sigma_{\beta^{\prime}}^{-1}\left(\mathbf{y}^{\prime}\right)=\beta^{\prime-1}\left(y_{1}^{\prime}, y_{2}^{\prime}\right) \\
& =y_{1}^{\prime} \vec{w}_{1}^{\prime}+y_{2}^{\prime} \vec{w}_{2}^{\prime}=\frac{1}{2}\left(y_{1}-y_{2}\right) \vec{w}_{1}^{\prime}+y_{2} \vec{w}_{2}^{\prime} \\
& =\left(y_{1}-y_{2}\right) \vec{w}_{1}+y_{2}\left(\vec{w}_{1}+\vec{w}_{2}\right)=y_{1} \vec{w}_{1}+y_{2} \vec{w}_{2} \tag{52}\\
& =\beta^{-1}\left(y_{1}, y_{2}\right)=\sigma_{\beta}^{-1}(\mathbf{y}) \\
& =\left(x_{1}+x_{3}\right) \vec{w}_{1}+x_{2} \vec{w}_{2}=f\left(x_{1} \vec{v}_{1}+x_{2} \vec{v}_{2}+x_{3} \vec{v}_{3}\right) \\
& =f(\vec{x}),
\end{align*}
$$

for all $\vec{x} \in V$. This demonstrates once more that the linear map (29) between (abstract) vector spaces V and W can be represented by the different linear maps between the corresponding coordinate spaces:

$$
\begin{equation*}
\mathbf{F}, \mathbf{F}^{\prime}: \mathbb{R}^{3 \times 1} \longrightarrow \mathbb{R}^{2 \times 1} . \tag{53}
\end{equation*}
$$

One therefore should be careful when identifying linear maps with matrices! Such an identification always refers to a choice of basis!! In more abstract terms, there is no natural way, in general, to identify the real vector space $H o m_{\mathbb{R}}(V, W)$ of all linear maps from a real n-dimensional vector space V into a real m-dimensional vector space W and the real $n m$-dimensional vector space $\mathbb{R}^{m \times n}$ of $(m \times n)$-matrices. In fact, every isomorphism:

$$
\begin{gather*}
\operatorname{Hom}_{\mathbb{R}}(V, W) \xrightarrow{\simeq} \mathbb{R}^{m \times n} \tag{54}\\
\quad f \mapsto \mathbf{F},
\end{gather*}
$$

depends on the arbitrariness of a basis chosen in V and/or W.
Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany
E-mail address: Juergen.Tolksdorf@mis.mpg.de

