
QFT-CST
I.1 Postulates of QM

1st Postulate

To every type of quantum mechanical system one assigns a Hilbert space
H (the system’s Hilbert space)

Typical (elementary) quantum mechanical systems:

Atoms, electrons, elementary particles, photons;
degress of freedom of such systems, e.g. spin-orientation, polarization;
collective excitations, “quasi-particles”

Type: Systems of different type can be distinguished,
e.g.: charge, mass
Systems of different type cannot be superposed.
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QFT-CST
I.1 Postulates of QM

2nd Postulate

The procedures of preparation of ensembles of identically prepared
quantum mechanical systems correspond to the states of the system.

Formal description

A state is a linear functional (positive and normalized)

ω : B(H)→ C

of the form
ω(A) = Tr(%A) (A ∈ B(H))

where % is a density matrix
Special case:

% = |ψ〉〈ψ| 1-dim projector

⇒ Tr(%A) = (ψ,Aψ)
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QFT-CST
I.1 Postulates of QM

3rd Postulate

The observables = procedures of measurement correspond to the
selfadjoint (s.a.) operators A in H

If ω is a state and A is an observable, then

ω(A) = Tr(%A)

is the expectation value of A in the state ω:
The statistical mean over results of measurements of the measurement
procedure represented by A, measured on an ensemble of identically
prepared systems, represented by ω. (Ensemble has to be large, ideally:
∞)
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QFT-CST
I.1 Postulates of QM

4th Postulate

To every system is also assigned a Hamilton operator, an s.a. in H,
determining the time evolution of the system through its unitary group
UH
t , t ∈ R,

UH
t = eitH/~

If ω(A) = Tr(%A) is the expectation value of observable A in state ω at
some time t0, then

ω(UH
t A(UH

t )∗) = Tr(%UH
t A(UH

t )∗) = Tr((UH
t )∗%UH

t A)

is the expectation value of the same observable at time t0 + t.
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QFT-CST
I.2 Mathematical facts

(1) B(H) = algebra of bounded linear operators on H

A ∈ B(H) ⇔ A : H → H is linear, and

||A|| = sup
||ψ||=1

||Aψ|| <∞ , where

||ψ|| =
√

(ψ,ψ) (ψ ∈ H)

(2) X ∈ B(H) is a trace-class operator if:

For all A,B ∈ B(H), for any ONB {ψj}
dim(H)
j=1 :

dim(H)∑
j=1

(ψj ,AXBψj) is absolutely convergent

⇒ Tr(X ) =

dim(H)∑
j=1

(ψj ,Xψj) independent of chosen ONB
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QFT-CST
I.2 Mathematical facts

Properties of the trace Tr

X trace-class ⇒ AXB trace-class (A,B ∈ B(H))

Tr(AXB) = Tr(XBA) = Tr(BAX ) cyclicity
X trace-class ⇒ X ∗ trace-class [ (ψ,Xφ) = (X ∗ψ, φ) ]

Tr(X ∗) = Tr(X )

Tr(aX + bY ) = aTr(X ) + bTr(Y ) (a, b ∈ C , X ,Y trace-class)

Any hermitean trace-class operator X = X ∗ has a spectral
representation:

X =

dim(H)∑
j=1

xj |χj〉〈χj | with xj ∈ R , {χj} ONB

Xχj = xjχj [χj eigenvectors with eigenvalues xj ]∑
j

|xj | <∞
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QFT-CST
I.2 Mathematical facts

A hermitean trace-class operator % is a density matrix if its spectral
decomposition

% =

dim(H)∑
j=1

rj |ψ〉〈ψ|

has the properties

rj ≥ 0 ⇔ Tr(%A∗A) ≥ 0 (A ∈ B(H))∑
j rj = 1 ⇔ Tr(%) = 1

{ states ω } = { density matrices % }
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QFT-CST
I.2 Mathematical facts

(3) A ∈ B(H) is selfadjoint (hermitean) if A∗ = A
U ∈ B(H) is unitary if U∗U = 1 = UU∗

P ∈ B(H) is a projector if P∗ = P and P2(= PP) = P
A 1-dim projector |ψ〉〈ψ| is given by a unit vector ψ:

|ψ〉〈ψ|χ = (ψ, χ)ψ (||ψ|| = 1)

(4) In quantum mechanics, observables are often unbounded s.a. or
essentially s.a. operators (ess.s.a.) — in this case, the definition of
self-adjointness is more complicated.

(4a) Unbounded operators are not defined on all of H but only on a dense
subspace:

A : D(A)→ H , D(A) = domain of A

They are linear operators:

A(aψ + bχ) = aAψ + bAχ , (a, b ∈ C, ψ, χ ∈ D(A))
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QFT-CST
I.2 Mathematical facts

If A is self-adjoint depends strongly on choice of D(A). Therefore, precise
notation for an unbounded operator is

(A,D(A)) notation includes domain of A

An operator (A,D(A)) is unbounded if there is a sequence

ψn ∈ D(A) (n ∈ N) with ||ψn|| = 1 and ||Aψn|| → ∞ (n→∞)

(4b) Let (A,D(A)) be an unbounded operator in H.
An operator (B,D(B)) is called an extension of (A,D(A)) if

D(A) ⊂ D(B) and Bψ = Aψ for all ψ ∈ D(A)

⇔ B|D(A) = A
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QFT-CST
I.2 Mathematical facts

(4c) To an unbounded operator (A,D(A)) one can define the adjoint
operator (A∗,D(A∗)) through the following conditions:

(ψ,Aχ) = (A∗ψ, χ) for all ψ ∈ D(A∗) , χ ∈ D(A)

There is no proper extension of (A∗,D(A∗)) fulfilling the previous
condition

The domain D(A∗) must be dense. This is the case if (A,D(A)) is
bounded, or if (A,D(A)) is symmetric

(4d) (A,D(A)) is symmetric (or hermitean) if

(Aψ, χ) = (ψ,Aχ) for all ψ, χ ∈ D(A)
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QFT-CST
I.2 Mathematical facts

(4e) (A,D(A)) is selfadjoint if

D(A∗) = D(A) and A∗ = A

⇔ (A∗,D(A∗)) = (A,D(A))

Every selfadjoint operator is hermitean, but the converse does not
hold.

There are examples of hermitean operators which are not selfadjoint,
or do not even possess any selfadjoint extension.

This happens if D(A) is a proper subset of D(A∗)
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QFT-CST
I.2 Mathematical facts

Possibilities for a hermitean operator which is not selfadjoint

(4f) (A,D(A)) is essentially selfadjoint if

there is a unique selfadjoint extension (Ā,D(Ā)) of (A,D(A))

(4g) (A,D(A)) is selfadjoint extendable if

there exist several (different) selfadjoint extensions of (A,D(A))

(4h) (A,D(A)) is not selfadjoint extendable if

there are no selfadjoint extensions of (A,D(A))
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QFT-CST
I.2 Mathematical facts

(5) In QM typically for ∞-dim system Hilbert spaces:

H = L2(G ⊂ Rn)

unbounded observables are (partial) differential operators

the choice of a specific domain
corresponds to boundary conditions

(6) Unitary groups

A family {Ut}t∈R of unitary operators is a continuous unitary group
if

UtUs = Ut+s , Ut=0 = 1 , U−t = (Ut)
∗

||Utψ − ψ|| → 0 for t → 0 (ψ ∈ H)
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QFT-CST
I.2 Mathematical facts

A continuous unitary group {Ut}t∈R defines uniquely an s.a. operator
(A,D(A)) by

(?) D(A) = {ψ ∈ H : lim
t→0

1

t
(Utψ − ψ) exists }

(??) Aψ =
1

i

d

dt

∣∣∣∣
t=0

Utψ (ψ ∈ D(A))

Conversely, for every s.a. operator (A,D(A)) there is a unique continuous
unitary group {Ut}t∈R fulfilling (?) and (??)

(A,D(A)) is the generator of {Ut}t∈R
{Ut}t∈R is the unitary group of (A,D(A))
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QFT-CST
I.2 Mathematical facts

(7) Let (A,D(A)) be hermitean.

a ∈ R is an eigenvalue of (A,D(A)) if there is ψ ∈ D(A), ψ 6= 0 with

Aψ = aψ ,

then ψ is an eigenvector of (A,D(A)).

Eigenvectors with different eigenvalues are orthogonal

There can be orthogonal eigenvectors with the same eigenvalue.
Then the eigenvalue is degenerate

N (A, a) = subspace of H spanned by the eigenvectors with eigenvalue
a
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QFT-CST
I.2 Mathematical facts

(8)

More general than eigenvalues: spectral values

Let (A,D(A)) be essentially selfadjoint.

a is a spectral value of (A,D(A)) if there is a sequence ψn ∈ D(A) with

||ψn|| = 1 and ||(a1− A)ψn|| → 0 (n→∞)

spec(A) = spectrum of A = set of all spectral values of (A,D(A))

spec(A) is a closed subset of R
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QFT-CST
I.2 Mathematical facts

(9)

For every s.a. (A,D(A)) there is a unique projector valued measure
(spectral measure)

P = PA : {measurable subsets of R} → {projectors on H}

J ∩ I = ∅ ⇒ P(J)P(I ) = 0

P(
⋃

n Jn) =
∑

n P(Jn) if Jk ∩ J` = ∅ for k 6= `

P(∅) = 0 , P(R) = 1

PA(J) = 0 if J ∩ spec(A) = ∅
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QFT-CST
I.2 Mathematical facts

Spectral measure PA can be used to define functions of A

charJ characteristic function of J

step-function h(a) =
N∑

k=1

rkcharJk , J1, . . . , JN pairw. disjoint intervals

define h(A) =
N∑

k=1

rkP
A(Jk)

hn sequence of step-functions with hn(a)→ f (a) (n→∞)

define f (A) = lim
n→∞

hn(A) =

∫
f (a) dPA(a)
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QFT-CST
I.2 Mathematical facts

Properties of f (A)

f bounded ⇒ f (A) bounded

An =
∫
an dPA(a)

UA
t =

∫
eita dPA(a)

f (A) = (2π)−1
∫
f̂ (t)UA

t dt , f̂ = Fourier-transform of f

Consequence of 3rd Postulate

ω(PA(J)) = Tr(%PA(J))

is the probability of finding measurement values of the observable A
in the interval J if the system is in state ω (given by density matrix %)
** is equal to 0 if J ∩ spec(A) = ∅ **
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II. Groups and Hilbert space representations

Continuous groups are typically Lie groups:

finite dimensional differentiable manifolds equipped with a group
multiplication which is compatible with the manifold structure

Here: Our main concern will be the Lorentz group and the Poincaré
group, i.e. the spacetime symmetry groups of Minkowski
spacetime (mostly 4-dimensional)

These groups, resp. suitable subgroups, belong to the class of
continuous matrix groups

In QFT, there appear also internal symmetries associated with
charges. In many cases (e.g. those relevant for the standard model)
these are also described by continuous matrix groups.

April 7, 2016 20 / 71



II. Groups and Hilbert space representations

A continuous matrix group is a

continuous subgroup G of GL(n,R) or GL(n,C)
(the group of real or complex n × n matrices)

? group multiplication is matrix multiplication

? unit element is the unit matrix 1
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II. Groups and Hilbert space representations

A continuous matrix group is a

continuous subgroup G of GL(n,R) or GL(n,C)
(the group of real or complex n × n matrices)

? group multiplication is matrix multiplication

? unit element is the unit matrix 1

Natural concept of continuity:

g ′ = (g ′jk) −→ (gjk) = g

(convergence in G ) if
g ′jk −→ gjk

(convergence of all matrix elements)
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II. Groups and Hilbert space representations

Natural concept of differentiability:

A map

g : Rm → G , x 7→ g(x) = (g
jk

(x)) is CN (N ∈ N0)

if all
x 7→ g

jk
(x) are CN
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II. Groups and Hilbert space representations

Natural concept of differentiability:

A map

g : Rm → G , x 7→ g(x) = (g
jk

(x)) is CN (N ∈ N0)

if all
x 7→ g

jk
(x) are CN

Concept of open neighbourhoods of points g ∈ G

is inherited by embedding G into Rn×n or Cn×n
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II. Groups and Hilbert space representations

Sufficiently small neighbourhoods N of any g ∈ G
can be “traced out” by families {g

α
} of differentiable curves

g
α

: (−εg , εg )→ G , t 7→ g
α

(t)

where g
α

(0) = g and

different curves intersect only in g .

(This relates to the concept of the exponential map of a Lie group)
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II. Groups and Hilbert space representations

Sufficiently small neighbourhoods N of any g ∈ G
can be “traced out” by families {g

α
} of differentiable curves

g
α

: (−εg , εg )→ G , t → g
α

(t)

where g
α

(0) = g and

different curves intersect only in g .

(This relates to the concept of the exponential map of a Lie group)

Formalization of these concepts leads to the rigorous
mathematical definition of continuous matrix groups as special
subclass of finite-dimensional Lie groups
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II. Groups and Hilbert space representations

Some examples —

GL(n,R) = {A ∈ Mn×n(R) : det(A) 6= 0}

GL(n,C) = {A ∈ Mn×n(C) : det(A) 6= 0}

n-dimensional orthogonal group:

O(n) = {D ∈ GL(n,R) : DTD = 1}

n-dimensional special orthogonal group:

SO(n) = {R ∈ GL(n,R) : RTR = 1 and det(R) = 1}

n-dimensional unimodular group:

U(n) = {U ∈ GL(n,C) : U∗U = UU∗ = 1}

n-dimensional special unimodular group:

SU(n) = {W ∈ GL(n,C) : W ∗W = WW ∗ = 1 and det(W ) = 1}
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II. Groups and Hilbert space representations

More examples

n-dimensional Lorentz group:

O(1, n − 1) = {Λ ∈ GL(n,R) : ΛTηΛ = η},
η = diag(1,−1, . . . ,−1)

n-dimensional special, orthochronous Lorentz group:

SO+(1, n − 1) = {Λ ∈ O(1, n − 1) : det(Λ) = 1 and Λ00 > 0}

2n-dimensional (real) symplectic group:

Sp(2n) = {S ∈ GL(2n,R) : ST JS = J} ,

J =

(
0 1n

−1n 0

)
n-dimensional upper triangular group

T (n) = {F ∈ GL(n,C) : Fjk = 0 if j > k}
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II. Groups and Hilbert space representations

Connectedness

Definition (A)

Let G be a continuous matrix group.

G is called connected if

for any pair g0, g1 of elements in G there is a continuous curve

g : [0, 1]→ G , t 7→ g(t)

so that g(0) = g0 and g(1) = g1 .
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II. Groups and Hilbert space representations

Connectedness

Example

O(3) = {D ∈ GL(3,R) : DTD = 1}
“Generalized rotations”, including also reflections, e.g. −1

O(3) is not connected

To see this:

g0 = 1 and g1 = −1 are in O(3)

det(g0) = 1 and det(g1) = −1

If g was a continuous curve in O(3) connecting g0 and g1, then:

det(g(t)) is continuous in t

det(g(0)) = 1, but det(g(1)) = −1

⇒ det(g(t)) = 0 for some t

⇒ contradiction since g(t) ∈ GL(3,R) for all t

⇒ O(3) is not connected
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II. Groups and Hilbert space representations

Connectedness

Example

SO(3) = {R ∈ GL(3,R) : RTR = 1, det(R) = 1}
“Proper rotations” without reflections

SO(3) is connected

Any element D in O(3) has either det(D) = 1 or det(D) = −1

SO(3) is the part of O(3) where all elements have determinant = 1

This part of O(3) is connected, contains 1

and is a subgroup of O(3)

SO(3) is the unit connected component of O(3).
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II. Groups and Hilbert space representations

Simple connectedness

Definition (B)

Let G be a continuous matrix group.

G is called simply connected if

any closed continuous curve in G can be continuously contracted to any of
its points.
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II. Groups and Hilbert space representations

Simple connectedness

Definition (B)

Let G be a continuous matrix group.

G is called simply connected if

any closed continuous curve in G can be continuously contracted to any of
its points.

g : [0, 1]→ G , continuous, is closed if g(0) = g(1)

F : [0, 1]× [0, 1]→ G is a continuous contraction of g to g = g(0)
if

(i) F is continuous

(ii) F (1, t) = g(t) for all t ∈ [0, 1]

(iii) F (µ, 1) = F (µ, 0) = g for all µ ∈ [0, 1]

(iv) F (0, t) = g
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II. Groups and Hilbert space representations

Simple connectedness

Example

U(1) = {eir : r ∈ R}

U(1) is connected, but not simply connected

The curve
g(t) = ei2πt , t ∈ [0, 1]

is a closed continuous curve in U(1)

but g is a like a closed loop around a rod

and cannot be continuously contracted to any of its points.
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II. Groups and Hilbert space representations

Isomorphy

Let G1 and G2 be two continuous matrix groups.

They are called isomorphic if there is

φ : G1 → G2 , bijective, C∞ , with

φ(gg ′) = φ(g)φ(g ′) , φ(1(1)) = 1(2)
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II. Groups and Hilbert space representations

Isomorphy

Let G1 and G2 be two continuous matrix groups.

They are called isomorphic if there is

φ : G1 → G2 , bijective, C∞ , with

φ(gg ′) = φ(g)φ(g ′) , φ(1(1)) = 1(2)

They are called locally isomorphic if there are

open neighbourhoods N1 of 1(1) and N2 of 1(2) ,

φ : N1 → N2 , bijective, C∞ , with

φ(gg ′) = φ(g)φ(g ′) , φ(1(1)) = 1(2)

for all g , g ′ ∈ N1 with gg ′ ∈ N1
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II. Groups and Hilbert space representations

Lie algebra

Let G be a continuous matrix group in GL(n,R) or GL(n,C).

x ∈ Mn×n(R) or Mn×n(C)

is called tangent to G (at 1) if there is

g : (−ε, ε)→ G , t 7→ g(t) , C 1 , with

g(0) = 1 and x = ġ(0) =
d

dt
g(t)

∣∣∣∣
t=0
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II. Groups and Hilbert space representations

Lie algebra

Let G be a continuous matrix group in GL(n,R) or GL(n,C).

x ∈ Mn×n(R) or Mn×n(C)

is called tangent to G (at 1) if there is

g : (−ε, ε)→ G , t 7→ g(t) , C 1 , with

g(0) = 1 and x = ġ(0) =
d

dt
g(t)

∣∣∣∣
t=0

G = {x : x is tangent to G}

is the Lie algebra of G , G = Lie(G )
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II. Groups and Hilbert space representations

(C) Lie algebra: Properties

(i) G is a real-linear vector space:

x , y ∈ G , λ, µ ∈ R ⇒ λx + µy ∈ G

(ii)
y ∈ G , g ∈ G ⇒ gyg−1 ∈ G

and
x , y ∈ G , ⇒ [x , y ] = xy − yx ∈ G

N.B. Note that in general, neither xy nor gy or yg will be in G !
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II. Groups and Hilbert space representations

(C) Lie algebra: Properties — Sketch of proof

(i)

Let x = ġ(0) be in G

rescaled curve h(t) = g(λt) also fulfills h(0) = 1

ḣ(0) = λġ(0) = λx

⇒ λx is in G
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II. Groups and Hilbert space representations

(C) Lie algebra: Properties — Sketch of proof

(i)

Let x = ġ(0) be in G

rescaled curve h(t) = g(λt) also fulfills h(0) = 1

ḣ(0) = λġ(0) = λx

⇒ λx is in G

Let x = ġ(0) and y = ḣ(0) be in G

k(t) = g(t)h(t) is differentiable curve in G with k(0) = 1

k̇(0) = ġ(0)h(0) + g(0)ḣ(0) = x + y

⇒ x + y is in G
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II. Groups and Hilbert space representations

(C) Lie algebra: Properties — Sketch of proof

(ii)

Let y = ḣ(0) be in G and let g ∈ G

then k(t) = gh(t)g−1 is differentiable curve in G with k(0) = 1

⇒ gyg−1 = gḣ(0)g−1 = k̇(0) is in G
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II. Groups and Hilbert space representations

(C) Lie algebra: Properties — Sketch of proof

(ii)

Let y = ḣ(0) be in G and let g ∈ G

then k(t) = gh(t)g−1 is differentiable curve in G with k(0) = 1

⇒ gyg−1 = gḣ(0)g−1 = k̇(0) is in G

Let x = ġ(0) be in G

then

z t =
1

t
(g(t)yg−1(t)− y) is in G for all t

⇒ xy − yx = limt→0 z t is in G
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II. Groups and Hilbert space representations

Lie algebra: Further properties

The commutator bracket [x , y ] is a natural algebraic structure of the
Lie-algebra of any continuous matrix group.

Definition (D)

Two Lie-algebras G1 and G2 are isomorphic

if there is

Φ : G1 → G2 linear, bijective, with

[Φ(x),Φ(y)](2) = Φ([x , y ](1))
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II. Groups and Hilbert space representations

Remark: Structure constants

Let G be a Lie-algebra

b1 . . . ,bN a vector space basis of G

Commutator bracket (or Lie-bracket) can be expanded in terms of the
basis:

[bj ,bk ] =
N∑
`=1

f `jkb`

The f `jk are called structure constants of G,

they are unique up to basis transformations:

Let b′r =
∑N

s=1 Mrsbs be another basis, then

f ′rpq =
∑
j ,k,`

MpjMqk(M−1)`r f `kj , (M−1)`r = (M−1)`r
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II. Groups and Hilbert space representations

Remark: Structure constants

Thus, up to basis transformations, the structure constants are
unique and characteristic for any Lie-algebra.

Any two Lie-algebras having structure constants which are equal up to
basis transformations are isomorphic.
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II. Groups and Hilbert space representations

Theorem (E)

Let G1 and G2 be two continuous matrix groups,

G1 and G2 their Lie-algebras.

Then

G1 and G2 are locally isomorphic if and only if

G1 and G2 are isomorphic.
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II. Groups and Hilbert space representations

Theorem (F) — Universal Covering Group

Let G be a connected continuous matrix group.

Then there is a Lie-group G̃ (in many cases, this is again a continuous
matrix group) which is

? connected

? simply connected

? locally isomorphic to G

G̃ is unique up to isomorphism and called universal covering group of G .
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II. Groups and Hilbert space representations

Theorem (F) — Universal Covering Group

Let G be a connected continuous matrix group.

Then there is a Lie-group G̃ (in many cases, this is again a continuous matrix group) which is

connected, simply connected and locally isomorphic to G

G̃ is unique up to isomorphism and called universal covering group of G .

The construction of G̃ from G brings about a canonical map

φ : G̃ → G

which preserves the group structure and is surjective, but only locally
injective — on a neighbourhood of 1̃.

Restriction of φ to such neighbourhood is a local isomorphism

φ is the covering map or covering projection
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II. Groups and Hilbert space representations

Example: Lie(SU(n))

G = SU(n) = {U ∈ GL(n,C) : U∗U = 1 , det(U) = 1}

Lie(SU(n)) = SU(2),

SU(n) = {A ∈ Mn×n(C) : A∗ = −A , trace(A) = 0}

For A ∈ SU(n),

Ut = etA (t ∈ R) is unitary and has determinant = 1

(matrix exponential in Mn×n(C) )

⇒ Ut ∈ SU(n) , t 7→ Ut is C 1 , Ut=0 = 1

d

dt
Ut

∣∣∣∣
t=0

= A
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II. Groups and Hilbert space representations

Example: Lie(SU(2))

A basis of SU(2) is related to the Pauli matrices:

s1 =
i

2
σ1 =

1

2

(
0 i
i 0

)
, s2 =

i

2
σ2 =

1

2

(
0 1
−1 0

)
,

s3 =
i

2
σ3 =

1

2

(
i 0
0 −i

)
The commutator bracket (Lie-bracket) between the basis elements is

[s j , sk ] =
3∑
`=1

εjk`s`

εjk` is the totally antisymmetric unit tensor
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II. Groups and Hilbert space representations

Example: Lie(SO(n)) = SO(n)

SO(n) = {R ∈ GL(n,R) : RTR = 1 , det(R) = 1}

SO(n) = {L ∈ Mn×n(R) : LT = −L , trace(L) = 0}

For all L ∈ SO(n),

Rθ = eθL is orthogonal and has determinant = 1

(matrix exponential in Mn×n(R) )

⇒ Rθ ∈ SO(n) , θ 7→ Rθ is C 1 , Rθ=0 = 1

L =
d

dθ
Rθ

∣∣∣∣
θ=0

April 7, 2016 52 / 71



II. Groups and Hilbert space representations

Example: Lie(SO(3))

R(~n, θ) = rotation around axis ~n (3-dim real unit vector) by angle θ,

~e1, ~e2, ~e3 = standard basis vectors of R3

Lj =
d

dθ
R(~ej , θ)

∣∣∣∣
θ=0

, then

L1 , L2 , L3 form a basis of SO(3) ,

commutator brackets :

[Lj , Lk ] =
3∑
`=1

εjk`L`
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II. Groups and Hilbert space representations

Example: Lie(SO(3))←→ Lie(SU(2))

Compare:

[Lj , Lk ] =
3∑
`=1

εjk`L` , [s j , sk ] =
3∑
`=1

εjk`s`

Can construct a Lie-algebra isomorphism

Φ : SO(3)→ SU(2)

by setting Φ(Lk) = sk

and extension by R-linearity
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II. Groups and Hilbert space representations —

SU(2) = S̃O(3)

SO(3)
Φ−→ SU(2) isomorphic

⇒ SO(3) and SU(2) are locally isomorphic

SU(2) is simply connected

SO(3) is not simply connected

⇒ SU(2) = S̃O(3) (up to isomorphism)
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II. Groups and Hilbert space representations —

SU(2) = S̃O(3)

The covering map φ : SU(2)→ SO(3)

SU(2) is a real-linear space spanned by s1, s2, s3 (defined above)

〈x , y〉 = 4trace(x∗y) is a scalar product on SU(2)

s1, s2, s3 is an ONB for this scalar product

If v =
∑

j vjs j , w =
∑

k wksk then

〈v ,w〉 = ~v • ~w =
∑
j

vjwj , ~v , ~w ∈ R3

Let U ∈ SU(2). Then TUv = UvU∗ is again in SU(2). TU is linear
and since s1, s2, s3 form a basis of SU(2),

TUv =
∑
j

(RU~v)js j

for some linear map RU : R3 → R3.
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II. Groups and Hilbert space representations —

SU(2) = S̃O(3)

〈TUv ,TUw〉 = 4trace((UvU∗)∗UwU∗)

= 4trace(Uv∗U∗UwU∗)

= 4trace(v∗w)

= 〈v ,w〉

This implies

(RU~v) • (RU ~w) = 〈TUv ,TUw〉

= 〈v ,w〉

= ~v • ~w

⇒ RU is in O(3).
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II. Groups and Hilbert space representations —

SU(2) = S̃O(3)

SU(2) is connected and simply connected (must show separately)

Us jU∗ =
∑
k

(RU)kjsk

Thus, U 7→ RU is continuous

Any U ∈ SU(2) is continuously connected to 1

Thus, any RU in the image of U 7→ RU is continuously connected to 1
⇒ det(RU) = 1 ⇒ RU ∈ SO(3)

For U ∈ SU(2) ⇒ −U ∈ SU(2)

R(−U) = RU by eqn above ⇒ U 7→ RU is not injective

can check: U 7→ RU is surjective

⇒ SO(3) is not simply connected,

U 7→ RU is the covering map SU(2)
φ−→ SO(3)
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II. Groups and Hilbert space representations — Group
representations

Let G be a group (e.g. a continuous matrix group)

Definition (G)

(U,H) is a unitary representation of G on the Hilbert space H if

H is a (complex) Hilbert space

U : G → U(H) = {unitary operators on H}

U(gg ′) = U(g)U(g ′) , U(1G ) = 1U(H) , U(g−1) = U(g)∗

A unitary representation (U,H) of G is continuous if

gν → g ⇒ ||(U(gν)− U(g))ψ|| → 0 for each ψ ∈ H
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II. Groups and Hilbert space representations —
Ray-representations

Let G be a continuous matrix group

Definition (G’)

(U,H) is a unitary ray-representation of G on the Hilbert space H if

H is a (complex) Hilbert space

U : G → U(H) = {unitary operators on H}

U(gg ′) = Ω(g , g ′)U(g)U(g ′) with Ω(g , g ′) ∈ U(1)

U(1G ) = 1U(H)

A unitary ray representation (U,H) is locally continuous (at 1G ) if there
is an open neighbourhood N of 1G so that

g 7→ U(g) , g , g ′ 7→ Ω(g , g ′) (g , g ′ ∈ N)

are continuous.
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II. Groups and Hilbert space representations

The Wigner-Bargmann Theorem

Let G be a continuous matrix group which is also a semi-simple Lie-group (e.g.

SO(3), but also translation group Rn, or the proper, orthochronous Poincaré

group)

Theorem (H)

Let (U,H) be a unitary ray-representation of G on the Hilbert space H
which is locally continuous.

Then (U,H) can be lifted to a continuous unitary representation of
the covering group G̃ of G . This means:

There is an open neighbourhood N of 1G on which U(g) (g ∈ N) can
be re-defined (by making choices of phase) so that Ω(g , g ′) = 1
(g , g ′ ∈ N).

There is a continuous unitary representation (Ũ,H) of G̃ so that

Ũ(g̃) = U(φ(g̃)) (g̃ ∈ G̃ )
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III. Minkowski spacetime, Poincaré group

QFT starts from the attempting to —

unify the principles of QM and special relativity

describe elementary particle processes with relativistic
energy-momentum transfer (typically: collision processes).

Collision processes of elementary particles then have to be described in the
framework of special relativity.

Classical (non-quantum) picture: Paths of particles are worldlines in
Minkowski spacetime.

Covariance principle: All inertial observers see the same kind of elementary
particles and processes between them — identifyable between different
observers in the sense of symmetry transformations in Wigner’s sense.
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III. Minkowski spacetime, Poincaré group

Spacetime: M “set of all events”, marked by “when” and “where” they
happen, i.e. by

time-coordinate t

space-coordinates (x1, x2, x3)

with respect to some observer.

A. Einstein 1905:

For all inertial observers, light propagation is homogeneous and isotropic
and at the same velocity c with respect to their time and
space-coordinates (if they use the same clocks and rods):

Light flash ignited at time t0 and location x0 reaches at time t > t0 all the
space points x so that

c2(t − t0)2 − |x− x0|2 = 0
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III. Minkowski spacetime, Poincaré group

Then the coordinate transformations between inertial observers are given
by Poincaré transformations:

x̃0

x̃1

x̃2

x̃3

 = Λ


x0

x1

x2

x3

+


a0

a1

a2

a3


where:

x0 = ct , x̃0 = ct̃

The Λ are real 4× 4 matrices which fulfill

η(Λx ,Λy) = η(x , y) = x0y0 − x1y1 − x2y2 − x3y3

for all

x =


x0

x1

x2

x3

 , y =


y0

y1

y2

y3
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III. Minkowski spacetime, Poincaré group

The Λ are the Lorentz transformations. They form a group under matrix
multiplication, the

Lorentz group L

The

a =


a0

a1

a2

a3


are the translations. They form a group under vector addition in R4, the

translation group T ' R4
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III. Minkowski spacetime, Poincaré group

The Poincaré group is the semidirect product of L with T ,

P = L n T

Elements of L n T are pairs (Λ, a) , Λ ∈ L , a ∈ T ,

group multiplication law:

(Λ, a) ◦ (Λ′, a′) = (ΛΛ′,Λa′ + a)
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III. Minkowski spacetime, Poincaré group

L consists of space rotations, Lorentz boosts (velocity
transformations), and reflections.
With respect to some inertial observer or
Lorentz frame:

space rotation

ΛR =

(
1 0T

0 R

)
Lorentz boost in x1 direction

Λe1 (θ) =


coshθ −sinhθ 0 0
−sinhθ coshθ 0 0

0 0 1 0
0 0 0 1


v/c = tanh(θ), θ: rapidity

Denoting by Λn(θ) the Lorentz boosts along space-direction n, one has:

ΛRΛe1 (θ)ΛR = ΛRe1 (θ)
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III. Minkowski spacetime, Poincaré group

L is not connected. The unit connected component is

L+ = {Λ ∈ L : det(L ) = 1} proper Lorentz group

The proper Lorentz group has a subgroup

L ↑
+ = {Λ ∈ L+ : Λ00 > 0} proper orthochonous Lorentz group

The transformations in L ↑
+ preserve space- and time-orientation and

therefore correspond to the transformations between coordinates of
physical inertial observers.

Every Λ ∈ L ↑
+ can be uniquely written as product of a rotation and a

Lorentz boost:
Λ = Λn(θ)ΛR
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III. Minkowski spacetime, Poincaré group

Other Lorentz transformations are obtained from reflections (defined with
respect to a given Lorentz frame):

T :


x0

x1

x2

x3

 7→

−x0

x1

x2

x3

 , P :


x0

x1

x2

x3

 7→


x0

−x1

−x2

−x3


Then

L+ = L ↑
+ ∪ PTL

↑
+ , L = L+ ∪ TL+
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III. Minkowski spacetime, Poincaré group

The proper orthochonous Lorentz group L ↑+ is not simply connected.

Theorem (III.A)

The universal covering group of L ↑+ is

SL(2,C) = {A ∈ GL(2,C) : det(A) = 1}

The covering map

SL(2,C)→ L ↑+
A 7→ Λ(A)

is given by

Λ(A)µν =
1

2
Tr(AσµA

∗σν)

where the σ1,2,3 are the Pauli-matrices and σ0 = 12×2

April 7, 2016 70 / 71



III. Minkowski spacetime, Poincaré group

Proof. Exercise problem. It is very similar to the case SU(2)→ SO(3).

In fact, the non-simple connectedness of L ↑+ originates from this group
containing the rotations SO(3).

Proofs are also contained in the books, e.g. Thaller or Sexl-Urbantke.
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III. Minkowski spacetime, Poincaré group

The irreducible representations of SL(2,C) are given as follows:

skC2 k-fold symmetrized tensor product of C2

Vk,` = (skC2)⊗ (s`C2)

D(k,`)(A) = (skA)⊗ (s`A)

(D(k,`),Vk,`), where k , ` ∈ N0, are irreducible, complex-linear
representations of SL(2,C).

If k + ` is even, then the irrep is called integer spin

if k + ` is odd, then the irrep is called half-integer spin
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