On 2 Class of Generalized K-Entropies and Bernoulli Shifts
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Abstract. The paper presents the construction of an
example important for the discussion of some generaliza-
tions of the Kolmogorov-Sinai-entropy which were intro-
duced in a previous paper. A formula for the generalized
entropies of a process is calculated in the case that the
process is given by & Bernoulli shift and a partition
congisting only of cylinder sets. Furthermore, a special
optimization problem on the set of all probability vec-
tors of a given entropy is solved with a new method.

The results of these computations are combined to the cited

example.
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1. Introduction

In /1/ we introduged a new class of isomorphy invariants for
dynamical systems. This class is & generalization of the dy-
nemical entropy (Kolmogorov-Sinai-entropy, K-entropy).

Besides the construction of the generalized entropies the pa-
per /2/ conteins the derivation of some general properties of
them. The present paper is devoted to a special topic connec-
ted with the investigation of the new invarients, namely the
construction of an example sharply illustrating the compli-
cated character of the generalized entropies.

To this end we derive a formula for the generalized relative
entropies of a transformation T with respect to a partition c
in the case that T is @ Bernoulli shift and C consists only of
cylinder séts. As a second step we solve an optimization pro-
blem of a somewhat specisl kind., The concave functionals to
be maximalized are not Gateaux-differentiable at the maximum
points, and the region the supremum is teken over is not con-
vex, But these apparently unpleasant properties assure that
the problem can be solved in an explicit form. The proofs of
the solution of the optimization problem are worked out by
using simple arguments from the order-structure of states /4/.

If we combine the resulis we get the desired example.

2. Rotations and definitions

A dynamicel system is an aggregate (X,7), 4,T) where
(x.735/A) is a Lebesgue space and T 1is an automorphism of

(x, Tgv/&)-
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If C 1is a partition of X into measurable sets we call the
pair (C/T) e process in (1.73,/»).

Definition 1.

Let (X,WS,fL,T) be a dynemical system, and let g:[0,1]—=R
be a real, bounded, concave function of the closed unit inter-

val with g(0)=0 . C,D are finite partitions of (X,T3).

We define
= S ST
i} 6(c/D) ‘\j_,uwj)gi g(,uv(ci/Dj)) (2.1)
where

(AN1B)
,uu/n),L(B) VAE B, ¥Be B a.t. u(B)>0 (2.2)
/U-

and

M(BIE(U(A/B))=0 VAaeTs, ¥Be T s.t. u(B)=0 (2.3)

Ci and Dj denote the elements of the partitions
€ and D , respectively.
n
11) 6(¢/M)= 1im g/ V 171c) (2.4)
n i=1

n
where \/T‘ig denoctes the common refinement of the
i=1

partitions j77ic].

i41) G(C/T)= sgp G(c/T) (2.5)

where the supremum is taken over all finite partitions.

Remarks

i) All the functionels G(T) defined above are isomorphy

invariants of dynemicel systems (i.e. dynamical invariants).

ii) If we insert the special strongly concave function
-xlogx x>0
h(x)=
0 x=0
into the definitions 1(1,ii,iii) then we get the definitions
of the relative entropy of C with respvect to D , the en-
tropy of the process (C/T) , and the dynamical entropy of T,

regpectively.

For the solution of the optimization problem in sect.5 we will
use some simple arguments from the theory of the order-struc-
ture of states /4/. The definitions and results needed for our

special problem are listed below.

Let x:(xi), y:(yi) 1=1,2,.., be two probability vectors.
We say that x is more mixed than y (x&y) iff for all
J=1,2,... the sum of the j greatest components of x is
not greater than the corresponding sum for y . With other
words, let §=(§i) . ;:(;i) be reorderings of the components

of x and y , respectively, such that

512;23...2551; y1:yzz...2§n?_

n
def. 9‘_ J _
Then X%y <=2 5 X < Z ¥y §=1,2,... (2.6)
i=1 i=1

We write xZy (x is mixing equivalent to y) iff x,y and

y-x .

The following assertion is a well-known result.
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Let x-=(x1)1=1 s y:(yi)iﬂ be two probability vectors. Then
1) xpy = 2glx)) 2 Salyy) for all concave functions
g: [0,1] —R (2.7

ii) Let g be strongly concave, and let x5y but =xy .

Then 2 8x) > 2 glyy) (2.8)

Throughout this paper we are concerned with the following

special class of dynamical systems.

Banoulli systems

Let Yz{O,1,...,n-1} be equipped with the G-algebra of all
subsets and with the measure /u° _given by /u°(1)=p120, i€Y,

Zpi=1 .

We define X=YZ

(Z being the set of all integers) as the di-
rect product space with the measure /u, on the. G-talgebra 1
generated by the cylinder sets. A cylinder set is defined as

follows.
Vi,...51
A 1 k {x:(xi)wé X: x, =y, ;j=1,...,k} (2.9)
iy «eedy ~% J b
Yi,...94 k
R
feag g = Tl ey (2.10)
1 K g1 V1

The automorphiam of (X,ﬂ,/;) is given by the shift
T: X—X , Tx=x' X'=Xs 4 i=0,%1,%2,... (2.11)
The system (X,’T‘:,/u,T) is called the (pg,...,p _;)-Ber-

noulli system,

To treat the class of Bernoulli systems we need the following

well known definitions of independence of partitions.

Let (X,’B,,u.'l‘) be a dynamical system, and let C,D,E be
finite partitions. C is said to be

i) independent of D (C1D) iff Vi,3
/u.(cin D3)=/U.(Ci)//~(Dj)
i1) an independent partition for T iff for all n=1,2,...
1yt
o ¢
gL VTE
111) independent of D given E (C (E D) 1ff on any atom
E, of the partition E the partitions of E, induced
by C and D, respectively, are independent, i.e.
Vi,i.k /u(Ci./)Dj/Ek)slu(Ci/Ek)/u(Dj/Ek) .

(Ji and Dj denote the atoms of the partitions C and ﬁ, resp.

Remark. Bernoulli syatems are exactly those dynamical
systems which have an independent generator for T. (A genera-
tor for T is a partition C such that the G-algebra generated
by {T'ig} 1=0,%1,%2,... 18 B3 (up to measure zero).)

3. The problem

The entropy of a Bernoulli system is known to be
H(T)= Zh(Pi)“ZPi“gPi . In /2/ we showed that for all er-
godic systems with the dynamical entropy H(T)=s and for all

generalized dynamicel entropies

X _(8):= _sup g(q,) =G(T) (3.1)
g e s Z i
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where \)0 denotes the set of all finite probability vectors
@=(qy) s.t. Zh(qi)-s .

Ig(a) is the supremum of G(C/T) over all processes (C/T)
constructed with a finite independent partition.

From now we suppose that T is a Bernoulli shift with the en-~
tropy H(T)=s. Bernoulli sysiems of finite entropy are charac-
terized by the statement that they have an independent finite
generator for T. According to Ornstein's theorem, for any fi-
nite probabilit?' vector q €¢J there is an independent gene-
rator §=‘(C1,...,Cm) s.t. /u.(ci)sqi 1=1,2,00.,m .

But even in the case of Bernoulli systems equality does not
hold in (3.1) in general. This will be shown by the example
to be constructed with the help of the results of the next

sections.

The exemple is the (p,1-p)-Bernoulli system, and the dynami-
cal invariants which give Xg(s:h(p)+h(1-p))<<G(T) are formed
with the special concave functions

x 0£x<r

gr(x)={ - 0<r<i (3.2)

r x>r
and are denoted by Gr’
In section 4 (equ.4.5) we see that for the partition
gz(Ag.A1° Al}) (not being independent, but generating), the

o1’
generalized entropies of the proceass (C/T) are

G(C/T)=F (p)i= p g(p)+g(p(1-p)+&((1-p)D) ] +

+p(1-p)g(1)+(1-p) [g(p)+g(1-p)]
If P’% then (r+3)/4 1/2 <r <1
6, (C/T)= { (ST+1)/4 1/4=r<1/2 (3.4)
9r/4 r<1/4

Now we use the solution of the problem X (8)= _5213’ Egr(pi)

and refer to the notations introduced at the beginning of
section 5 (equ.5.2,5.3).

it s=2h(%)=log2 , then a1=% and a, <% , 80 for rs% we
find n=2. Therefore we have X1/4(1og2)=2-%+b , Where b is
the solution of the equation h(b)+h(%-b)=%log2 . The calcu~
lation gives b<=0.04 and therefore

11/4(1082)50.54 (3.5)

Equ.(3.3) provides us with G1/4(9_/T)=0.5625>X1/4(log2).

A sharper analysis shows that such an inequality holds‘for
any r s.t. 32<r<k R wheré k is the solution of
h(k)+h((1-3k)/4)+h((3-k)}/4)=10g2 .

If r¢(az,k) then we find other Bermoulli systems and other
partitions of type (4.1) to construct anaslogous examples (see
theorem 1). So the constructed example shows that we cannot
restrict ourselves to the independent generators if we want
to compute the Gr-invariants for Bernoulli systems. This is a
little surprising because the independent processes are the
characteriatic ones in the Bernoullian case. Therefore deep
difficulties arise in conrection with the calculation of the
generalized dynamical entropies for other dynamical systems

too /1/,/2/.

4. Generalized process-entropies for special processes in

Bernoulli systems

In this section we compute an explicit formula for the
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generalized process-entropies G(C/T) (see def.1(i1)) in the
case that T 4is a Bernoulli shift and the partition C con-
gists only of cylinder mets (c.f. equ.2.9). We consider the
(po.;..,pn_1)-Bernoulli system and the partition

Yi £ Vi, .00 Vi, .94

C= (LA
L OPRRUE St rgh O T

the elements of which are numbered by the left lower index.
A collection of pairwise disjoint sets of the form (4.1) is

a partition if and only if for any right lower index occuring

at the cylinder sets of C all elements of the set Y={0,1,...,n—1}

appear at least one time as the corresponding upper index in
some cylinder set of C. For instance, in the case of the

1 11 111
(po,p1)-Bernoulli system C=( ,2 o? 3A°1g,4 012)

is a par-
tition of the considered form.

After these preliminaries we are going to proof the

Theorem 1.

Let (X,M,4,T) be the (pg,... by q)-Bernoulld system.
Assume thet C 1is a partition consisting only of cylinder
gsets, i.e. C is of the form (4.1), such that

max lijl'ij'l'l'g d d an integer (4.2)
j' ll
This means that the maximal difference between right lower
indices occuring at all cylinder sets in C is not greater

than d. Then a 4
G¢C/T)=6(C/ \V/ T7°C) (4.3)
i=1

for all functionals of def.t(ii).
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Example. For T the (po,p1)-Bernoulli shift and
10
A

C= - C .

C=(4A2 01240173 01) we find max{O 1}I 3 ij. go= (4.8)
1,1'% {1,2,3]

So we have G(C/T)=G(C/T™'C)=F(p) . (4.5)

The explicit value of F(p) can be calculated to be equal
to the right hand side of equ.3.3 without difficulties.

For the proof of the theorem we need the following lemma.

Lemma 2.

Let C,D,E bve finite partitions such that C J? D . Then for

all generalized relative entropies G(e/s)

G(C/EVD)=G(C/E) . (4.6)
Proof. /u(Ciﬂ Danl) ,;(cin E))

c |E pe
,u.(Djn El) /u(El)

(4.7)

for all 41,3,1 s.t. /A(Dj[\El)>-0 . The lemmea follows di-
rectly from the definition of G(+/*) if we use (4.7). /=/

Prod of the theorem.

d
The only thing to show is C lg QP for all n>d, where

a _ n (4.8)
pl-\/1"1c and DP- \ 17¢ . With lemme 2 then follows
11 1=d+1

G(C/T)= lim G(g/ngg“) = G(Q_/Qd) , but this is the assertion
n
of the theorem.

To show (4.8) we introduce the following notations. Let
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Ci,Dg,Dz be elements of the partitions g,gd,gn , respec-
tively, such that ((Cyf] D%f}DE))O . Cf course, the inter-
gection of cylinder sets is a cylinder set too. We denote
p(yi):=/L°(yi) ¥y4€Y . The right lower indices of C, (in-
dicating the place where the cylinder Ci is fixed) not

occuring at Dg are denoted gy 11,12,..., and analogously,

the right lower indices of DE not occuring at Dg are de-
noted by P SRR The correspcnding upper indices (being
elements of Y) are denoted by the symbols y11,y12,v...,
ym1’ym2,...

Now because of the cylindrical structure of the sets Cif]D§/1D;'

Ci{]Dg , D%/)Dﬁ and because of the product measure on the cy-

linder sets we get

e o) = }‘(Dg)’ﬁp(hr) (4.9)

lr
d a

JAGDY) = U (D) ﬂ_p(ymt) (4.10)
m
+

c.i oo™ = wh ] oty - | pty. ) (4.11)

/(4( il jq k) /v( 3 ’1’ p ylr nm;P ymt

r

Equ.4.11 expresses the fact that 'g and Qn are independent
partitionas. This is a consequence of the construction of d.
The partition C cannot have right lower indices which coin-

n .
cide with right lower indices of some set in Qn= T'lg ,
i=d+1

because the maximal difference of indices of any set Ci is
d, and Qn contains only sets of C shifted at least d+1
times.

The equations (4.9,4.10,4.11) can be combined to

- 12 -

/»(cinng/‘.nﬁ)  pee o) win o)
- ;| T
M A CH I

(4.12)

In the case that one of the sets involved has zero measure,

nothing is to show. Therefore (4.12) proves the theorem. /=/

5. A special optimization problem

The example of a process in a Bernoulli system which gives
Xg(s)<iG(g/T) (c.f. equ.3.1) can be constructed if we are
aible to calculate Xg(s) for some concave function g. This
is done in this section for the special functions gr(x)

(equ.3.2). We consider the problem

X (8)= _sug 6.(F) ., G 4)3F=(py)—> T g,(p,)
iy _ (5.1)
J=fped] : #(®)=s), H: aloF=(p;)— Ship))

1 (=
a, ={pEd P py20 1=1,2,..5 Zpi=1}

Here d denotes the set of all finite sequences. Therefore,

d1

+ is the set of all probability vectors with at most finite-

ly meny nonzeroc components. S is the set of all finite proba-
bility vectors of the given entropy s.

The functional Gr: dl»—~—R is concave, It is not Gateaux-
differentiable iff py=T for some i. The region ¥ is not
convex. But the special structure of the functionals Gr and
H, both being defined as a sum with an underlying. concave

function gives the possibility to solve the problem in a some-

what unusual way by using arguments from the order-structure
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of states.

Solution of (5.1). The solution is performed in three steps.

<a'
or 8n< r< n

<
1) Choose ng¥N s.t. an<r_an_1

e, is a solution of the equation

nh(a )+h(1-na )=8 . (5.2)

Equ.(5.2) has one (real) solution if 8 <logn, two so-
lutions if logn gs <log(n+1), and no solution if

g8 >log(n+1). If (5.2) has two solutions then we denote
the smaller one with a, and the greater one with 8;1'

1f r>ar'l for some n — Xr(s)=1 .
ii) Calcylate b as the smaller solution of the equation
(n-1)n(r)+h(b)+h(1-(n-1)r-bv)=s . (5.3)

If s#log(n+1) we always find two distinct solutions.

1i1) max{nrﬂ:,‘l} 1f (5.3) has two solutions (a)
Xr(s)s 1 if r>a! for some n (b)
1 if s=log(n+1), r=n—11- (c)

Remarks.

i) At least one of the cases (a,b,c) is fulfilled. In case (b)

we cannot perform step (ii) because e 1 cannot be calculated.

ii) 1If r<;!% then (&) holds and nr+b<?1 .

iii) We always mean a real solution if we speak of a solution

of an equation,

To proof the solution we show firstly with the lemmas 3 and 4
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that Gr has a local maximum on f at the point

'fn=(r,...,r,b,1-(n-1)r—b,0,0....) (5.3)

n-1
provided the suppositions of case (a) hold. The lemmas 5,6
prove that in this case ;n is the globael maximum point.

Because of Xr(s)£1 the other cases are clear.

Lemma 3.

Let n,an,b be as in the solution, i.e. a <r and a, and

b are the smallest solution of equ. (5.2),(5.3), resp.. Then
i) O0<b<r and

i1) b=0 ==y r=a _, .

Proof. We see that 1-nanz 8. Indeed, an“'n—l‘T , for the

function nh(x)+h(1-nx) has its only maximum at x’r%f .

Therefore 1-ne > F:T‘Zan .

Suppose now that 1-(n-1)r-b>b>r ., Then

§n=(1-nan,a£,_:.—,i'x}/,0,0,...)-< F
n
according to (2.6). But this leads to H(En)é}i('i‘n) , and
equality holds if and only if EnZ;n . However mixing equi-
valence can hold only in the case b=r=9.n . This in turn

proves both the assertions, because 1-(n-1)r-b=>b 1is sup-

psed in the construction of b. /=/

The following definition is needed to make the proofs of the

lemmas 4,5, and 6 a little more transparent.
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Definition 2. We can € rearrange so that £, E32...26,>02¢ 4= .2 €,

for some k22,
Let r: O<r<1 and n be a real and an integer, respectively.

- - -b c-r
- Now suppose that E€UT(P) end < min{b,= .
i) We say that a probability vector pédl is a PP a s\ P X { - R }

r-n-typical vector iff n of its components are equal to r, cr(a)azgr(qi)=(n+1)r+b+ § £i;(n+1)r+b=Gr(3) Therefore

one component is greater than r, and one of the nonzero : i=k+1 o

components is smaller than r. e %;15120 , but this leads to 21:5150 m=1,2,... (5.7)
11) A probability vector is said to r-typically iff it is This is so because 82-2 '“2£k>0 .

r-n-typically for some n. The choice of y and (5.7) guarantee that q=p+ £ & p and

qQ=p iff £ =C. The same argument as in the proof of the pre-

Lemma 4. vious lemma completes the proof, /=/
Let pe Jo be a given probability vector with entropy s.
For X>0, r >0 we define some neighbourhoods of p by Lemme 5,
- (= 1 - =
Ug’(?)=£q 6d+ . Z Iqi"’i“ 3/} (5.5) Let r>0 , and assume that there is a r-typical vector Pey.

— (= - - - i) Any r-typical vector Q& is equal to p up to & re-
VYR ={TeYD ¢+ 6 (D26, . (5.6) v e 1€S 18 & Pow

arrangement of the components.
If 7 is a r-typical vector then therep.s a y>0 such

- ii) There is no vector g& ) such that g er  Vi=1,2,...
that U;(p)n\f =p .

iii) There is no vector q&) such that Vi either uy=T

or q;=0 and Zgr(qi)zzgr(pi) .

Remark. The lemma says that p is & local maximum point
of G under the constraints of the problem 1), -
r P 5.1 Proof. p=(c,Tyee.yr,b,0,0,...) c>r>b >0
n
Proof of the lemms, We sssume p to be r-n-typically and i) q=(c¢',r,...,r,»',0,0,...) c'Sr >b'>0 .
k

the components of 7 to be rearranged i h a way that - -

np P TAng n sue way tha Therefore we get q<4p in the case k«n because of
p=(c¢,r,...,r,b,0,C,... ¢ >r >b. Th b thout - =
P :( ’1\.-’—1‘\’.3’ :0,C, ) r>b. This cen be done withou c'=1-kr-b' > 1-(k+1)r > 1-nr >c. Analogously, k>n==q%p .
loss of lity. Th qé P t to the fol-
08s of generality en q;—_Ur(p) 1s equivalen © e fol So k=n has to hold. But for a given n the equation

1 . -=_ c H c =
owing assertion. Qq=p+ g ; £ (E£,)€4d , d the space of all h(x)+h(1-nr-t)=s has at most one solution x such that x<r .

real vectors with at most finitely many nonzero components; - -
¥ y P ! 11) gy s Vi = q%p

> £.= >
2‘*’1'0 v &40 Visns2 §|£1(<.Y .
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1i1) qy>r  1=1,2,...,k 5 q4=0 1>k :—_jjgr(qi)ﬂr
If krz}__'gr(pi) then kr>(n+1)r+b —3k=>n+2 has to be ful-
filled. We can rearrange q so that Q97 Qa2 «e0 2q 2T .

[ed
qf“% q % 1-(n+1)r<c , and therefore -7 . /=/

Lemma 6.

Assume that there is a r-typically vector pe.f . Then the func-

tional Gr has no local maximum in f at points E:(qi) such
that i) for more than one index i 0<qi<r

11) G.(q)2G.(p) , end for more than one index i q>r.

Proof. i) Suppose that 0O €q <r, C<gy,<r . Because of
lemma 5(ii) we can assur;:e that q3>T. NowBthe problem
igr(pi)d)xtr.! Z’;pi: 2 qg=const. Z;h(pi)ag__h(qi)
can be solved by application of the Laegrange multiplier rule.
Because of the given constraints we get 94=9, 88 & neces-
sary condition for q to be extremally. This however is a
local minimum point of the functional igr(qi). Therefore

q cannot be a local meximum of Gn /=/

ii) Analogously. One has to have regard to lemma 5(iii) allo-
wing to restrict the considerations to the case ¢ <qq<r ,

q2>r, qB\r R /=/

With the proved lemmas we can see the solution of (5.1) to
hold. Of course, either we can find n as in step (i) or

:!‘>ar'1 for some n. In the latter case there is a Eéf such

that q;sr Vi =ngr(qi)=1. The former case leads to case ()
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of the solution iff s#log(n+1). The cealculated b is smaller
than r. Therefore either Gr(;n)=1 or T, is r-(n-1)-typi-
cally. From lemma 4 we know thet any r-typically vector re.¥
is & local maximum of Gr‘ Lemmas 5 and 6 say that there is
no further local maximum of G, 1in JF greater than Gr(;n).

This means that ;n is the global maximum point.
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