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1. Abstract vector spaces versus coordinate spaces

Let V be a real vector space of finite dimension n ≥ 1.

For instance, V := Rn. In the sequel we always regard Rn as an “abstract” vector
space. That is, as a set Rn = R × R × · · · × R is the n−fold cartesian product of the
field of real numbers. The linear structure on this set is then defined in terms of the
linear structure of R: For ~x ≡ (x1, x2, . . . , xn), ~y ≡ (y1, y2, . . . , yn) ∈ Rn and all λ ∈ R
one sets: ~x + λ~y := (x1 + λy1, x2 + λy2, . . . , xn + λyn) ∈ Rn. It is straightforward to
prove that with respect to this defined linear structure the set Rn becomes a real vector
space of dimension n. However, Rn is not just an n−dimensional vector space. It also
is endowed with a distinguished basis: ~e1 ≡ (1, 0, . . . , 0), ~e2 ≡ (0, 1, . . . , 0), . . . , ~en ≡
(0, 0, . . . , 1) ∈ Rn. Indeed, by construction of Rn any vector ~x ≡ (x1, x2, . . . , xn) ∈ Rn
may be uniquely decomposed as

~x ≡ (x1, x2, . . . , xn) = x1~e1 + x2~e2 + · · ·+ xn~en

≡
∑

1≤k≤n
xk~ek . (1)

In this context, the real numbers x1, x2, . . . , xn ∈ R are called the cartesian coordinates
of the vector ~x ∈ Rn with respect to the basis ~e1, ~e2, . . . , ~en ∈ Rn. Apparently, we may

also choose an arbitrary basis ~b1,~b2, . . . ,~bn ∈ Rn, such that

~x = (x1, x2, . . . , xn) =
∑

1≤k≤n
λk~bk . (2)

Here, the real numbers λ1, λ2, . . . , λn ∈ R are referred to as the coordinates of the

vector ~x ∈ Rn with respect to the basis ~b1,~b2, . . . ,~bn ∈ Rn. Again, these coordinates
are uniquely determined by the choice of the basis.

Notice that both coordinates x1, x2, . . . , xn ∈ R and λ1, λ2, . . . , λn ∈ R represent
the same vector ~x ∈ Rn, however, with respect to different basis in Rn, i.e.∑

1≤k≤n
xk~ek =

∑
1≤k≤n

λk~bk . (3) decomp1

Clearly, every vector ~bk ∈ Rn can be uniquely written as

~bk ≡ (b1k, b2k, . . . , bnk) =
∑

1≤i≤n
bik~ei , (k = 1, . . . , n) . (4) decomp2
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Likewise, since ~b1,~b2, . . . ,~bn ∈ Rn is supposed to form a basis, it follows that for all
k = 1, . . . , n every vector ~ek can be uniquely decomposed as

~ek =
∑

1≤i≤n
aik~bi . (5)

Since on both sides of (11) the decomposition is unique the coordinates x1, x2, . . . , xn ∈
R and λ1, λ2, . . . , λn ∈ R of the vector ~x ∈ Rn are related by

xk =
∑

1≤j≤n
bkiλi ,

λk =
∑

1≤j≤n
akixi .

(6)

Furthermore, the real numbers aij , bij ∈ R (1 ≤ i, j ≤ n) fulfill:
∑

1≤k≤n aikbkj = δij .
Again, this is because of the unique decomposition of a vector with respect to a chosen
basis.

Another example of a real vector space of dimension n = kl, consider the vector
space of real matrices of size k × l. That is,

V := Rk×l ≡

~x ≡


x11 x12 · · · · · x1l
x21 x22 · · · · · x2l
· · · · · · · ·
· · · · · · · ·
xk1 xk2 · · · · · xkl

 ∣∣xij ∈ R, 1 ≤ i ≤ k, 1 ≤ j ≤ l

 ,
(7)

where the linear structure ~x+ λ~y is provided by the usual adding of real matrices and
the usual multiplication of a real matrix with a real number.

Again, due to its construction the real vector space Rk×l comes equipped with a
distinguished basis: ~e11, ~e12, . . . , ~e1l, . . . , ~ek1, . . . , ~ekl, where ~eij is the matrix with entry
1 at the position i, j and zero otherwise, for all 1 ≤ i ≤ k and 1 ≤ j ≤ l.

However, not every vector space comes equipped with respect to a distinguished
basis. Indeed, the fact that both vector spaces Rn and Rk×l allow for a “natural choice
of a basis” strongly depends on how the respective underlying sets are endowed with
a linear structure. In the case of an abstract vector space V , however, the underlying
set is always supposed to have a linear structure. Therefore, an abstract vector space
does not allow for a distinguished basis, in general, which can be used as a “reference
basis”. However, one has the following statement:

Proposition 1.1. Every real vector space of finite dimension n ≥ 0 is isomorphic to
Rn.

Proof. Let ~v1, . . . , ~vn ∈ V be a basis. The mapping

β : V −→ Rn

~x =
∑

1≤k≤n
xk~vk 7→ (x1, . . . , xn) (8) coordisom1

is linear and bijective with the inverse being given by β−1(x1, . . . , xn) :=
∑

1≤k≤n xk~vk.
�
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The point to be stressed here is that the isomorphism β strongly depends on the
chosen basis ~v1, . . . , ~vn ∈ V . This is, because the coordinates x1, . . . , xn ∈ R of ~x ∈ V
do so! In fact, the isomorphism (8) is fully determined by the identification

V 3 ~vk ↔ ~ek ∈ Rn (k = 1, . . . , n) . (9)

Since there is no preferred basis available in V one may choose another basis
~u1, . . . , ~un ∈ V to obtain a correspondingly alternative isomorphism

α : V −→ Rn

~x =
∑

1≤k≤n
yk~uk 7→ (y1, . . . , yn) . (10) coordisom2

Notice again that similar to (11)∑
1≤k≤n

xk~vk =
∑

1≤i≤n
yi~ui . (11) decomp1

It may thus not come as a big surprise that the coordinate transformation

α ◦ β−1 : Rn '−→ Rn

(x1, . . . , xn) 7→ (y1, . . . , yn)
(12) coordtrans1

is given by

yi =
∑

1≤k≤n
aikxk . (13)

Here, the real numbers a11, . . . , ann ∈ R are fully determined by

~vk =:
∑

1≤i≤k
aik~ui , (k = 1, . . . , n) , (14)

since both ~u1, . . . , ~un ∈ V and ~v1, . . . , ~vn ∈ V form a basis in V . Accordingly, the
inverse of the coordinate transformation (12) is provided by

xk =
∑

1≤j≤n
bkiyi , (15)

where the real numbers b11, . . . , bnn ∈ R are now fully determined by

~ui =:
∑

1≤k≤n
bki~vk , (k = 1, . . . , n) . (16)

Again, it follows that
∑

1≤k≤n aikbkj = δij , (1 ≤ i, j ≤ n), since (α◦β−1)◦(α◦β−1)−1 =

(α ◦ β−1) ◦ (β ◦ α−1) equals the identity map on Rn.

Notation: The (basis-dependent) isomorphism (8) is called a coordinate map. Ac-
cordingly, (x1, . . . , xn) ∈ Rn are referred to as the coordinates of the vector ~x ∈ V with
respect to the chosen basis ~v1, . . . , ~vn ∈ V . Similarly, the (again basis dependent) iso-
morphism (10) provides another coordinate map. It allows to identify the same vector
~x ∈ V with the new coordinates (y1, . . . , yn) ∈ Rn. The coordinates (x1, . . . , xn) and
(y1, . . . , yn) are related to each other by the coordinate transformation α◦β−1 and and
its inverse β ◦ α−1, both being isomorphisms on the coordinate space Rn. Using this
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notation, Rn may be interpreted both as an abstract vector space and as its coordinate
space, where the natural isomorphism is given by the identity map:

Rn −→ Rn

~x ≡ (x1, . . . , xn) =
∑

1≤k≤n
xk~ek 7→ (x1, . . . , xn) ∈ Rn . (17) coordisom3

Of course, with respect to the standard basis ~e1, . . . , ~en ∈ Rn the distinction between
the interpretation of Rn as abstract vector space (similar to V ) and its coordinate
space becomes somehow redundant. However, notice that also on the vector space Rn
one may choose an arbitrary basis ~b1, . . . ,~bn ∈ Rn. Then, (17) reads:

α : Rn −→ Rn

~x ≡ (x1, . . . , xn) =
∑

1≤k≤n
λk~bk 7→ (λ1, . . . , λn) ∈ Rn . (18) coordisom4

2. Linear maps and matrices

Let W be another real vector space of finite dimension m ≥ 1, maybe different from
n = dimV .

First, let us call in mind that every linear map f : V −→W is fully determined by
the image of a chosen basis ~v1, . . . , ~vn ∈ V with respect to f . Indeed, let ~wk := f(~vk) ∈
W be given for all k = 1, . . . , n. Notice that includes the case ~wk = ~0 ∈ W for some
(or even all) k ∈ {1, . . . , n}. In fact, let ~x =

∑
1≤k≤n xk~vk ∈ V be arbitray. We may

set f(~x) :=
∑

1≤k≤n xk ~wk ∈W . By construction, the thus defined map f : V →W is

linear. Let now g : V → W be any linear map which fulfills g(~vk) = ~wk ∈ W for all
k = 1, . . . , n. It follows that for all ~x =

∑
1≤k≤n xk~vk ∈ V the map

(g − f)(~x) := g(~x)− f(~x) =
∑

1≤k≤n
xkg(~vk)−

∑
1≤k≤n

xk ~wk

= ~0 ∈W .

(19)

In other words, g−f equals the “null-map” (i.e. the unique mapping which maps every

~x ∈ V into the zero-vector ~0 ∈W ). Therefore, g = f , which was to be demonstrated.
Notice that despite its definition, the linear map f does not depend on the choice

of the basis ~v1, . . . , ~vn ∈ V . Also notice that the constant mapping f(~vk) := ~w, where

~w ∈W denotes some fixed vector, does not give rise to a linear map unless ~w = ~0.
In order to characterize a linear map f : V →W , one has to distinguish the following

two cases:

(1) n ≤ m: In this case, f is injective if and only if f(~v1), . . . , f(~vn) ∈ W are
linear independent. In fact, ~x =

∑
1≤k≤n xk~vk ∈ V ∈ ker(f) implies that

~0 = f(~x) =
∑

1≤k≤n xkf(~vk) ∈ W . Hence, it follows from the very definition

of linear independency that x1 = · · · = xn = 0 ∈ R. That is, f(~x) = ~0 implies

~x = ~0 ∈ V . Consequently, the linear independency of f(~v1), . . . , f(~vn) ∈ W

yields ker(f) = {~0} ⊂ V .

Conversely, let us assume that ker(f) = {~0} ⊂ V . That is, ~0 ∈ V is the only

vector which is mapped into ~0 ∈ W by f . Therefore, ~0 =
∑

1≤k≤n xkf( ~vk) =

f
(∑

1≤k≤n xk~vk
)
. This implies that

∑
1≤k≤n xk~vk = ~0 ∈ V . Since ~v1, . . . , ~vn ∈
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V is a basis, one infers that x1 = · · · = xn = 0. This in turn proves that
f(~v1), . . . , f(~vn) ∈W are linear independent.

(2) n > m: We prove that f is surjective if and only if

spanR(f(~v1), . . . , f(~vn)) :=

~y =
∑

1≤k≤n
λkf(~vk) |λk ∈ R

 = W . (20) surjectivity

First, notice that in the case considered f(~v1), . . . , f(~vn) ∈W cannot be linear
independent.

Assume that (20) holds true. We may put ~x :=
∑

1≤k≤n λk~vk ∈ V to get

f(~x) = ~y ∈ W for every ~y ∈ W . Conversely, assume that for all ~y ∈ W
there exists ~x ∈ V , such that ~y = f(~x). In this case, the decomposition
~x =

∑
1≤k≤n λk~vk yields (20).

As a consequence, one infers that a linear map f : V → W is an isomorphism if
and only if m = n and f is injective.

Let, respectively, α : V
'−→ Rn, ~x =

∑
1≤k≤n xk~vk 7→ (x1, . . . , xn) and β : W

'−→
Rm, ~y =

∑
1≤k≤m yk ~wk 7→ (y1, . . . , ym) be coordinate maps with respect to the chosen

basis ~v1, . . . , ~vn ∈ V and ~w1, . . . , ~wm ∈W .
A linear map f : V −→W may then be represented by the linear map

fαβ : Rn −→ Rm

(x1, . . . , xn) 7→ (y1, . . . , ym) := β(f(α−1(x1, . . . , xn))) ,
(21) coordinatemap

i.e.

fαβ = β ◦ f ◦ α−1 . (22)

Notice that the coordinate map fαβ depends on the choice of basis in V and W . In
contrast, the mapping f itself does not refer to any such choice.

The advantage of the representation of f by fαβ is provided by the following iso-
morphism between the real vector space Rn and the real vector space Rn×1 of matrices
of size n× 1:

σn : Rn '−→ Rn×1

(x1, . . . , xn) 7→

 x1
...
xn

 , (23) columisomorphism

Clearly, for every finite n > 0 this mapping is linear and injective. Furthermore,
both real vector spaces have the same dimension. Hence, according to the forgoing
remark, the mapping σn provides an isomorphism. This holds true for any 0 < n <∞.

We put ek := σn(~ek) ∈ Rn×1 for all 1 ≤ k ≤ n and every 0 < n <∞. That is, there is
no notational distinction made between ek ∈ Rn×1 and ek ∈ Rm×1 even if n 6= m. Also

we write σα : V
'−→ Rn×1 , ~x =

∑
1≤k≤n xk~vk 7→ σn(x1, . . . , xn) =

∑
1≤k≤n xkek. Like-

wise, we write σβ : W
'−→ Rm×1 , ~y =

∑
1≤k≤m yk ~wk 7→ σm(y1, . . . , ym) =

∑
1≤k≤m ykek.

When taking advantage of these mappings, the action of the coordinate map (21)
(and thus also of f) can be realized in terms of matrix multiplication. In fact, one has

~y = f(~x)⇔ fαβ(x1, . . . , xn) = (y1, . . . , yn)⇔ σβ(~y) = Fσα(~x) , (24)
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where the matrix F ∈ Rm×n is given by

F :=


f11 f12 · · · · · f1n
f21 f22 · · · · · f2n
· · · · · · · ·
· · · · · · · ·

fm1 fm2 · · · · · fmn

 (25)

and

f(~vj) = f(σ−1α (ej)) =:
∑

1≤i≤m
fij ~wi =

∑
1≤i≤m

fijσ
−1
β (ei) (1 ≤ j ≤ n) . (26)

The advantage to realize the action of a linear map by matrix multiplication is in-
deed the main motivation to identify the vector space Rn, consisting of real n−tuples,
with the vector space Rn×1 of real matrices of size n × 1 according to (23). It just
simplifies calculations!

Notice that for all j = 1, . . . , n:

σβ(f(~vj)) = σβ
(
f(σ−1α (ej))

)
=

∑
1≤i≤m

fijei =

 f1j
...

fmj

 ∈ Rm×1 . (27)

Hence, the matrix representative of f may be written as

F = (σβ(f(~v1)), σβ(f(~v2)), . . . , σβ(f(~vn))) ∈ Rm×n . (28) matrixofmap

Once more, the matrix representative F of the linear mapping f always refers to
the basis chosen in V and W . In contrast, the linear mapping itself does not refer to
such a choice. The main reason to introduce F is that the abstract action of a linear
map f can then be simply realized by matrix multiplication.

Example:
Let V := {~x := x1 + x2t + x3t

2 |x1, x2, x3 ∈ R} be the three-dimensional real vector
space of real polynomials of second order in one variable t. Likewise, we may also
consider the two-dimensional real vector space W := {~y := y1 +y2s | y1, y2 ∈ R} of real
polynomials of first order in one variable s.

Let

f : V −→W

x1 + x2t+ x3t
2 7→ (x1 + x3) + x2s .

(29) linearmapex

Hence, the linear map is fully determined by

f(1) = f(t2) := 1, f(t) := s . (30) mapdefex

Clearly, the map f is surjective and ker(f) = {λ(1− t2) |λ ∈ R} ⊂ V .
We may set σα(1) := e1, σα(t) := e2, σα(t2) := e3 ∈ R3×1 and σβ(1) := e1, σβ(s) :=

e2 ∈ R2×1. With respect to this choice the linear map (29) is easily seen to be
represented by the matrix

F =

(
1 0 1
0 1 0

)
∈ R2×3 . (31) matrixrepex

Indeed, one gets

Fe1 = Fe3 = e1, Fe2 = e2 ∈ R2×1 , (32)
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which corresponds to (30).

We still have to clarify what happens if one changes the basis in V and/or W . For
this let ~v1, . . . , ~vn ∈ V and ~v′1, . . . , ~v

′
n ∈ V be a basis in V . Likewise, let ~w1, . . . , ~wn ∈W

and ~w′1, . . . , ~w
′
n ∈ W be a basis in W . These choices allow for the following isomor-

phisms:

α : V
'−→ Rn

~x =
∑

1≤k≤n
xk~vk 7→ (x1, . . . , xn) ,

α′ : V
'−→ Rn

~x =
∑

1≤k≤n
x′k~v

′
k 7→ (x′1, . . . , x

′
n) .

β : W
'−→ Rm

~y =
∑

1≤k≤m
yk ~wk 7→ (y1, . . . , ym) ,

β′ : W
'−→ Rm

~y =
∑

1≤k≤n
y′k ~w

′
k 7→ (y′1, . . . , y

′
m) .

(33) coordisom5

The respective coordinate transformations

α′ ◦ α−1 : Rn '−→ Rn

(x1, . . . , xn) 7→ (x′1, . . . , x
′
n)

β′ ◦ β−1 : Rm '−→ Rm

(y1, . . . , yn) 7→ (y′1, . . . , y
′
n)

(34)

are given by

x′i =
∑

1≤j≤n
aijxj (i = 1, . . . , n) ,

y′i =
∑

1≤j≤m
bijyj (i = 1, . . . ,m) .

(35)

The expansion coefficients aij , bij ∈ R are defined as

~vj =:
∑

1≤i≤n
aij~v

′
i (j = 1, . . . , n) ,

~wj =:
∑

1≤i≤m
bij ~w

′
i (j = 1, . . . ,m) .

(36)
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Let again f : V −→ W be a linear map. According to (21) it can be represented
either as

fαβ : Rn −→ Rm

(x1, . . . , xn) 7→ (y1, . . . , ym) := β(f(α−1(x1, . . . , xn))) ,
(37) coordinatemaps1

i.e.

fαβ = β ◦ f ◦ α−1 , (38)

or as

fα′β′ : Rn −→ Rm

(x′1, . . . , x
′
n) 7→ (y′1, . . . , y

′
m) := β′(f(α′

−1
(x′1, . . . , x

′
n))) ,

(39) coordinatemaps2

i.e.

fα′β′ = β′ ◦ f ◦ α′−1

=
(
β′ ◦ β−1

)
◦ fαβ ◦

(
α′ ◦ α−1

)−1
.

(40) mapcomp

Similarly to (28) one thus obtains the following two matrices representing f with
respect to the chosen basis:

F = (σβ(f(σ−1α (e1))), σβ(f(σ−1α (e2))), . . . , σβ(f(σ−1α (en)))) ∈ Rm×n . (41) matrixofmap1

F′ = (σβ′(f(σ−1α′ (e1))), σβ′(f(σ−1α′ (e2))), . . . , σβ′(f(σ−1α′ (en)))) ∈ Rm×n . (42) matrixofmap2

These to matrices F,F′ ∈ Rm×n are different, in general, although they represent
the same linear map f . In fact, F,F′ ∈ Rm×n are related to each other as

F′ = BFA−1 , (43) matrixmul

where the matrices A ∈ Rn×n and B ∈ Rm×m are given by

A :=


a11 a12 · · · · · a1n
a21 a22 · · · · · a2n
· · · · · · · ·
· · · · · · · ·
an1 am2 · · · · · ann

 , B :=


b11 b12 · · · · · b1m
b21 b22 · · · · · b2m
· · · · · · · ·
· · · · · · · ·

bm1 bm2 · · · · · bmm

 .
(44)

That is, the matrix A represents the coordinate transformation α′ ◦ α−1 with respect
to the standard basis ~e1, . . . , ~en ∈ Rn and e1, . . . , en ∈ Rn×1. Likewise, the matrix B
represents the coordinate transformation β′ ◦ β−1 with respect to the standard basis
~e1, . . . , ~em ∈ Rm and e1, . . . , em ∈ Rm×1. When this matrix representation is taken into
account, the composition of maps (40) is realized by matrix multiplication according
to (43).

Let us return to our previous example. We may put ~v1 := 1, ~v2 := t, ~v3 := t2 ∈ V
and ~w1 := 1, ~w2 := s ∈ W as a basis. Alternatively, we may consider the basis
~v′1 := ~v1, ~v

′
2 := ~v2 + ~v3, ~v

′
3 := ~v2 − ~v3 ∈ V and ~w′1 := 2~w1, ~w

′
2 := ~w1 + ~w2 ∈W .

To determine the coordinate transformation one has to calculate the coefficients
aij , bkl ∈ R. From

~v1 = ~v′1 , ~v2 =
1

2
(~v′2 + ~v′3) , ~v3 =

1

2
(~v′2 − ~v′3) .

~w1 =
1

2
~w′1 , ~w2 = ~w′2 −

1

2
~w′1

(45)
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one infers that

a11 = 1 , a12 = a13 = 0 ,

a21 = 0 , a22 = a23 = 1/2 ,

a31 = 0 , a32 = −a33 = 1/2 .

b11 = 1/2 , b12 = −1/2 ,

b21 = 0 , b22 = 1 .

(46)

Hence,

A =

1 0 0
0 1/2 1/2
0 1/2 −1/2

 ∈ R3×3 , B =

(
1/2 −1/2
0 1

)
∈ R2×2 . (47)

One therefore obtains for the matrix F′ ∈ R2×3:

F′ =

(
1/2 −1/2
0 1

)(
1 0 1
0 1 0

)1 0 0
0 1 1
0 1 −1


=

(
1/2 0 −1
0 1 1

)
.

(48)

Apparently, this result is quite different from F. Yet both matrices F and F′ represent
the same linear map (29).

Notice that A−1 ∈ R3×3 can be directly read off from the definition of the basis
~v′1 . . . , ~v

′
3 ∈ V in terms of the basis ~v1 . . . , ~v3 ∈ V . Also, notice that

F′e1 =
1

2
e1 , F′e2 = e2 , F′e3 = e2 − e1 ∈ R2×1 , (49)

where, again, the same notation is used for both the standard basis in Rn×1 and Rm×1.

Let us introduce one more notation: We set x := σα(~x) ∈ Rn×1 =
∑

1≤k≤n xkek,

resp. x′ := σα′(~x) =
∑

1≤k≤n x
′
kek ∈ Rn×1. Notice that both vectors x and x′ of

the real n−dimensional vector space Rn×1 of (n × 1)−matrices represent the same
(abstract) vector ~x ∈ V . Likewise, we set y := σβ(~y) =

∑
1≤k≤m ykek ∈ Rm×1, resp.

y′ := σβ′(~y) =
∑

1≤k≤m y
′
kek ∈ Rm×1. One has

~y = f(~x) ⇔
{

y = Fx ,
y′ = F′x′ .

(50) twomatequiv

Furthermore, since x′ = Ax and y′ = By one obtains (43).

Concerning our previous example, one gets for the coordinate transformations

x′ =

x′1x′2
x′3

 =

1 0 0
0 1/2 1/2
0 1/2 −1/2

x1x2
x3

 =

 x1
(x2 + x3)/2
(x2 − x3)/2

 ∈ R3×1 ,

y′ =

(
y′1
y′2

)
=

(
1/2 −1/2
0 1

)(
y1
y2

)
=

(
(y1 − y2)/2

y2

)
∈ R2×1 .

(51)
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Indeed, it is straightforward to verify that

~y = σ−1β′ (y′) = β′
−1

(y′1, y
′
2)

= y′1 ~w
′
1 + y′2 ~w

′
2 =

1

2
(y1 − y2)~w′1 + y2 ~w

′
2

= (y1 − y2)~w1 + y2(~w1 + ~w2) = y1 ~w1 + y2 ~w2

= β−1(y1, y2) = σ−1β (y)

= (x1 + x3)~w1 + x2 ~w2 = f(x1~v1 + x2~v2 + x3~v3)

= f(~x) ,

(52)

for all ~x ∈ V . This demonstrates once more that the linear map (29) between (abstract)
vector spaces V and W can be represented by the different linear maps between the
corresponding coordinate spaces:

F,F′ : R3×1 −→ R2×1 . (53)

One therefore should be careful when identifying linear maps with matrices! Such an
identification always refers to a choice of basis!! In more abstract terms, there is no
natural way, in general, to identify the real vector space HomR(V,W ) of all linear maps
from a real n−dimensional vector space V into a real m−dimensional vector space W
and the real nm−dimensional vector space Rm×n of (m× n)−matrices. In fact, every
isomorphism:

HomR(V,W )
'−→ Rm×n

f 7→ F ,
(54)

depends on the arbitrariness of a basis chosen in V and/or W .
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