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Problem 8.1 [12 points|

We use the notation of Problem 7.2. Consider the Heisenberg time evolution of the harmonic
oscillator with frequency w = \/k/m, i.e.,

4(t) = coswtq + (km)_é sin wtp, (0.1)
p(t) = coswtp — (km)% sin wtq. (0.2)
1. Show that . .
o(q,p)(t) = ¢(a(t),p(1)) (0.3)
with )
q(t) cos wt —(km)2sinwt (q
pr— 1 . (0.4)
p(t) (km)™2 sinwt cos wt P
2. Show that a pure quasifree state with two-point function
(0.0). @.9)) = ge0d + b (05)
He\q,P),\4q,P)) = 26‘](] 2pp .
is invariant under time-evolution, i.e.,
pe((q(t), p(t)), (q(t), (1)) = u((a,p), (¢ P)); (0.6)
if and only if
1
§=(km)2. (0.7)

We refer to this state as the vacuum state.

3. We prepare the system in the vacuum state, but temporarily perturb the harmonic oscil-
lator by changing k — &’ (hence also w — w’) for a time interval [0,T = 5~]. Show that
after the perturbation has been switched off again, the system is in the state

pe((a(T), p(T)), (4(T),p(T))) = pe (g, p) (4, D)) (0.8)
with & = %f and & given by (0.7).

4. Recall that, for £ arbitrary,

i) = —zlal + ag) (0.9)
() = 1Y - ), (0.10)
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where ¢ is the GNS representation corresponding to the state p¢. Assuming that there
is an isometry U : F¢ — F¢ intertwining the representations, i.e.,

Une(U ™ = me(), (0.11)
show that it follows that
UagU™' = Cag + Daz, (0.12)
with constants C', D to be determined in terms of £, ¢’. Show that

|C|? —|D|* = 1. (0.13)

5. Let Q¢ be the vacuum state in the { representation. Show that the state ® = UQg can
be characterized by
(Cag + Da})® = 0. (0.14)

Solve this explicitly in the Fock (particle number) basis.

6. Upon trivially identifying the Fock spaces F¢ and J, i.e., equating the coefficients in the
particle number basis, the relation (0.12) reads

UaU™! = Ca+ Da'. (0.15)
Show that the operator U is implemented by
U = 6r(oLafaToﬂk)/Q (016)

with some real r to be determined in terms of C, D.

Problem 8.2* [8 extra points]
Let H be a Hilbert space, with a Hamilton operator H defined and self-adjoint on a dense
domain D(H) in H. Suppose that there is an orthonormal basis {1, } in D(H) of eigenvectors
of H with corresponding eigenvalues €, > 0. (The index n runs from 1 to dim(H), which may
be finite or infinite.) Suppose that, for any 8 > 0, it holds that Zg = >, e Pen exists. This
implies, in particular, that gg = e PH is a trace-class operator. Then consider the Gibbs state,

or canonical ensemble,

(A = ZZTr(gﬁA) (A € B(3)

at inverse temperature 8 > 0. ( Tr(X) denotes the trace of a trace-class operator X.)

(1) Taking as observable algebra A = B(J), the bounded linear operators on H, the time-
evolution of the system (in the Heisenberg picture) is given by the l-parametric group
{at}ier of automorphisms of A defined by

ar(A) = et Ae=tH (A € B(%))

Show that the Gibbs state (. )g is a KMS state on A at inverse temperature 3 with respect
to the automorphism group {o;}icr.
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(2) Let A and B be in A and consider the functions

p(t) = (Aar(B))g,  g(t) = (au(B)A)s  (t€R)

Show that
p(k) =eg(k)  (keR)

where the hat means the Fourier transform. Show that, if B = A = A*, this implies

Note: (i) the Fourier transforms of ¢ and g are, strictly speaking, distributions, although one
can formally pretend that they are functions.

(ii) the relation stated for the Fourier transforms of ¢ and g (for any A, B in A) is implied
by the KMS condition, and actually (but this is more difficult and requires techniques relating
Fourier transform and analyticity like the Paley-Wiener Theorem, see Sec. IX in the 2nd Vol of
Reed and Simon) one can show that it is equivalent to the KMS condition.



