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The parallel transport responsible for the geometric phase is reviewed empha- 
sizing the role of transition probabilities and of the metric of Bures. 

Introduction 

The phase of a single state is not an observable quantity. In particular, the phase 
commutes with the observables which define the system. Nevertheless the change of states 
is generally accompanied by a change of the phase that can be called phase transport. If 
a state w is changed in two different ways to become another state w’, the transport of 
the phases may yield different phases. Then their “difference”, the relative phase, may 
become observable by virtue of the superposition principle. A particular case is the cyclic 
change, where w comes back to itself, and the change of the phase will be compared with 
that of a “trivial” process, where w remains stationary. 

All this is obvious, both experimentally and theoretically, for pure states. But it 
should remain true, to a certain instant, for mixed states: At first, in deviating from 
the pure to the mixed states, i.e. in going from the extreme part into the inner parts of 
the state space, coherence and correlations will not be destroyed suddenly but gradually, 
continuously. Secondly, if embedded in a larger system, the mixed states may be seen as 
restrictions of pure states. Then some “parts” of the relative phase of a cyclic change in 
the larger system may become decodable already by observables of the smaller system in 
which the states appear as mixed ones. 

The phase transport and the relative phase consist (at least) of two parts, a dynamical 
and a geometrical one. The geometric part depends only on the shape of the curve in 
state space which describes the changes of the system, but not on the time needed for 
that changes. It is a feature that allows to distinct the geometric phase and its transport 
from the total phase change. 

This remarkable fact also opens a heuristic way to see why the geometric phase 
survives the adiabatic approximation in which the changes become “infinitely slow”. 

tThe invited lecture to the XXVII Symposium on Mathematical Physics, Toruri, 6-9 December, 1994. 
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Thus, as seen from to-day, it seems quite natural that the geometric phase firstly appeared 

within applications of the Born-Oppenheimer approximation, Herzberg and Longuet- 

Higgens [5], Mead and Truhlar [15]. Berry [28], has shown, beside others, the generality 

of the phenomenon for adiabatically guided Hamiltonians, remarking that the transport 
condition appears, in the language of mechanics, as an anholonomic constraint. Simon 

[27], elegantly explained its geometric structure in showing that it is a morphism from 
the cyclic evolutions, which form a loop group in the state space, into the holonomy 

group of a natural parallel transport. Because he restricted himself to pure states, that 
holonomy group is U(1). Then Aharonow and Anandan [34] settled the existence of the 
geometric phase in every cyclic evolution of pure states, whether adiabatic or not. See 

also [41]. 
F. Wilczek and A. Zee [29] have been the first in considering the geometric phase of 

degenerate eigenstates of a parameter dependent Hamiltonian. Here the state w can be 

described by the projection P onto the subspace of eigenvectors. Choose in the Hilbert 

space ?l any orthoframe $1,. . . , gbrn of length m of eigenvectors. It can be considered as 

a point of an orthogonal Stiefel manifold which is an U(n)-bundle over the Grassmann 
manifold of projections P of rank m. Changing the projections along a curve C, t 4 

P(t), calls for a (parallel) transport of the orthoframes, which constitute the fibers over 
the projections. For a cyclic evolution of the projections, one comes back to the same 

subspace, and hence to another orthoframe. This latter one is related to the one chosen 
at the beginning of the evolution by a U(m)-transformation U, the holonomy of the loop. 

In [29] the transport condition reads 

Physically U has to be regarded as a relative phase. It is called a geometric phase as it 

depends only on the oriented loop of the projection operators and not on the velocity 
with which the system runs through it. 

In that scheme the fiber bundle depends on the length of the orthoframes. A reformu- 
lation without that rmconvenience is as follows: With an auxiliary orthoframe ‘pi, . ~ p,,, 
define the partial isometry RY := c ]$j)(cp,]. Then (1) can be expressed by 

U” $I- = 0. II- My* = P. rank P = m . (2) 

Indeed, let C : t -+ P = P(f) be a curve of projections of rank m and C’ a path of 

orthoframes $1,. . . ,$m of P’H. The path C : t -+ W = W(t) respects (2) if and only 
if it is of the form W := C]+j)(cpj], where the path C’ fulfils (1) and the auxiliary 

orthoframe remains unchanged along the path, W*W = const. 
If W with WW’ = P runs through all lifts of a given curve C of fixed rank projections, 

parallelity is characterized by 

J(g,F>dt=Min! or J{mdi=\liu!, 



with (WX, Wz) := nw;“w2. (3) 

As a device to transport orthoframes of degenerate eigenvectors Fock [2, appendix] mini- 
mizes as in (3) an “energy integral” to obtain (If_ 

However, a finite rank projection is nothing but a rather special density operator, 
and the present author could extend f32] the scheme to aEl density operators: Assume a 
curve of states is given by a curve of density operators (normalized or not): 

t--+wt, #t(A) = TrD(C)A/TrD(t)~ rank D(t) = const (4 

A lift 

t --+ ~(~), a(t) = ~{~) w(t)* (5) 

(6) 

see also ~~browsk~ and Jadczyk 1381. One may regard every IV with WW* = D as an 
u~p~~~~~~ of the state given by D, so that two ~plitudes of the same state differ by an 
unobservable unitary (or partial isometric) phase U, W --+ WV. Again, transporting the 
amplitude (the phase) along a closed curve of density operators yields a holonomy which 
is an observable relative phase. 

It has been remarked in 1981 [36] that the parallel condition (6) follows from the 
variational principle like in (3), which in turn is related to the Riemann metric tied to 
the Bures distance. We shall come back to this point of view. 

The following exposition aims to explain the occurrence of the geometric (Berry) 
phase within a completely natural, as it seems to me, geometric setting. Looking at 
rather general state spaces? some parts of the theory concerning pure vector states, 
which are due to the commutative nature of its U(1) gauge theory, are left aside. There 
are numerous good papers describing them. Instead, the state space or the cone of 
positive linear forms equipped with the distance of Bures are viewed as (topological) 
metric spaces, and as a possible background for defining the transport of a~~litudes and 
phases. The behavior of the metric under actions of stochastic mappings, the Riemann 
form of the Bures metric, and its distinguished place within a certain class of Riemann 
metrics (a la Petz) will be discussed. On the other hand the gauge theory associated 
with the parallel transport and living on * -representations with values in the commutant 
does nut belong to the content of this paper. 

The last two sections are devoted to density operators where more explicit expression 
for various quantities can be derived. In the last section some calculations for t.wo-level 
systems are shown in the vague hope that the deviations for mixed from the pure state 
case could be dedected experimentally. 

Transition probability, pasallelity, and Bures distance 

Let us denote by A a unital C*-algebra with unit element e, and by w one of its 
positive linear forms, If in a unital * -representations a- of .4 with r~prese~~ation space 
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7-1, the linear form w can be represented as a vector state 

w(a) = (ti?~(~)ti)~ all a E A, li/ E %, (7) 

the vector $ is called an amplitude ofw in 71;. 
Now let wr and w2 be two positive linear forms. A linear form v is called a ~ru~s~~~~~ 

form from wr to it/z if and only if 

]v(a’b)]2 5 wz(a*a) wr(b*b) for all a,bE A. (8) 

If v is a transition form from wi to wz then v*, defined by V*(Q) = ~(a*), is a transition 
form from w2 to wl_ 

Given amplitudes $1, $12 of the positive linear forms wr ,02 in B-, the linear form 

a H u(a) := (7dJ2,4a)$1) with aEA (9) 

is a transition form from wr to ~2. Every transition form can be gained this way. This 
justifies the interpretation of u(e) as a transition amplitude and, if the positive forms are 
states, of its absolute square IV(~)]” as a transition probability. It is tempting to consider 
the supreme of all transition probabilities reachable by pairs of amplitudes. Thus, if 
the positive forms are states of the algebra, the supreme of ]v(e)12 marks the maximally 
possible transition probability between them. This was the reason in [13] to define the 
transition probability of two positive linear forms on A by 

P(Wl,WZ) := sup i+>/“, w 

where v runs through all transition forms from WI to W-J. In case the transition probability 
is not zero, the two states are called overlapping. In turn, vanishing transition probability 
marks a non-overlapping pair of positive linear forms. 

Remark: A correct probability interpretation needs wj(e) = 1. However, the word 
~‘transition probability~’ will be used even if this assumption fails. 

The transition probability is symmetric and homogeneous of degree one, 

P(Wl,W2) = ~(w2,4, ~(~lWlrbP2) = ~1~2~(WI,W2), Xj>O. (11) 

Notice that P(w,w) = w(e), and that w is the unique transition form from w to w with 
that property. 

Let us return to the transition forms. As the definition implies the weak compactness 
of the set of all transition forms from wi to wz, the supreme of the function e --+ Iv(e)] is 
attained on this set. If this happens with I/ it will be called maximal. A transition form 
v is called optimal iff it is maximal and v(e) is a not negative real number. 

Two amplitudes satisfying (9) with an optimal v are called ~uTaZZe2 [32]. 
The transition probabilit,y is nicely connected with elementary geometrical properties. 

Denote by $1, $5 two amplitudes of the positive linear forms wr and w2 in the same 
representation r. With v defined by (9) one gets for the Hilbert space distance 

II $2 - $1 I12=wl(e) +w2(e) - v(e) - v*(e). (12) 
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The shortest possible distance one obviously gets with an optimal v or, what is the same, 

with parallel amplitudes. Then u(e) is the square root of the transition probability. This 
way we arrive at the distance of Bures, distg, see [7], 

distB(Wi, w*) := Vw,(e) -I- Us(e) - 2JRZZ. (13) 

Instead of minimizing the Hilbert distance (12) one could have maximized the Hilbert 

space norm II $1 + $2 II, which reminds us of the phase convention of Pancharat,nam 

[4]. While Pancharatnam was looking for maximal intensities if two rays of polarized 
light superpose, Bures asked for a non-commutative version of the Kakutani mean [3]. 

Though outside the scope of this paper, I mention the appearance of the Bures distance 
in the theory of “quantum channels” as anticipated by Holevo 1191. Presently we need 
the metrical aspect to express parallelity. 

Before calling (13) a distance one has to check the axioms for a topological metric. 
The only nontrivial part is in proving the triangle inequality. Starting with three positive 

linear forms w. wi, WQ, and optimal transition forms uj from w to wj, one considers the 
GNS-representation 7r of w based on the amplitude $. Because of (8) there are amplitudes 

u’ 11 and $2 such that 

vj(a) := (&,r(a)$), w;(o) := (@j> r(a)&,,) 

with wi 5 wj. The Hilbert space triangle inequality now reads 

w:(e) + w;(e) - 2&z(e) < w:(e) + w(e) - 2Yije) + w;(e) + w(e) - 229(e), 

where ~12 is the transition form from wb to w\ given by the -amplitudes $j. From such 

an inequality fi 5 fi+ 6 it follows dx + al + us 5 dG+ Js if a3 > 0. 
Setting aj = wj(e) - d;(e) we get 

Jwi(e) + ws(e) - 2%12(e) I: distB(tii,W) + distB(w,wz). 

By definition the left hand side is larger than the Bures distance of the linear forms 
involved. q.e,d. 

~q~~~~ed with the distance distg the cone of ~os~t~~le &near ~0~s is a8 co~,~~ete topo- 
logical metric space. Its deter is an inner one. 

The metric is inner because every pair of positive linear forms can be connected by 
(at least) one curve, called short geodesic arc, the Bures length of which is equal to the 
Bures distance of the pair. 

To prove this one chooses a parallel pair of amplitudes $0, $1 and denotes by wt the 
vector state given by $t = $0 + t(& - $10). For 0 < t < 1 one gets 

distB(%Wt) + distB(%,wi) 5 11 $0 - $‘t I/ + 11 $‘t - $‘I (/ = )I $0 - ‘$1 /I . 

But the right hand side equals the Bures distance between we and wit and must hence 
be equal to the left hand side because of the triangle inequality. Thus & is parallel to 
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$0 and $1. The same argument now shows that $$, $Q are parallel for all 0 5 s < t < 1. 
Thus the Bures length of the curve t + $Q, 0 < t 5 1 is equal to the Bures distance of 
the forms it connects. It remains to prove completeness. Using parallel amplitudes in 
‘H, as in the setting above one estimates 

Iw~(u) -won 5 11 a II {Jwl(e)+ ~ldistB(wl,wo). (14) 

Hence the metrical topology is stronger than the ]I . 111 topology. q.e.d. 

We have seen how an optimal transition form u from we to wi determines a short 

geodesic arc by 

t-+wt := (1-t)2Wo+t2W~+t(l-t)(V+V*). (15) 

By differentiating and setting t = 0 we get a linear form tie, the tangent of the curve 

(15) at ~0, 

ijo=v+v*-220. (16) 

An obvious question is to be asked: Is there only one short geodesic arc connecting 
two given states? It follows from (15) that this will occur if the transition form between 

the initial and final state is uniquely determined. This can happen for overlapping pairs 
of states only. Sufficient conditions have been proved by Alberti [39] (see also [44]), 
who uses the word “skew form” to denote certain transition forms. The perhaps most 

interesting one reads: 

A pair ~1, ~2, of two positive linear forms with equal supports, i.e. annihilating the 
same left ideals, allows for one and only one optimal transition form from WI to ~2. 

Let us now look again at the cone of positive linear forms as a topological metric 

space equipped with the Bures distance. A curve t 4 et is a continuous map from some 
interval of the reals into this space. The curve is rectifiable iff it is of finite length. This 
length is called Bures length. A curve consisting of finite many short geodesic arcs is a 
geodesic polygon. A curve of finite length can be metrically approximated by geodesic 

polygons. 

Every subset of a metric space is a metric space again. If in addition every two of its 

points can be connected by a curve of finite length, the infimum of these length define a 
new metric which is inner and which is topologically equivalent to the induced relative 

topology. 

This remark applies to the state space Q(A), the set of the positive linear forms w 
with w(e) = 1. It becomes a metric space by restricting distB to it. Clearly, distB is 
not an inner metric of the state space. To cure this we start with two states we, wi and 
a pair of its parallel amplitudes $0, $1, in a *-representation K. They mark two point 
of the unit sphere in XFt, and generate a real plane in that space. The sphere and the 
plane intersect through a large circle of the sphere, and there is no shorter curve on the 
unit sphere than the one on this large circle. Hence there is no curve on the state space 
connecting wc and wi with a Bures length shorter than that oft -+ wt(e)-‘wt, where wt 
is given by (15) and v by the amplitudes $0 and $1, see also [52] Therefore, the Bures 
length of this curve defines an inner metric on the state space. Let us call this distance 
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DistB. Elementary geometry tells us 

P(ws,~r) = cos’(DistB(tie,tir)), distr, = 2sin :Disto, DistB < n/Z:. (17) 

At the manifold of pure states of a type I factor DistB is the Study-~bini distance. 

Parallel transport, Riemann form of the metric 

We have seen that p~allelity of amplitudes takes place iff their filbert distance equals 
their Bures distance distg. Equivalently, one can require that their Study.-Fubini distance 
is measured by DistB. These observations can be interpreted as a parallel transport along 
short geodesic arcs if the term parallel transport is suitably defined. Before doing so the 
definition of lifts is necessary. 

Let y: t -+ wtt to < t 2 tr be a curve of finite Bures length in the cone of positive 
linear forms. A l$t r of y is a (strongly continuous) curve t --+ .$Q in a *-representation rr 
such that every gCtt is an ar~plitude of tit in x. A lift ~~a~s~o~~s the u~~l~tude and hence 
the phase from its departure $0 to its termination $1. If the base curve y is closed, $1 
will differ from $0 by a relative phase which is an isometry of the commutant. What can 
be observed from the point of view of the algebra A is the transition form defined by the 
in- and out-vectors: Every lift I’ of y defines a transition form 

a t+ w(a) :== ($3,~(aM0) (181 

from wg to WI. In case y is a closed loop, wr = we, the transported and the not transported 
amplitude may superpose to a new amplitude 40 + $1 resulting in a new positive linear 
form 

+ + f(Q + V;). w 

Its value at a = e measures the intensity. 
A lift r of y is called parallel iff for every to < t’ < tl the Bures length of t -+ wt, 

CO 5 t 2 t’, is equal to the Hilbert length of the lift & restricted to the same parameter 
interval to 2 t < t’. We then write 

u-r := ur, r parallel lift of y , (201 

to indicate that what is visible from A does not dependent on the choice of the parallel lift. 
(It is fairly ~traightforw~d to prove this for geodesic polygons. A curve with finite Bures 
length can be approximated by such polygons. To convert this into an approximation of 
a parallel lift is technically not easy. See the proof of Alberti [45] in a slightly different 
but similar setting.) If y is closed then the relative phase comparing the initial and the 
final state is usually called the geomettic phase of the loop. The geometric phase of a 
loop consisting of strictly pure states is Berry’s phase factor. 

If a parallel lift exists, there is no lift with a Hilbert space length properly smaller 
than that of the parallel one. This is the ~~~~~a~ length ~~o~e~~~ of parallel lifts. One 
should notice at this place the possibility of choosing any complete inner topological 
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metric on the positive linear forms or on the states, and t,o define parallelity of lifts just 
in the same way by requiring the equality of the original and the Hilbert arc length. This 
may give useful alternatives. But the minimal length property gets lost. 

Let us consider a strongly differentiable parallel lift t + li,t. Denoting the t-derivatives 

by the dot notation, the square of the line element along the curve is ($,4). Applying the 
unitaries U(t) = exp itB with a bounded hermitian operator B to the lift, U(t)& := p(t) 
one gets another lift, of the base curve, provided B commutes with s(A). The minimal 

length property results in 

(II> 111, < (d, d) 3 (21) 

which may be rewritten as 

This can only be valid for all real multiples of B iff the parallelity condition 

($2 B 4) = rd, Bllt), B E T(A)’ ( 22) 

is true for all hermitian and hence for all elements of the commutant n(A)‘. This is 
equivalent with the statement that every curve t + Bt& with Bt in the cornmutant 

fulfils Berry’s transport condition [28]. In the situation considered in the introduction 

equations (6) and (22) are equivalent. 
The equations (22) give necessary conditions for the tangent 4 at $1. Dabrowski and 

Jadczyk 1381 had the idea to solve them by an an&z 

li, = r(s) $> g=g*cd. (23) 

Let us call these tangents regular. They form a real linear submanifold of I-&. The latter 

becomes a real pre-Hilbert space by 

2 {cpr ( p2yeal := ($3 3 (i7z.j + tcpzi 4 > (24) 

so that for two regular tangents $j at II, 

2 (&, ?&real := ($3 hI192 + 9291)$)~ (25) 

The closure of the space of real tangents becomes a real Hilbert subspace, the space of 
horizontal tangents IF. Its real orthogonal complement 7,y”’ consists of the vertical 

tangents. Thus the tangent space of the representation space, seen as real Hilbert space, 
splits at every vector different from 0 in an horizontal and a vertical subspace. The real 
Hilbert scalar product on every fiber I$ of the tangent space is a real Riemann structure. 
(If $ is the GWS vacuum of a faithful normal w of a von ~eurn~n algebra, the tangents 
(23) point into Araki’s O-cone 19, lo] based at $.) 

Going back to the algebra, equation (23) is equivalent with 

ti(a) r= w(ag -t- ga), 9=9*, VaEd. (26) 
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A linear form ij allowing for a representation (26) is called a regular tangent at w. 

According to Sakai, [6] and [8], proposition 1.24.4, g exists if in case of a normal state w 

of a W*-algebra ti can be written as the difference of two positive forms both of which 
are dominated by w. 

Though the element g is not necessarily unique, 

(ti:ti)d := l ij f-47) = 4g2): dgs = dmdt (27) 

is uniquely associated to a given regular tangent. It extends to a real positive definite 

scalar product. The closure 7, of the real linear space of all regular tangents with respect 
to it is the tangent space at w, and the real quadratic form (27) extended to the whole 

tangent space defines a Riemannian metric form at w. It is the Riemannian metric 

belonging to the Bures distance d&B, and dgs is its line elem,ent at w. See also [51]. As 
a so-called statistical distance (27) appears (for matrix algebras) in [55]. 

For every w and any of its amplitudes IJ the correspondence between r(g)$ and 

&(a) := w(ag + ga) induces an isometry between I, and Itor. 

The different fibers of the tangent space are not on equal footing but depend on 
the support and further properties of the base point w. This expresses the fact we are 

considering “manifolds with boundaries”. 

By (27) the state space becomes a Riemannian submanifold with the distance function 

Distg, while a tangent at a state w has to satisfy the subsidiary condition G(e) = 0. The 
costraint is solved by the map & + ti - ti(e)w. 

The quadratic form which reduces to (27) on the state space, and which is invariant 
against resealing w + Xw with real and positive functions X = X(w). reads 

(4 b), 1 b(e) 2 ~__ ~ 
f-J(e) ( 1 4 w(e) ’ 

(28) 

On the pure vector states both, (27) and (28), encodes the Study-Fubini metric. 

Examples, stochastic maps 

Let us assume that the following relation holds: 

w](a) = w(c;acj), j=l,2, VaEA. 

with elements cl, c:! and a positive linear forms w. The Schwarz inequality shows 

P(wi,ws) > ]w(c;c~)]~, and v(a) =: w(c;acz) 

is a transition form from wi to wz. If 

c; c2 = c; Cl > 0 

(29) 

(39) 

(31) 

then u as defined by (30) is optimal [8! 9,131. 
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Let US look only at the proof under the simplifying assumption of invertibility of ci. 
Defining 

one gets 

c := c2ci -l = (c;)-1(c;c2)c;i > 0 (32) 

w(e;f$?) = #r(C) = tiz(c-‘) (33) 

whose square is, according to (30), a lower bound of the transition probability. But it is 
also an upper bound: Substituting a and b in (8) by the positive square roots of c and of 
c-l is showing this, q.e.d. In the case just considered with c as in (32) the comparison 

with (15) and (16) proves the element g := c - e to be the regular tangent at w1 of the 
short geodesic arc connecting w1 with ~2. 

The statement above can be used to parallel transport along certain geodesic polygons. 
Let wi,w~,... , w, be an ordered set of states (or positive linear forms). Assume w1 (.) = 
w(c;.q) and the possibility of choosing inductively cj+r by wjil = w(c~+r.c,+i) and 

c;cj+r > 0. The optimal transition forms w(cT.cj+i) then define a geodesic polygon, y, 
and the result of the parallel transport along y equals vr := w(c;.c,). 

Quite another interesting application is to unital commutative C*-algebras 3. Being 

canonically isomorphic to some algebra C(X) of continuous functions on a compact X, 
the states are indexed by measures: The expectation value w(a) is the integral of the 
function a on X over a measure dp. Denoting by cl, c2 the positive roots of the Radon- 

Nikodym derivatives of two measures, dhl,dhz, with respect to dp, the condition (31) 
is trivially fulfilled. The optimal transition form a + w(crc~a) is the Kakutani mean. 
With a = e one obtains ~a~~tan~‘s ~n~u~a~t which is nothing but P(wl, wz), where the 

states tij are defined by the measures dpj. Starting from this statement it is possible 
to identify the Bures distance DistB with the distance function of what is now called 
Fisher metric on measure spaces. In Fisher’s paper [l] the commutative version of the 

the quadratic form (27) is assumed to measure the “intrinsic accuracy of an error curve”. 
Explicit expressions on the simplex of probability vectors are due to Wotters 1181, who 

also noticed similarities with the Study-Fubini metric. An independent proof that Dista 
fulfils the triangle inequality on measure spaces has been given in [30]. 

It is Cantoni’s idea [12] to apply Kakutani’s procedure in order to get a transition 
probability between two states of a suitable algebra. Starting with a pair of states 
he defined their transition probability to be the supreme of the Kakutani invariants of 
their restrictions to all maximal commutative unital *-subalgebras, see also 1231. Araki 

and Raggio [21]? see also [22], p roved for normal states of von Neumann algebras the 
equivalence of Cantoni’s definition with the one given by (10). Their results could be 
extended by Alberti [24] and, in other directions, by Gudder, Marchand, and Wyss [14], 
and Kosaki [26]. 

Alberti proved the validity of 

P(w, e) = i;f w(b) @(b-l), b > 0, b,b-l E A (34) 

for any two positive linear forms w, e of a unital C*-algebra. (Notice (33) as a particular 
case.) Because b and b-l obviously commute, (34) is a sharpening of Cantoni’s procedure. 
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Let us now turn to mappings. A s~oc~~~~c map 4 is the dual of a positive unital map 
& mapping a unital *-algebra d into another one A. It maps positive linear forms as 
well as states of A into those of A according to 

#: W+-+WOtp=G, L;f(&) := w(#*(~)) I 

Applying this notation to (34) with a positive and invertible element 5 of d, one gets by 
an inequality of Choi [16] 

P(W,G) f 44*(@) @(4*(&l) < 4&(Q) e(#*(W. 

Taking the infimum with respect of A as required by Alberti’s relation one arrives at I.251 

A particular case of a stochastic map is the restriction of the positive forms onto a 
unital C*-subalgebra, i.e. the dual of a unital inclusion map. The condition (8) is less 
stringent if only the elements of a subalgebra are at our disposal. Hence (35) is rather 
elementary for restrictions. We shall ask for functors associating to every pair wi, w2 of 
every unital C*-algebra a real number p(wi, ~2) such that i> is increasing under the action 
of restriction maps. One can relate some of these objects to the transition probability, 
and this is the occasion to introduce the following. 

A state w of A is called s~~c~Z~ pure iff there is a projection p E A such that, 

VaEd: PUP = w(a)p, p=p*=p2cd, (36) 

and one says p i~~le~e~ts W. With every overlapping positive linear form .Q one obtains 
the optimal transition form 

e(ap> 
a --+ da) = Jg-$ (37) 

from w to Q. The reasoning is as from (29) to (31), for instance with cl = e and c2 = p. 
Thus 

P(w, e) = e(p), p implements w . (33) 

If (37) exists, i.e. if p and the strictly pure state w are overlapping, then there is no other 
optimal transition form than that given by (37), [31]. 

Let us return to an arbitrary pair of states, wi, w2 and let us chose parallel ampli- 
tudes $1, $12 for them in a unital and faithful *-representation x. In B = B(1-1,) these 
amplitudes define strictly pure states, ei, ~2, and x embeds A into B. Because of tahe 
assumed parallelity, 

fYwi,wzl = JYel,ed, wj =ejo?r*‘ 
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Assume a functor p, defined on pairs of states of every unital C*-algebra, is increasing 
under restrictions and coincides with P for pairs of strictly pure states. Then 

P(Wl,W2) = P(e1,ea) = &l:@Z) I &w2) 

Further, assume on every state space a distance Dist is given, contracting under 
restriction maps and coinciding with DistB on pairs of strictly pure states. Then Dist 
2 Distn. If Dist can be gained from a Riemann metric, its line element will be smaller 
than Bures’s one. 

There are several variants of these stat~IneI~ts. For example, assume p is defined for 
pairs of normal states on 8(‘%) and Y-i is not finite dimensional. If p coincides with P on 
pairs of normal pure states and if p is increasing for stochastic cp-endomorphisms, t,hen 
P > P for pairs of normal states. (cp means complete positive.) Similarly DistB can be 

characterized on the set of normal states of an infinite type I factor. 

New questions arise in asking for Riemann structures defined on the set of faithful 
states and contracting under stochastic mappings. For finite *-matrix algebras Petz [56], 

see also [57], relying on the classification of operator means by Kubo and Ando [17] has 

been able to classify them. On commutative (sub)algebras they reduce, up to a numerical 
factor, to the Fisher metric. This has to be so by the Cencov uniqueness theorem 120, 

331. To get rid of the above mentioned factor, Pet,z demands equality with the Fisher 
metric on finite commutative unital *-subalgebras. (For full matrix algebras it suffices 
to have equality at the tracial state.) 

The class of metrics described by Petz can be analysed in terms of its extremal 
members. In Petz’s classification scheme they belong to the operator monotone functions 
f(z) = sx + 1 - s. We define them on their complexified tangent spaces over the cone of 
positive linear forms of a general C*-algebra. 

Choosing first for our task a real number s from the unit interval, a linear form v is 
called a regular complex tangent on the positive linear form w if there is g E Sz such that 

v(a) = 2(1 - s) w(ag) -t 2sw(ga)! aEd. (39) 

For s = l/2 and hermitian g we fall back to the Bures case (26). With two tangents uj 

of (39) induced by the elements gi, gz we perform 

(h,~z): := (I- sMds2)+4g2.9;) (40) 

so that 

(%,V2); = 2 L2(g;)= +J2)= (z&~~>~-;-s. (41) 

There may be different g in (39) resulting in the same tangent. However, (40) is indepen- 
dent of that arbitrariness and it defines a positive definite scalar product on the regular 
tangents. The completion of the regular complex tangents with respect of that scalar 
product is denoted by Cl: and called the complex s-tangent space at w. The completion 
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can and will be performed within A*. This setting defines a Riemannian metric 011 the 
space CT of complex s-tangents. The map Y + V* is an isometric conjugation from CI” 
onto C7’-S as one can see from (41). Far s = l/2, the Bures case. the complex tangent 
space is self-conjugate. 

The class of metrics described by Petz is obtained throtl~h 

(42) 

where djh is a measure on the unit interval. On commutative *-algebras every one is a 
multiple of the Fisher metric. To get equality dp has to be a probability measure. We 
then call (42) Fisher adjusted. 

In type I factors the extremal metrics (41) are tied together by the harmonic mean 
interpoiation 

(v, u): = ( F) inf [t( %, vi,:: + (%r vz):‘] (43) 

with s’ and s” fixed to give 
1 t 

s=-s’s-s I, 
1-l-t 1+t ’ (44) 

while the in~mum runs through all vj such that I/ = ~1 -t ~2. 
While the proof is rather straightforw~d for a faithful ti representable by a density 

operator, at the time being I do not know a technically complete proof in the general 
case of unital C*-algebras. 

The metrics (42) for which v --f V* is an involution induce a real Riemann metric 
011 the real tangent space. In terms of (42) this means dp(s) = dp(l - s). Restricting 
ourselves to the cases of validity let us use in (43) and (44) the values s = l/2, t = 1. 
s’ = s” = iE_, and the tangents Z.J~ = (1/2)v. We get 

On the left hand side one identifies the metric of Bures, the metrics of the right hand 
side are the extremal ones within the real metrics of (42). Thus we have gone another 
way to see a conclusion of Peta, which we now combine with estimates above: 

Let a real metric be given by (42). l’f it is Fisher adjusted then its line element 
is never smaller than that of the Bares metric. If it is Studs-Fub~n~ adjusted, (which 
is not always ~oss~b~e~, then its line e~erne~~t is never larger than that of Bures. The 
metric of Bares is the only one in the considered class which is simultaneously adjusted 
to the Fisher and to the ~tud~-Fub~ni metric. 

According to Petz [56, 571 the metric forms (42) exhaust all (real or not) monotone 
Riemann metrics on the manifold of faithful states of the algebras M,. Monotonicity 
means the action of completely positive stochastic maps is metrically contractive. In 
our setting monotonicity can be seen rather easily (see below). However, that one gets, 
under cleverly chosen ~sumptions, “all” monotone Riemann metrics in the general case 
is tempting but. an open question. 
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Indeed, with a completely positive unital map w* from A into d and a fixed 0 5 s < 1 
one associates 

Lz=wo~, V$@) = 2( 1 - $)~(~~(9)) -I- 2s~(~(g)~} (45) 

for a tangent Y given by (39). Now, as an immediate consequence of the Kadison in- 
equalities, one gets from (40) 

(% v>: > (&, u+)5 * ($6) 

Hence all! the metrics (42) are monotone {co~ltracting) like in (46). 

~e~a~~: P&z classifies the monotone metrics by an operator monotone function f. 
In terms of our definition (42) this functian reads 

(47) 

To every contracting metric (42) there is a parallel transport by requiring coincidence 
of the line element on a path of states with the Hilbert line element along its lift into 
a unital * -representation. Interesting enough, those transports were all described, for 
matrix algebras, by Dittmann and Rudolph 1461. In their paper, another function - let 
me call it ~DR - characterizes the different parallel transports. Recently J. ~ittmann 
[58] discovered the relation between fp and ,~DR. 

Density operators 

We now simplify the treatment considerably assuming the algebra A to be isomorphic 
to 23(Z), that is to the algebra of bounded operators acting on a Hilbert space 3-c. Since 
a(%) is an operator algebra, we denote its elements as usual by capital letters. 

Before we exclusively consider normal states expressible by density operators let us 
consider a singular state e and a normal state w. Denoting by Iid the unit element, by 
Q a finite rank projection, by X a positive real, and abbreviating 3 = Iid $ XQ! 

efW = 1, w(W) = l- &4&). 

Now Alberti’s estimation (34) shows 

P(w, e) <_ 1 -d&l, 

Q being an arbitrary finite projection operator. Hence, 

P(%~orrnal, ~~i~~~l~~~ = 0 (481 

so that no normal positive form overlaps with any singular one. 
Prom now let us restrict ourselves to normal positive linear forms, respectively states. 

To express the Bures distance with the help of positive trace class operators we consider 
three states 

w(A) = TrAD, q(A) = l?rADj, A E B(E), (49) 
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where j = 1, 2. Given the last two states we can choose the first in such a way that 
we meet the situation assumed in (29) with bounded operators Cj. These operator are 
uniquely determined by requiring Cj$ = 0 if Dll, = 0. It is convenient to introduce the 
Hilbert Schmidt operators 

Wj ;= Cj D1i2 obeying W, Wj = Dj . (50) 

To get an optimal transition form from wi to w2 we have to ensure, according to (31), 
the positivity condition 

C;C2>0 or w;w2 > 0. (51) 

The positivity enables us to write 

W;Wz = JWfW2W2*WlE JW2+WlWiW2. (52) 

From (51) and the polar decompositions 

we conclude 

W 3 = Df12 V- 
3 3, j = 1,2, (53) 

w; w2 = v; J-vi = v; J_v2. 

Because of parallelity (30) together with (54) shows 

P(D1, D2) := P( Wl,W2) = w(cyC2) = Tr w;w2, 

J’(Dl,Dz) = n D, DaD, 
p---T&J~, 

as well as the optimal transition amplitude from wi to wz 

v(A) = w(C;AC2) = TrAW2W;. 

The polar decomposition (53) applied to (52) provides us with 

(54) 

(55) 

(56) 

(57) 

~:~~w~w; = ~JD:~~D~D:~~D~/~. (58) 

In order to get not too involved with support discussions, let us assume faithfulness (or 
equal supports) of our density operators. We then see explicitly how Alberti’s uniqueness 
theorem works. Abbreviating the Pusz and Woronowicz geometric mean [ll] by (S, R 

positive) 
S#R := @/2(R-i/z S R-i/z)1/2Ri/2 , 

(58) tells us 
W2 = (D2#D,l) WI. 

Taking into account (53) one can define a relative phase by 

i/2 
W2 = D, U2,1&, u(wz,w) = U(D2,Dl) := u2,1 

(59) 

(60) 

(61) 
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so that (58) or (60) yields 

(62) 

This phase depends only on the ordered pair of states (density operators). 
In finite dimensions and for faithful states the unitaries (62) are expressed through 

products of positive operators. Therefore, their determinants have to be one: 

det U2,, = det U(D2, Dl) = 1, u E W(n). (63) 

The reduction of these relative phases to SU(n) in the interior of the state space is due 
to Dittmann and Rudolph [47], and to Alberti [45]. 

An ordered finite set of faithful density operators (states) determine a geodesic polygon 

DI = Dn+l s= D, e . += D2 + D1 (64) 

in the state space. Then the amplitudes and phases are parallel transported according 
to 

W1U := IV,,, = (&#D,‘)(Dn#D,:J . . . (Dz#D;‘) WI (65) 

or, using the notations (61) and (62), according to 

W,U = Wn+l = D:‘2Un+~,,Un,,_1.. .U2,1Vl. (66) 

The transport condition (6) allows parallel transport for lifts of arbitrary (regular enough) 

curves of density operators. SU(2)-orbits [40] and, with less details, further Hamiltonian 

motions [43,53] have been considered. 

The parallel transport as determined by the Bures metric is governed by a gauge 
theory [43,50]. Its connection A form is given by 

W*dW-dW*W=W*WA+AW*W. (67) 

The case of dimension two is well described by Dittmann and Rudolph [47]. Here A is 
a connection on the 7-sphere with a 3-semisphere as base space. Not much is known for 
n > 2. 

The Riemann form of the Bures metric and of the metrics of Petz can be gained as 
following. A bounded operator X is a regular (complex) tangent of (40) iff there is G(‘) 

such that 
X = 2(1 - s)G(“)D + 2sGcS)D. (68) 

Then 

(Y, X); = ;TrY*G(') , (69) 

where D is the density operator of w. Remind the Bures metric which one gets with 
s = l/2. Relying now on the representation (42) one gets 

(Y,X)? = +Y’G(““)1 G(dML) = G(S) dp. 

J 
(70) 
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In this large area of interest let us look only at the extreme boundary, where 

D = I@)($1 > x = IzlrM -I” I%wl 
Adopting the subsidiary condition ($]7j/) = 0 one gets 

Hence we get for the submanifold of strictly pure states 

(71) 

(72) 

The factor on the right hand side is I for the Bures metric only, otherwise it is larger than 

1. In order to adjust a general metric (42) to the Study--Fubini metric on the extreme 
boundary, one has to divide the Fisher adjusted metric by the factor 

J MS) 
4s(l - s) ’ J d/h(s) = 1. (74) 

This is only possible if that factor is finite. The finiteness condition shows which of the 

considered metrics can be extended to the pure states. 

Two-level systems 

The 2-dimensional case allows for an explicit treatments [42] which could not be 

achieved for higher dimensions yet. 

But there are further reasons to embark on it. Indeed, to the first experiments [35] es- 
tablishing Berry’s phase belong configurations with mirrors or mirror-like devices which 

can be described by geodesic polygons on the 2-sphere of pure states (with diameter 
one if Study---Fubini adjusted). If one respects helicity reversals by an extra in phase, 
the polygon can be thought of as consisting of short geodesic arcs. These and similar 

situations (use of filters) with “quantum jumps” are clearly examined in 1371. An exper- 

imental check of parallel transport of amplitudes and phases within the region of mixed 
states could perhaps become possible in two-level systems. The experimental difficulty is 
in the accuracy within which a degree of polarization (as an equivalent of a tel~lperat,ure) 
can be adjusted. 

Two-by-two density operators may be described by 

D = slid + 2101 + 2202 + 53(T3 = 
1-E 
21id +EQ, (75) 

where Q is a rank one projection and {2xr,222,223} is the polarization vector. Its length 
< is the degree of polarization 

52 = 4jz: + LX; + & 4~‘:=detD=l-,F”. (76) 
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The transition probability in (10) can be computed to [48,49] 

P(D, D’) = ; + 2( zrz: + 222; + 2s2; + 22’). 

One can establish in a straightforward way 

(77) 

Dt#D-l == D’ + x’xD--l 
pm-n 

and for the relative phases (65), (66) one gets 

u(D, D) = (D)'/" (D')lj2 + xx’ (D)-'/" (D')-lj2 
> 

drn . 

(78) 

(79) 

This is valid for all short geodesics of length smaller than 7r/2, i.e. if P(D’, D) # 0. The 
numerator in the equation above is a polynomial in the matrix elements of fi and of 
m. Hence (79) is well defined for all pairs of overlapping states. 

A particularly simple case appears if the degree of polarization does not change, 
E = [‘,z = 2’. Then 

dmD’#D = lid + D’ - D = lid + I(&’ - Q) . (80) 

As an application, let us compute the geometric phase U of geodesic triangles and quad- 
rangles consisting of short geodesic arcs. Let us denote, as in (75), the common degree of 
polarization by <, and the projections of the involved density operators Dj by Qj = ]j) (j]. 
We abbreviate 

U12 := (112) GIlj, U32l := (312) (2]1)(1]3), and SO on. (811 

Geodesic triangles: 

The expression relevant for the intensities is 

&ZZKTrDrU = E *a321 + ‘t3(1 - ‘t) 
U12 + U23 + U31 + 2U321 - 3 

2 

+ [“(I - 0 
,Ul:,+U23+U31+6 

2 
+ 4<(1- o3 + (1 - E)*. (82) 

For [ = 1 on gets E = U32l/lU3211 which is Berry’s phase factor of the cyclic process 
Qr, Q2, Qs, Qr as it should be. 

Geodesic quadrangles: 

dU12U23U34U41 TrDlU = t5 a4321 $ 
E4P - 0 

2 ( 
604321 - U432 - U421 + 3U431 

+ 3U321 + U43 + a21 + U4l + U23 + U42 - 3013 $ 2) + . . . (83) 

Again for < = 1, complete polarization, the quadrangle expression (83) returns Berry’s 
phase. 
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Another easy to calculate process makes use of 

U(D’,D) = lid, if D’D = D’D (84) 

for commuting density operators. 
Let us consider the following cyclic process with photons travelling in z-direction. 

The in-state P)i is linear polarized in, say, x-direction with polarization degree t. Then, 
conserving the polarization direction, its degree is changed to q. To do this we use 

(84) to get Da. In the next step the degree of polarization remains constant but the 

linear polarization is changed by an angle cr. We arrive at 1)~. The third step consists 

of changing the degree of polarization back to I, leaving its direction unchanged. We 
obtain L?q. Finally the direction of the polarization is rotated back to the x-direction, so 

that the initial state D1 is recovered. 

To get from D2 to 03 we have to calculate the relative phase transporting the state 

along a piece of a SU(2)-orbit on the Poincare sphere. This has been calculated in 
different, settings in [32] and [40] yielding 

U(Ds,&) = exp(-iaqcra). (85) 

Because of (84) the phase obtained in the cyclic process, its holono~~, is computed to 

be 

U = U(D1, Dq) U(&, Dz) = exp[icr(c - n)gs] . (86) 

What can be observed from the relative phase U according to the formalism of quantum 
theory is encoded by the transition form 

A + v(A) = TYD:‘~AD;‘~U*, (87) 

a special form of (18)) see also (19). Similar considerations can be done with spin l/2 

particles and other two-level systems. 
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