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Problem 8.1 [12 points]

We use the notation of Problem 7.2. Consider the Heisenberg time evolution of the harmonic
oscillator with frequency ω =

√
k/m, i.e.,

q̂(t) = cosωtq̂ + (km)−
1
2 sinωtp̂, (0.1)

p̂(t) = cosωtp̂− (km)
1
2 sinωtq̂. (0.2)

1. Show that
φ̂(q, p)(t) = φ̂(q(t), p(t)) (0.3)

with (
q(t)
p(t)

)
=

(
cosωt −(km)

1
2 sinωt

(km)−
1
2 sinωt cosωt

)(
q
p

)
. (0.4)

2. Show that a pure quasifree state with two-point function

µξ((q, p), (q̃, p̃)) =
1

2ξ
qq̃ +

ξ

2
pp̃ (0.5)

is invariant under time-evolution, i.e.,

µξ((q(t), p(t)), (q̃(t), p̃(t))) = µ((q, p), (q̃, p̃)), (0.6)

if and only if

ξ = (km)
1
2 . (0.7)

We refer to this state as the vacuum state.

3. We prepare the system in the vacuum state, but temporarily perturb the harmonic oscil-
lator by changing k → k′ (hence also ω → ω′) for a time interval [0, T = π

2ω′ ]. Show that
after the perturbation has been switched off again, the system is in the state

µξ((q(T ), p(T )), (q̃(T ), p̃(T ))) = µξ′((q, p), (q̃, p̃)) (0.8)

with ξ′ = k′

k ξ and ξ given by (0.7).

4. Recall that, for ξ arbitrary,

πξ(q̂) =
1√
2ξ

(a†ξ + aξ), (0.9)

πξ(p̂) = i

√
ξ√
2

(a†ξ − aξ), (0.10)
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where πξ is the GNS representation corresponding to the state µξ. Assuming that there
is an isometry U : Fξ′ → Fξ intertwining the representations, i.e.,

Uπξ′(·)U−1 = πξ(·), (0.11)

show that it follows that
Uaξ′U

−1 = Caξ +Da†ξ, (0.12)

with constants C, D to be determined in terms of ξ, ξ′. Show that

|C|2 − |D|2 = 1. (0.13)

5. Let Ωξ′ be the vacuum state in the ξ′ representation. Show that the state Φ = UΩξ′ can
be characterized by

(Caξ +Da†ξ)Φ = 0. (0.14)

Solve this explicitly in the Fock (particle number) basis.

6. Upon trivially identifying the Fock spaces Fξ′ and Fξ, i.e., equating the coefficients in the
particle number basis, the relation (0.12) reads

UaU−1 = Ca+Da†. (0.15)

Show that the operator U is implemented by

U = er(aa−a
†a†)/2 (0.16)

with some real r to be determined in terms of C,D.

Problem 8.2* [8 extra points]

Let H be a Hilbert space, with a Hamilton operator H defined and self-adjoint on a dense
domain D(H) in H. Suppose that there is an orthonormal basis {ψn} in D(H) of eigenvectors
of H with corresponding eigenvalues εn ≥ 0. (The index n runs from 1 to dim(H), which may
be finite or infinite.) Suppose that, for any β > 0, it holds that Zβ =

∑
n e−βεn exists. This

implies, in particular, that %β = e−βH is a trace-class operator. Then consider the Gibbs state,
or canonical ensemble,

〈A〉β =
1

Zβ
Tr(%βA) (A ∈ B(H))

at inverse temperature β > 0. ( Tr(X) denotes the trace of a trace-class operator X.)

(1) Taking as observable algebra A = B(H), the bounded linear operators on H, the time-
evolution of the system (in the Heisenberg picture) is given by the 1-parametric group
{αt}t∈R of automorphisms of A defined by

αt(A) = eitHAe−itH (A ∈ B(H))

Show that the Gibbs state 〈 . 〉β is a KMS state on A at inverse temperature β with respect
to the automorphism group {αt}t∈R.
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(2) Let A and B be in A and consider the functions

ϕ(t) = 〈Aαt(B)〉β , g(t) = 〈αt(B)A〉β (t ∈ R)

Show that
ϕ̂(k) = eβkĝ(k) (k ∈ R)

where the hat means the Fourier transform. Show that, if B = A = A∗, this implies

ϕ̂(k) = eβkϕ̂(−k)

Note: (i) the Fourier transforms of ϕ and g are, strictly speaking, distributions, although one
can formally pretend that they are functions.
(ii) the relation stated for the Fourier transforms of ϕ and g (for any A, B in A) is implied
by the KMS condition, and actually (but this is more difficult and requires techniques relating
Fourier transform and analyticity like the Paley-Wiener Theorem, see Sec. IX in the 2nd Vol of
Reed and Simon) one can show that it is equivalent to the KMS condition.
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