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Adbstract. This paper carries over to the theory of

the Kolmogorov-Sinai-entropy a method being a basic
tool in the theory of the order-structure of states.
The function h(x)=-xlogx 1s replaced by arbitrary
bounded , concave functions in all definitions of the
entropy-theory. This procedure leads to a class of iso-
morphy invariants, thus generalizing the notion of dy-
namical entropy. The general properties of the gene-
ralized dynamical entropies are investigated and an ex-
plicit calculation of the new invariants is accom-

plished in some asimple cases.
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0. Introduction

In 1958 Kelmogerov introduced the notion of dynsmical en-
tropy into the ergodic theory of dynsamical systems [}].

He showed with the aid of the entropy that there are noniso-
morphic Bernowlli shifts. In 1969 Ornstein solved the iso-
morphy problem for the class of all Bernoulli shifts by
showing that all Bermoulli shifts with the same entropy are
isomorphic [8,9]. The isomorphy question for K-systems, how-
ever, is unsolved at present [10]. Kouchnirenko constructed

generalizations of the K-entropy, the so-called sequence en-

tropies. It was shown by Newton that they give new information

about the isomorphy of transformetioms enly in the zero-en-
tropy case [7]. Versik [15] introduced the notion of the scale
of & transformation, and Juzvinskij [2] proved that for any
positive entropy there are countably many subclasses of K-
systems with pairwise distinct scale.

All the isomorphy invariants listed above and & large number
other ones are successfully used in the ergodic theory, but

all inveriants known to the author cannot completely solve

the isomorphy question for the class of systems with posi-
tive entropy, especially for K-systems. Therefore oreneeds

new invariants.

1. Content of this paper

We construct simple generelizations of the entropy using the
following idea. The K-entropy H(T) is defined as a supre-

mum over all finite partitions C of the relative entropies

H(C/T) of the transformation T with respeet to C. (H(C/T)

is called in this paper "entropy of the process (C/T)".)

The entropy of & process is well defined, because it is

the 1imit of the entropy of the partitions cV/T7'cy/...Vr "¢
divided by n, whicﬁ always exists. The reason for the exist-
ence of the limit lies in the aubudditivity of the entropy

of partitions, i.e. H(CV D) £H(C)+H(D). The subadditivity is
a consequence of special properties of the function
h(x)=-xlogx used in the definition of the entropy {1]. It is
well known [1,12] that

n .
H(C/\/ T"%¢c) . (1.1)
¢ ;Zg <

n-1 .
H(S/T):= 1im T BC\/ T730) = 1im
n i=0 n

The existence of the right-hand side of (1.1) ,however, is
guaranteed only by the concavity and boundedress of the func-
tion h(x) (and h(0)=0).

Consequently, if we replace h(x) by arbitrary concave, boun-
ded functions g of the closed unit interval with g(C)=C and
then repeat all constructions of the entropy-theory starting
with H(C/T)= lim H(C/ CaT'ig) , we get a large class of new
isomorrhy invarients. =

In this paper we give the construction and some properties
of these new invariants. We compute them explicit/ly for the
cases of zero and infinite entropy (H(T)=C =>G(T)=g(1) for
all g , H(T)=00 =3G(T)=1im g'{x) for all contimwus g if the
limit exists). #¥e

These extreme cases cannot give new information, but it is
shown that for the case of finite, positive entropy

1 im g '
g( )<G(T)<}%E g'(x) (1.2)
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We show for a special class of concave functions that

G(T)< 1im g'(x) provided the entropy is not too large.
xV0

All these stetements depend on the entropy, but the results
available at pregent give the hope to get new information for
the solution of the isomorphy problem of the dynamical systems

from the invariaents constructed in this paper.

2. Basic notations and definitions see[1,11,16]

Let (X,43,/1) be a Lebesgue space, where B is the G-al-
gebra of all measurable sets, and fA is a probability measure
on (X,). A mapping T: XX , measure-preserving and
one-to~one a.e. is called an sutomorphism of (X,q3,/t).

An aggregate (X,ﬂ},/L,T) with T Dbeing an automorphism of
the Lebesgue space (X,WB,/L) will be referred to as a

dynamical system.

Definition 1

1) Dynamical systems (X',43',fL',T') and (X,43,}L,T) are
isomorghié iff there is a mapping I: X'—>»X measure-
preserving and ong-to-one a.e. (i.e. I is a measure space

isomorphism) such that IT'=TI a.e.

2) If I is not a measure space isomorphism but & measure
space homomorphism such that IT'=TI a.e., then (1,737~»,T)
is said to be a factor of (X',WB',fL',T').

3) A dynamical invarjent is a property of dynamical systems

which is invariant under isomorphisms of dynamical systems,
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The following definitions are concerned with partitions of
(x, ’B,/u) and sub-© -algebras of M3 . All relations between
partitions and G;-algebras are understood to hold only up

to measure zero. We write CVD for the common refinement

m

of the partitions C and D . For e finite family fC'f7__

the symbol i} gi denotes the partition being the common re-
finement of éi? the partitions C. If n=-0 or m=0 |,
then f}gi is the smallest G-algebra containing all the
listedlggrtitior}s. If C{D=D , we write C<D .

Analogously, if {J%i}izn is a family of mﬂy-s—algebras, we
denote with {n/ A the smallest sub-©-algebra of 13 con-
taining all J’i=n

Let A be a sub-© -algbra of 1B and C a partition. We write
Q;(g)=aQ iff C generates J% . The one-to-one correspondence
between the set of finite partitions and the set of finite
subalgebras contained in the relation 6(_C_)=ﬁ is freely

used troughout this paper.

Definition 2

Let g: EL1]———.R be a real, bounded, continuous, concave
function of the closed unit interval, and let g(0)=C . Let
further (X,WB,/L) and C be a Lebesgue space and a finite

partition, respectively. We define

1) G(C):= Zg(/u.(ci)) C=(CqyeensCy) (2.1)
T ,
2) For any measurable set Ae S, Q/A::(C1n A,...,CnnA)
is a partition of A induced by C . The measure /LL(-)

induces & probability measure ’A»('/A) on A (A being
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a set of positive measure) by

BN &)
/A(B/A)::—/—A—-—— ¥eeM3 (2.2)
,u(A)
We define
G(C/A):= )~ glaulCy/A)) (2.3)
i
and
G(C/D):= %ﬂ(nj)s(g/nj) (2.4)

where 2=(D1,...,Dm) is a second finite partition of X.

(See remark 1)
3) Let A €T3 ve a sub- G-algebra of T3 .

G(C/ ) := taf G(C/D) (2.5)

D runs over all finite partitions with elements in K.

Remarks

1) We use the following convention. If A€V} is a set of
measure zero, then we set /{,t.(A)g(/J-(B/A))=0 Bed .

This is no further restriction on g because /&(Bf)A)é/A(A),

and g is bounded on [b,{]. With this convention we have a

correct definition in equ.2.4 .
~-xlogx x€(0,1]

o] x=0
which is contimous, bounded, and concave we get the de-

2) If we take the function h(x)z{r

finitions of the entropy theory. H(C)= Zh(/u.(ci)) is
the entropy of the partition C. H(C/D) and H(C/A) are
the relative emtropies of the partition C with respect
to the partition D and the sub-6 -algebra f , respec-
tively.
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3. Generalizations of the K-entropy

We wanf to construct new dynamical invarients along the lines

of the entropy fheory. To this end we need the following state-

ments on generalized relative entrepies.

Proposition 1

14,42

Let ¢,c',c2,0,0',0% be finite partitions and let

be the functionals of definition 2.2. Then

1) G(C/D)>g(1)

2) ¢'ec? = a(c" /D)< 6(c?/D)

3) p's % = a(c/p)z 6(c/D?)

4) C<D — G(L/D)=g(1)

5) If g 1is strongly concave, C<D &=G(C/D)=g(1)
6) G(C/D) £6(C)

7) G‘Q/Q’éif‘g #(x) (if the 1imit exists)

2

Proof

We use the results of lemma A.1 (Appendix).

1) 6(g/D,)= Zi8‘/"“1/1’3)’5‘21/‘“’1/”3”:“(”

2) For each i, C;:‘J Ci , and therefore
1 i
i

1 2 2
8‘/.“01/1’3)‘8({/‘(011/%’é51—; g (c3 /Dy)

3) For each j, D;: v D21 , and therefore
1

3 J

G(-/+)

(3.1)
(3.2)
(3.3)
(3.4)
(3.%5)
(3.6)
(3.7)

(3.8)

(3.9)
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(c,nph
(n‘)gL,—J—i )=( 3 (02 ))e( S~ m(c,nD2 )/ 02 )) >
M3 (D) 13/“ 1y 13/"qi 1 %/‘d 1

D,

> 2 2 2
%/A(Dlj)g(/u(cin PLH@L) (3010)

ie
Therefore /u(ci/Dj)=O for 21l but one i=%, and /-L(Ci/DJ)=1

4) For any j, there is one and only one i such that ch:c

This leads to
G(_Q/Dj)=g(1) Vi (3.11)

5) Because of A.1.2, we have G(Q/Dj)=g(1) if and only if
A
/-L(Ci/Dj)so for all but one i=i and /“'(ci/D;j)=1 . This

is equivalent to C<D (up to measure zero).

6,7) are obvious. /=/

Proposition 2

4
Let C be a finite partition and {"Qn}1 be an increasing
sequence of sub- G-algebras of 13 (i.e. A <SR ¥n).

00 n+1
G(c)s V &, the
It D= V., n

G(e/R) 2= Bog() .

Proposition 2 is a modified version of corollary 4.8 of [16_].
A sketch of the proof will be given in the Appendix (for de-
tails see [11]).

Definition 3
Let (x,’B,/u,T) be a dynamical system. If C 1is a parti-

tion of X we call the pair (C/T) a process in (X,’B,/U.,T)
Let (C/T) be a process with C Dbeing a finite partition.
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n
We define G(C/T):= 1im G(C/\/ r-ig) (3.12)
n i=1

for all functionals defined as in def.2.2.

Proposition 3

The 1imit in equ.3.12 exists for all processes (C/T).
o1 B L S T R Y
Proof \VA I QV[\/T g]z \/.T7°C . Therefore
i=1 i=1

n n-1 .
we get  a(c/\/1ic)=6(c/\/T7I0) . The sequence of the
i=1 i=1

relative entropies is monotonously decreasing and bounded

from below by g(1) . /=/

Definition 4
Let (X,’B,/u.,T) be a dynamical system. We define for all

functionals according to def.3.

G(T):= sxélp G(C/T) (3.13)

C runs over ell finite partitions measurable B.

Theorem 4

A1l G(T) 4in def.4 are dynamical invariants.

Proof The theorem is clear from the definitions becsause
all mappings involved are measure preserving and 1-1 a.,e.,

and sets of measure zero can be neglected because of g(0)=0.

Remarks

1) Actually the theorem holds if we use arbitrary real
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functions in the definitions 2,3,4. The point however is
that for a bounded concave function g the definition of G(T)
makes sense. Only in this case we can be sure to have a

supremum over well-defined objects (proposition 3).

2) The dynamical entropy (K-entropy) is a special case of
def.4. Therefore the G(T) are called generalized dynamical

entropies.

In the rest of the paper we derive some properties of the
new dynamical invariants. The general properties of the in-
variants are the content of this section, but in section 4

we deal with a special class of concave functions.

Theorem 5
Let UL LT /L T') be a factor of (X,?Q,/;,T) , then we.
have for all invariants G

G(T') <G(T) . (3.14)
Proof The transformation T' is isomorphic to T restric-

ted to & T-invariant sub- G-algebras \ﬂ.TC"B . Therefore

G(T')= G(T!& )= suB%TG(D/TLﬁ ) = sug%TG(D/T)< csu&}G(C/T) /=/

Corollary 6
If (x',’YS',/u.',T',J and (X,’B,//.,T) are weakly isomorphic

(i.e. each system is a factor of the other) then

G(T')=G(T) for all invariants G.
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A partition € 1is said to be a generator for T iff
\/T'ic 13 (up to measure zero). Kolmogorov's theorem which
ss/ays that for any generator C H(C/T)=H(T) does not
hold in general for the G's. We have instead

Corollary 7

Suppose T has finite generators. Then G(f):sgp G(ﬁYT) ,

where g runs over all finite generators of T.”

)
Proof Let C be not a generator. Then \/T-ig=d?c:q3
-0
and TAR=A . Therefore Tl\ﬂ is a factor of T.
G(C/T)< sup G(D/T;,)=G(T|,)=G(T) /=/
Dep = kTR
Remark

The existence of finite generators is guaranteed for ergo-

dic automorphisms of finite entropy [5].

The aim of the next statements is to compute the new in-
variants explicit/ly or to give estimations of them. To do

this we need the following lemmas.

Lemma .8
Let C be a partition such that V 7=1c- 13 . Then
G(C/T)=g(1) for all functionals defined in def.3 .

n
Proof We use proposition 2. Let d%n=€;(£VQT'ig) . {Jin}

is an increasing sequence of sub- GLalgebras.
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\/T'ic '1£V;T'1C i ) =M. Coneequently, because of

G(C)C’B we have G (C)c 1 = \/ ric - \/ A, (w to
measure zero).

Therefore prop.2 holds. /=/

Definition 5
We ssy that a functional G(C/A) (cf. def.2.3) has the

martingale-property iff for all increasing sequences ﬂ}%n}
of sub-G-algebras of 13 and for all finite partitions ¢

1ym G(C/A ) = G(g/ \,( A - (3.15)

Lemma

Let g be strongly concave, and assume the functional G(Q/JQ)

constructed with the function g has the martingale-property.

Th Vi
en G(C/M)=g(1) &= G(c)c 1‘\/1T'ig (3.16)

Proof We have G(C/T)=G(C/ \/ T'iC) from the martingale-
property. Prop.1.5 leads to G(C/T)=g(1) == C V r-ig,

The inverse conclusion follows from prop.2 . / /

Corollery 10
For all dynamical systems (X, B3, +,T) with entropy H(T)=0
and for all generalized dynamical entropies G(T)=g(1) holds.

Proof The relative entropy has the martingele-property
(see e.g. [13],Th.4.28). The rest follows from prop.2 . /=/
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The suppositions of lemma 8 can be shown to hold for any
finite partition in the case of transformations with dis-
crete spektrum. So we find G(T)=g(1) without explicit wuse
of the entropy for these systems.

Corollary 10 says that all the new invariants give the same
information in the case of zero entropy, i.e. they are tri-
viel if the entropy is given to be zero.

From the point of view of the entropy the opposites of the
dynamical systems with H(T)=0 are the Bernoulli shifts. The
following proposition gives an estimation for the genera-
lized entropies for Bernoulli shifts. A Bernoulli shift is
defined ‘as & shift on X={1,...,n}% (2 being the set of all
integers) with a measure /U— given by a product measure

on the cylinder sets (see e.g.[16]).

Proposition 11
Let T be the (q1...q )-Bernoulli shift with the entropy
H(T)= j.:h(qi) =g , For all invariants G
X (s):= sup J g(py) < G(T)= lim g'(x) (3.17)
Py X0
holds. :f denotes the set of all probability vectors {pi}
with Zh(pi)=s .

Proof The upper bound is clear from prop.1.7.

The partition g=(A;,...,A§) (Ai is the cylinder set of all
elements of X which have the value i on the 0-th place.
/L(Ai):qi by def.) 1is a generator for T, and C is inde-
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n_ -1
pendent of D= V’T C for all n. Therefore
i=1
= ny_ n Ry n -
G(Q/T)—lx:lim G(c/p™)= §/u(nj)c(g/nj)- ?/“(DJ)G(Q) J e(ay) .

According to Ormstein's theorem Gﬂ we find for any proba-
bility vector {pJ}e,f an independent generator § for T
consisting of sets Ej with /;(35)=pj . The proposition
new follows from the definition of G(T). /=/

Corellary 12
Let T be an ergodic automorphism of positive entropy H(T)> O
Then the irequalities 3.17 hold. Moreover, if g is not identi-

cally zero then xg(H(T))) g(1).

Proof The first assertion is & simple consequence of
Sinei's weakisomorphism theorem [52] and theorem 5. The se-

cend is obvious. /=/

We computed an explicit (but trivial) result for the zero
entrepy case and an esfimation (depending on the entrepy)
for the case of positive entropy. Now we are going to cal-
sulate the new invariants for ergodic automorphisms of im-

finite entropy. This leads to a trivial result again.

Carallery 13

Suppose T is ergodic and let H(T):aQ. Then for all genera-

lized dynamical entropies G(T)= 1lim g'(x) holds provided
x$0

the 1imit exists.
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Rroof We consider the following sequence of Bernoulli
110
n,n,.-o,;
is a factor of Tn iff nsem, and all the Tn (n=1,2,...)

shifts. T  is the )-Bermoulli shift. Then, Tn

are factors of T . Therefore we have

sup 2g(p,) <G(T ) =G(T) =lim g'(x) . (3.18)
{pﬁgj i n x40

n
Here {fn denetes the set of all probability vectors with
Zh(p1)=1ogn . But q=(%....,%)€ ‘fn and therefore

2 8lay)=ng(=6(1).

Xow 1lim n[g(!ll)-g(o)_]sg'(o) and g(0)=0 complete the proof.
n

/=/
At the end of this section we formulate the obvious
Proposition 14
All generalized dynamical entrepies ¢ are monotonously in-
creasing functions of the entrepy on the class of all
Bernoulli shifts.
Proof We get the desired result if we combine Ornstein's

[8,9] and sinai's ﬁ?] isomorphism theorems and theorem 5. /=/

This result is net surprising because the entropy completely
determines the isomorphy classes of Bernoulli shifts and is
itself contained in the new family of isomorphy invariants.
Proposition 14 reflects the fact that mo more information em
the isomorphy of Bermoulli shifts is to expect if we knew
the entropy. The monotonicity results from the fact that all
G-invariants are defined in the same mamner as a supremum

over partitions.
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4. A special class of invariants

The new dynamical invariants constructed in the previous
section are very hard to compute in nontrivial cases because
there is no analogue of Kolmogorov's theorem. To find fur-
i{her nontrivial properties we consider & special family of

concave functions having a simple structure. We define

x 0€£x<r
gp(%) ={ 0<r<i (4.1)

r x>r

and denote all functionals associated with - with Gr .

In a forthcoming paper [11] we will use the Gr to construct
an example showing that in 3.17 equality doesn't hold in
general even for the case of Bernoulli shifts. Here we only
want to answer the question whether there are dynamical
systems with Gr(T)A<1=g'(O) or not, thus proving the exist-
enée of systems with Gr(T) between the trivial values g(1)=r
and g'(0)=1.

Proposition 15
Let (X,’B,IM,,T) be an ergodic dynamical system with entropy

0<H(T)=s<% and assume r<e °, Then G (T)<1.

Remark

The logarithm in the function h(x)=-xlogx is, teken to the
basis e. If another basis b is used then proposition 15 holds

if r<b~S.
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Proof of prop.15 Gr(T)=s~gp G.(C/T) . We can restrict

ourselves to processes (C/T) with H(C/T)=s . For rce™®

there exist reals £, J,x > 0 such that r=e"(9+€)_x
n

and (s+£)(1-8 )> s . We denote D"= Vv T'ig_ . Because of
i=1

H(C/D™) s there is a n (C,£,d) such that Y¥n>ng

s=H(C/D™) =< (s+£)(1-3) (4.2)

Assume n>n . We show that in the partition ngn there
are some elements cian the union of which has a measure
greater than J and which have the property

(54 % (ot (4.3)

n
/u,(cin D> e
The elements of g\/gn not fulfilling (4.3) are denoted by
n
¢, Noj.
Assume Z,/-(C N D™)< § . Then we have for the sets C, MDY
3 i 3 k 1

because of /L(Ckn D?)S em(s+E )/“«(Dil)

-log/Ir(Ck/Dil)g 8+ § . This in turn leads to

-g—if"“knn?)l%/“ck/l’?)? (s+€)(1-8) . By the positivity

1#3

of h(x) and the definition of the relative entropy we get
H(C/D™) > (s+ £)(1-9)

This contradicts (4.2). Therefore J_ peyn D?))S .
i,

From r<e'(s*€ )

we get gr(lu,(Ci/D?))=r and
8(JA(C, /D)) € p1(C,/DT) .

Now r=e'(s+£)-x leads to
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6,.(C/D= gll,(cknnl) + ‘Z%/MDJ)[/M(Ci/DJ)'X] =

= 1-X§J/J,(D3‘)< 1-y4 .

Therefore G.(C/T)< 1-X<§-<1 for all finite partitions C,
aad the upper bound is independent of C. So it holds for the

supremum as well. /=/

6. Discussion

We constructed a large class of dynamical irvariants by gene-
ralizing the notion of K-entropy. The construction is based
on the idea tc replace the function h(x)=-xlogx by &n ar-
bitrary concave, bounded function with £(0)=0. This method
stems from the theory of the order-structure of states [14]
which has been used successfully in the anelysis of the irre-
versible behaviour of physical systems.

The dynamicel entropy can be computed for many systems. The
theorem of Kolmogorov being & basic tool for the computation
of the entropy does not hold in general for the new inva-
rients. Therefore the explicit calculation of the G(T) seems
to be a very hard problem, and results are known only in some
cases which are trivial from the point of view of the entropy
theory. One sees however that eny invarient constructed with
a function g not being identically zero is nontrivial, i.e.
one can find dynemical systems (X,13,/L,T),(X'{B',}L',T')
such that G(T)#G(T').

Whether there are systems with equal entropy and G(T)#G(T')

for some g is unknown at present, although it seems that
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this should be true. This conjecture is sustained by the
non-validity of an analogue of Kolmogorov's theorem on the
entropy of a generating process. The new invariants are tri-
vial for systems of zero entropy, but in this case there are
inveriants such as sequence entropy and support [E] the pro-
perties of which are not yet completely investigated and
which ere trivial for K-systems. So the dynamical invariants
presented inthis paper could become & useful supplement to
the entr9py theory provided the difficulties of the explicit
calculation can be superseded.

At the moment there is no hope to find general methods for
the computation of all new invariants. Therefore as a first
step the properties of the class of invariants constructed
with the functions g, are considered. The Gr take values
which are not trivial (i.e. there are systems T with
3(1)=r<:Gr(T)<:1=g'(O)). Moreover, from the study of an exam-
ple we krow that even in the Bernoullian cese the supremum

of G (C/T) over the independent generators can be smaller
than Gr(T) D1]. This example while illustrating the non-tri-
viallity of the new invariants, brings out the deep diffi-
culties connected with the explicit computation 2f the gene-
ralized entropies. .

We already noticed that the construction of the G-inveriants
is based on an idea from the theory of the order-structure

of states. This raises the question whether there is a struc-
ture in the set of all automorphisms of a measure space which
is induced by the generalized K-entropies. Theorem 5 gives

a first hint, but more interesting is & study of the
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consequences of G(T)=<G(T') for all g. It is to expect

that this leads to & physical interpretation of the new in-

variants which is still an open problem.

Appendix 1. Concave functions on [0,1]

A function g: [0,1]—-——1! is called concave iff Yx,y,1€ [0,1]

g(A x+(1-N)y) > Ag(x)+(1- X)ely)

If the equelity holds only for x=y and (or) (A =0 or h=1),
& 18 called a strongly concave function.
The following properties of concave functions are easily

verified [11,14].

Lemma A.1

Let g: [0,1]—'R be concave and contirapus, and let g(0)=0

¢
1) g(x)+g(y) > g(x+y) ¥x,ye[0,1] with =x+y<1

2) If g is strongly concave, g(x)+g(y)=g(x+y) holds if
and only if x=0 and (or) y=0 .

3) g(x)£ x.1im g'(y) if the limit exists. g' denotes the
‘0

y .
first derivative of the function g.

4)
Let (ai),(ti) be sequences of the same length, 8;,%,20
Vi, Zsi< 00 . Then

(Zs)e( 2t/ 5 82 %—%S“i/%)
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Appendix 2. Proposition 2 (Sketch of the proof)

Proposition 2 is a generalization of corollary 4.8 of [16].
This corollary holds for the relative entropy of a partition
with respect to a sub- O-algebra of 73 and is widened to
the functionals of def.2.3. The proof of the generalized ver-
sion follows exactly the line of the cited statement in [16].

Lemma A.2

Let (X,'B,),L) and 'BOC'B be a probability space and an
algebra, resp. Assume that ”Go generates the G-algebra 73,
If C is a finite partition measurable 73, then for all

£ >0 and for any contimous bounded, concave function

g: [0,1]—= R with g(0)=0 there is a finite subalgebra

o’DC T)’o such that
1) g(1)=G(C/0 ) <g(1)+E
i1) g(1)=G(D/R ) <g(1)+E

where A=G(c) anda H-6(p) .

For the proof we have only to remark that the lower bounds
are trivial and that there is & Oc< 6°<1 such that

&
i) 05x<5° = - §<g(x)<;
ii) 1- 6‘0<xs1 = g(1)- %<g(x)<g(1)+ -f; .
r is the number of sets:¢the partition C consists of.
This simple fact is the only additional argument to the proof
of th.428 in [16] which is the entropy version of the lemma.
Lemma A.2 leads directly to prop.2 by using the same argu-
ments as in the cited corollary 4.8.
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