Inst. f. Theoretische Physik

Wintersemester 2016/17

Übungen zur Theoretischen Mechanik Aufgabenblatt 12

Aufgabe 12.1 [Diese Aufgabe wird korrigiert und bewertet, Wert = 12 Punkte. Abgabe bis zum Donnerstag, 26.01.2017, vor der Vorlesung] Im folgenden wird eine Transformation $\Psi_t: \mathcal{P} \to \mathcal{P} \ (t \in \mathbb{R})$ geschrieben als

$$\Psi_t(\binom{q}{p}) = \binom{Q(q,p,t)}{P(q,p,t)},$$

wobei die Funktionen Q und P Werte im \mathbb{R}^f annehmen.

Prüfen Sie, ob die folgenden Transformationen der kanonischen Variablen $(q_1, \ldots, q_f, p_1, \ldots, p_f)$ kanonisch sind.

(a)
$$f = 1$$
, $Q(q, p) = pq + q^3$, $P(q, p) = p^2 + p/q$.

(b) f=2, $\mu,k,\omega>0$ sind konstante Parameter,

$$Q_{1}(q_{1}, q_{2}, p_{1}, p_{2}, t) = -\sqrt{\frac{2p_{1}}{k}} \sin(\mu(q_{1} + t))$$

$$Q_{2}(q_{1}, q_{2}, p_{1}, p_{2}, t) = \cos(\omega t)q_{2} + \sin(\omega t)p_{2}$$

$$P_{1}(q_{1}, q_{2}, p_{1}, p_{2}, t) = \frac{1}{\mu}\sqrt{2kp_{1}}\cos(\mu(q_{1} + t))$$

$$P_{2}(q_{1}, q_{2}, p_{1}, p_{2}, t) = \sin(\omega t)q_{2} - \cos(\omega t)p_{2}$$

(c) f = 1, $\kappa, \lambda > 0$ sind konstante Parameter,

$$Q(q, p, t) = -\frac{1}{\kappa} \arctan(\lambda q/p) - t$$
, $P(q, p, t) = \frac{\kappa}{2\lambda} (p^2 + \lambda^2 q^2)$.

Hinweis: $(\sin x)^2 = (\tan x)^2/(1 + (\tan x)^2)$.

/...2

Aufgabe 12.2

[wird nicht korrigiert]

Die Hamiltonfunktion eines Teilchens der Masse m im eindimensionalen harmonischen Oszillatorpotential ($\mathcal{P} = \mathbb{R} \times \mathbb{R}, f = 1$) ist gegeben durch

$$H(q,p) = \frac{p^2}{2m} + \frac{m\omega^2}{2}q^2$$

mit einer Konstanten $\omega > 0$.

- (a) Bestimmen Sie die Hamiltonschen Bewegungsgleichungen und geben Sie deren allgemeine Lösung an. Wieviele Integrationskonstanten sind für eine konkrete Lösung festzulegen?
- (b) Es sei (q_0, p_0) ein Punkt im Phasenraum und $t \mapsto (q(t), p(t))$ sei eine Integralkurve des Hamiltonschen Vektorfeldes mit $(q(0), p(0)) = (q_0, p_0)$. Zeigen Sie, dass die Integralkurve (auch genannt Phasenraumkurve) eine Ellipse ist. Berechnen Sie deren Mittelpunkt sowie Größe und Richtung der Halbachsen. Skizzieren Sie die Umlaufrichtung.
 - (Hinweis: Es ist ratsam, zunächst die Kurve $(\xi(t),\eta(t))=(\sqrt{m\omega}q(t),p(t)/\sqrt{m\omega})$ anstelle von (q(t),p(t)) zu betrachten.)
- (c) Betrachten Sie für t=0 das rechteckige Phasenraumgebiet $|q| \le 1$, $-1 \le p/m\omega \le 2$. In welche Phasenraumgebiete wird dieses unter dem Fluss des Hamiltonschen Vektorfelds zu den Zeiten $t=\pi/4\omega$, $t=\pi/3\omega$ transformiert (Skizze)? Berechnen Sie die Größe der transformierten Gebiete.

Aufgabe 12.3 [wird nicht korrigiert]

Es wird ein harmonischer Oszillator in einer Dimension betrachtet, der einer schwachen Dämpfung durch eine Reibungskraft $F_R(\dot{x}) = -\gamma \dot{x}$ unterliegt, wobei x die Auslenkung des Oszillators aus der Ruhelage bezeichnet und $\gamma > 0$ eine Konstante ist. Zeigen Sie, dass das Volumen eines Phasenraumgebietes unter den Phasenraumabbildungen Ψ_t exponentiell für $t \to \infty$ gegen Null geht, unter der Annahme, dass die Phasenraumabbildungen $\Psi_t: (q_0, p_0) \mapsto (q(t), p(t))$ sich in der Weise darstellen, dass jeder Lösung x(t) der Bewegungsgleichung die Phasenraumkurve $q(t) = x(t), \ p(t) = \dot{x}(t) + \gamma x(t)$ zugeordnet wird.