Universität Leipzig

Quantum Field Theory in Curved Spacetimes
(12-PHY-MWPQFG2) Summer Term 2019


Kontakt

Prof. R. Verch
ITP, Universität Leipzig
Brüderstr. 14-16
Phone: +49 341 97 32423

Dr. J. Zahn
ITP, Universität Leipzig
Brüderstr. 14-16
Phone: +49 341 97 32441


News:

8th problem sheet published, see below. Solutions due to be handed in by Thu 13 June at the beginning of class.

A new MSc program "Master in Mathematical Physics" will start at the University of Leipzig in October 2019. Full details are available at www.uni-leipzig.de/mathematical-physics
Please pass this information on to anyone who might be interested. Enrollment time for non-German BScs is very short!


The equivalence of the definition of orientation for an n-dim. manifold given in the lectures to the existence of a nowhere vanishing n-form is stated and proved in Prop. 2.5.2 in the book of Kriele cited below.



Termine/Dates (and Locations)

Vorlesungen/Lectures
Prof. R. Verch, Dr. J. Zahn
Wed 09:15-10:45, IPT, Brüderstr. 16, Room 114 (1st floor)
Thu 15:15-16:45, ITP, Brüderstr. 16, Room 114 (1st floor)

Übungen/Exercise Class
Dr. J. Zahn
Thu 13:30-15:00, Brüderstr. 16, Room 211 (2nd floor) (new date!)

Empfehlenswerte Literatur/Recommended Literature:

  • R.M. Wald, General Relativity, University of Chicago Press, 1984
  • R.M. Wald, Quantum Field Theory in Curved Spacetimes and Black Hole Thermodynamics, University of Chicago Press, 1994
  • S.A. Fulling, Aspects of Quantum Field Theory in Curved Space-Time, London Mathematical Society, 1989
  • C. Bär, N. Ginoux, F. Pfäffle: Wave Equations on Lorentzian Manifolds and Quantization. EMS, 2007
  • R. Haag: Local Quantum Physics, Springer-Verlag, 1996
  • R. Brunetti, C. Dappiaggi, K. Fredenhagen, J. Yngvason, Editors: Advances in Algebraic Quantum Field Theory, Springer-Verlag, 2015
  • N.D. Birell, P.C.W. Davies: Quantum Fields in Curved Space, CUP, 1982
  • C.J. Fewster: Lectures on quantum field theory in curved spacetime
  • Additional Material

    Mathematical aid kits:
  • M. Reed, B. Simon: Methods of Modern Mathematical Physics, Vols. 1 and 2, Academic Press, 1980 (or more recent editions)
  • V. Moretti: Spectral Theory and Quantum Mechanics, Springer-Verlag, 2013
  • M. Kriele: Spacetime, Springer Lecture Notes in Physics m59, 1999


  • Reviews etc. (not contained in Brunetti et al.)
  • C.J. Fewster, ``The art of the state'', Int.J.Mod.Phys. D27 (2018) no.11, 1843007, arXiv:1803.06836 [gr-qc]
  • C.J. Fewster, ``Lectures on quantum energy inequalities'', arXiv:1208.5399 [gr-qc]
  • R. Verch, ``Local covariance, renormalization ambiguity, and local thermal equilibrium in cosmology'', arXiv:1105.6249 [gr-qc]
  • Übungsaufgaben/Exercise Sheets



  • Sheet 1
  • Sheet 2
  • Sheet 3
  • Sheet 4
  • Sheet 5
  • Sheet 6
  • Sheet 7
  • Sheet 8