Prof. Dr. R. Verch Dr. T.-P. Hack

UNIVERSITAT LEIPZIG

Inst. f. Theoretische Physik

Summer Term 2016

Quantum Field Theory — Problem Sheet 6

2 pages — Problems 6.1 to 6.4

Problem 6.1

Let $\Phi, \mathcal{H}, \mathcal{D}, \mathcal{U}, \Omega$ be a scalar Wightman quantum field and Θ the PCT operator. Show that for all $(\Lambda, a) \in \mathscr{P}_{+}^{\uparrow}$ one has

$$\Theta \mathscr{U}(\Lambda, a) \Theta^{-1} = \mathscr{U}(\Lambda', a')$$

with suitable $(\Lambda', a') \in \mathscr{P}_+^{\uparrow}$. Determine how (Λ', a') depends on (Λ, a) .

Problem 6.2

Let $\mathcal{N} \subset \mathscr{B}(\mathcal{H})$ be a von Neumann algebra, and let U_t $(t \in \mathbb{R})$ be a continuous unitary group on the Hilbert space \mathcal{H} which is assumed to have the property $U_t \mathcal{N} U_t^* = \mathcal{N}$, i.e. α_t $(t \in \mathbb{R})$ defined by $\alpha_t(A) = U_t A U_t^*$ $(A \in \mathcal{N})$ is a one-parametric group of automorphisms of \mathcal{N} . Suppose additionally that $\omega(A) = \operatorname{Tr}(\varrho A)$ $(A \in \mathcal{N})$ is a state on \mathcal{N} given by a density matrix ϱ on \mathcal{H} .

The state ω is called a *KMS state for* α_t ($t \in \mathbb{R}$) *at inverse temperature* $\beta > 0$ (after Kubo, Martin and Schwinger) if for any pair of operators $A, B \in \mathbb{N}$ there is a function $F_{A,B} : \overline{S_{\beta}} \to \mathbb{C}$ which is defined and continuous on the closure of the open complex strip

$$S_{\beta} = \{t + i\eta : t \in \mathbb{R}, \ 0 < \eta < \beta\},\$$

is analytic on the open strip, and has the boundary values

$$F_{A,B}(t) = \omega(\alpha_t(A)B), \quad F_{AB}(t+i\beta) = \omega(B\alpha_t(A))$$

for all $t \in \mathbb{R}$.

Consider a special case, the Gibbs state: Here, $\mathcal{N} = \mathscr{B}(\mathcal{H}), U_t = e^{itH} \ (t \in \mathbb{R})$ with some Hamilton operator H which is assumed to be such that $e^{-\beta H}$ is a trace-class operator on \mathcal{H} for all $\beta > 0$. Show that the Gibbs-state $\omega_{\beta}(A) = \operatorname{Tr}(\varrho_{\beta}A)$ is a KMS state at inverse temperature $\beta > 0$ where

$$\varrho_{\beta} = \frac{1}{\operatorname{Tr}(\mathrm{e}^{-\beta H})} \mathrm{e}^{-\beta H}.$$

Hint: To simplify matters, you can assume that $H \ge 0$.

Problem 6.3

For the 2-point function W_2 of the quantized Klein-Gordon field of mass m > 0 (cf. Problem 1.2), check explicitly the PCT symmetry property

$$\overline{\mathcal{W}_2(PCT f_1 \otimes PCT f_2)} = \mathcal{W}_2(f_1 \otimes f_2), \qquad f_j \in \mathscr{S}(\mathbb{R}^4)$$

Problem 6.4

Let $\Phi, \mathcal{H}, \mathcal{D}, \mathcal{U}, \Omega$ be a Wightman quantum field theory. With respect to a chosen Lorentz frame, let H be the global energy operator, i.e. $e^{itH} = \mathcal{U}(1, te_0)$ where e_0 is the unit-vector of the time-direction.

- (1) Show that for any real number b > 0 and any vector $\psi \in \mathcal{H}$, the vector $e^{-bH}\psi$ is an analytic vector for the translations, i.e. the function $a \mapsto \mathscr{U}(1, a)e^{-bH}\psi$ is analytic.
- (2) Let χ, ψ be two unit vectors which are analytic for the translations. Suppose the vectors are found to induce states which coincide on some open spacetime region O (a double cone),

$$(\chi, A\chi) = (\psi, A\psi)$$

for all A in the local algebra $\mathcal{A}(O)$. Conclude that the states are the same: $\chi = e^{i\phi}\psi$ for some real number ϕ .