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ABSTRACT

It is explained how spheres can be considered as spaces of pure states. States,
transition probabilities, observables, symmetries, the Jordan structure, and
phases are shortly discussed.

1. Introduction
It is my aim to show the existence of a consistent interpretation of the n-sphere,

Sn, as the space of (pure) states of a (possibly fictitious) quantum system. The basic
structure is of elementary simplicity. There are meaningful realizations within Quan-
tum Mechanics for n = 1, 2, 4, and, to a certain extend, for n = 3, 5.

LetH denote a Hilbert space of complex dimension m+1, and let us recall that two
of its vectors describe the same state iff they are linearly dependent. To get rid of this
ambiguity the complex projective space P(H) = CPm of all complex 1-dimensional
subspaces of H can be considered1. The possibility to handle all physical relevant
questions of the theory within CPm is principally known since long.

But is it worthwhile to do so? Should we leave the linearity of the Hilbert space
which fits so well to a major key of quantum theory, to the superposition principle?
Mostly of course, we should not. However, there are some particular directions of
research for which this is or may become important.

In particular this point of view is a vehicle to understand Berry’s geometric phase2

as it became clear already in3. It has been supported4 by handling evolutions of gene-
rically degenerate states, and further by a scheme to handle the problem of relevant
geometric phases for curves of density operators5,6. The numerous investigations of
the geometric phase stimulated the interest in adapting, as a tool, a geometric view
of quantum mechanics, see7,8.

Knowing that quantum theory can be consistently and completely formulated in
terms of projective spaces one may ask for the peculiar properties of these manifolds
making that possible. Or, to pose the question the other way round: Are there further
Riemannian manifolds which enables a sort of quantum theory like that on complex,
real, or quaternionic projective spaces? I claim the answer is yes, and as said at the
beginning, examples are provided by the spheres.

2. The n-Sphere as a Space of Pure States
As the 2-sphere is the state space of every ordinary 2-level quantum system,

one can use the knowledge9 about this particular case to straightforwardly extend
relevant physical notations to general spheres.



A less pragmatic and probably more convincing reasoning is the following: A com-
mon feature of the projective spaces and the spheres, if equipped with their natu-
ral metric, is the fact that all their geodesics close with equal length10. Indeed, the
geodesics on a sphere are given by its large circles. It is a good choice to fix this
universal length of the closed geodesics to π. Hence the maximal distance between
two points will be π/2. In the projective spaces two points have maximal distance iff
the states they represent are orthogonal. In every other case there is one and only
one geodesics arc with length smaller than π/2 joining them. The squared cosine of
its arc length is equal to their transition probability in the Hilbert space.

It seems to me quite natural to require just this property as the basic definition if
a n-sphere is considered as a state space.
In doing so let Sn be a n-sphere embedded in Rn+1 with radius 1
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Let x, y ∈ Sn be two states seen under the angle α from the center. Their distance
on the sphere, i.e. the minimal length of a curve on the sphere joining them, equals
α/2. According to what has been said above their transition probability is necessarily
defined by

p(x, y) := cos2(
α

2
) =

1

2
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1
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To a given state x there is exactly one other state, x⊥, which is orthogonal to x, i.e. x
and x⊥ have vanishing transition probability and maximal distance on the sphere, and
x⊥ = −x is the antipode of x. Consequently, an observable, if not trivial, is necessarily
an alternative, and the n-sphere behaves like a 2-level system. (By the by, x, y, −x,
and −y form a rectangular triangle with baseline length one. The length |x+y| of the
side joining y with −x is the square root of p(x, y).)

An observable, A = Ax,λ,µ, is given by a pair of orthogonal states, x and x⊥ = −x,
and by the values, λ, µ, which are attained by individual measurements according to
whether x or x⊥ is found. These data fix the expectation value of the observable for
an arbitrary state y as following

y 7→ Ax;λ,µ(y) := λp(y, x) + µp(y, x⊥) = (3)

=
λ + µ

2
+ 2(λ− µ) xy (4)

Thus the observables form a (n + 2)-dimensional real linear space O = O(Sn).
In O there is a distinguished unit element, 1, satisfying 1(y) = 1 for all states y,

and on O there is a distinguished linear form, called trace :

1 = Ax;1,1, Tr Ax,λ,µ = λ + µ (5)



If all the expectation values of an observable are non-negative, the observable is called
positive. For the observable Eq.(3) this means nothing than λ ≥ 0, µ ≥ O.
The positive observables form a cone O+ containing 1.

Such a setting calls for a new definition of state, which is done next.

3. General (Mixed) States
States and observables are dual objects: Defining one of these concepts, the defini-

tion of the other should follow unambiguously. In this paper the space of pure states
with its geometry has been defined at first, followed by the definition of observables.
Hence the return to the states is programmed.

A general state, ω, is a real linear form on O taking only non-negative values on
O+, and normed by ω(1) = 1. The set of all states is a convex subset of the linear
space of all real linear forms on O. Physically, as is well known, the convex structure
reflects the possibility of performing Gibbsian mixtures. In this context a state is
called pure if and only if it is a point of the extreme boundary of the convex set of all
states.

This is consistent with the previous definition because the set of all general states
can be identified with the convex hull of the n-sphere.

Indeed, let us see that the general states are parameterized by the points of the
ball

En : y2
1 + . . . + y2
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1

4
(6)

To every state ω there is one and only one point y of the unit ball Eq.(6) such that

ω(Ax;λ,µ) =
λ + µ

2
+ 2(λ− µ) xy (7)

is valid for all observables.
In fact, with no restriction on y the right hand side can represent every real and

normed linear form on O. This form can be positive for positive observables if and
only if y is a point of the ball with diameter one.
The state given by y = 0 is equal to 1

2
Tr .

There is yet another interesting parameterization of the state space in the case at
hand: The states can be described by the points of a (n + 1)-hemisphere

Sn
+ : y2

1 + . . . + y2
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1

4
, yn+2 ≥ 0 (8)

which is a deformation of the ball (6). If n = 3, 5, where an alternative description by
means of density operators is known, the geometry of the hemisphere is that given by
the metric of Bures11 (see below).

4. Symmetries
The symmetry group of a n-sphere Eq.(1) is the orthogonal group O(n + 1). Its

one-parameter subgroups are generated by real skew symmetric matrices X according



to
dx

dt
= X x with X̄ = X = −X† (9)

with a yet unspecified parameter t. (Using Eq.(7) one easily gets a Heisenberg like
equation for the observables.) On the 2-sphere Eq.(9) is a rewriting of a von Neumann
equation: It defines the corresponding generator in the Hilbert space frame only up
to an additive constant. (The Schrödinger equation is the Hilbert space lift of the von
Neumann equation.)

For n even there is always an axis of the n-sphere remaining stable under the
rotation described by this equation. But for n odd, this is not necessary so, i.e. there
may be no observable which is conserved. Further, there are (n2 + n)/2 independent
generators. Hence there are more generators than traceless observables if n ≥ 2, and
the possibility is lost to identify them. Of course, the same is true if the real or
quaternionic projective spaces are considered as state spaces.

Now let us identify t with time so that Eq.(9) becomes an evolution equation. A
solution, starting at some point of the sphere will remain on it. Hence the right hand
side is tangent to that curve. Its length in the projective spaces of quantum theory is
a multiple of the energy uncertainty (or dispersion) 4E, see7,12.
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This may serve as a definition for the n-spheres if n > 2. For mixed states this equation
becomes an inequality. To come into accordance with what is known for n = 2 one
has to write by the help of the parameterization Eq.(8)

ds
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where ‖X‖ denotes the operator norm of X.

5. Jordan Structure
Given an observable A = Ax;λ,µ, its power A(k) is defined by the substitutions

x 7→ x, λ 7→ (λ)k, and µ 7→ (µ)k. Here k is a natural number and, if λ and µ both are
different from zero, k may be an arbitrary integer.

The Jordan product for two observables A and B is given by

A ◦B :=
1

4
(A + B)(2) − 1

4
(A−B)(2) (12)

By this definition O becomes a real Jordan algebra.
It can easily be seen that A ◦ A(−1) = 1, and, further, that an observable A is

positive iff it is a Jordan square, A = B(2). Hence a general state as defined above is
nothing else than a positive and normed real linear form on the Jordan algebra O.

An explicit expression for the Jordan product is

Ax;1,−1 ◦ Ay;1,−1 = cos α 1 (13)



where cos α is given by Eq.(2), and, for arbitrary A and B, it is with

A := Ax;a,c =
a + c

2
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2
Ax;1−1 and B := Ay;b,d, (14)

A ◦B =
b + d

2
A +

a + c

2
B − 1

2
{(ab + cd) sin2(

α

2
) + (ad + cb) cos2(

α

2
)}1 (15)

The Jordan product enables one to define a positive definite scalar product on O

(A,B) := Tr A ◦B (16)

With respect of this scalar product the cone O+ becomes self dual. Thus the n-ball
En of mixed states (6) is isomorphic to the set {A ∈ O+, Tr A = 1}.

To summarize, the n-sphere can be constructed as the space of pure states of a
certain real Jordan algebra.

This Jordan algebra is isomorphic to the Jordan subalgebra generated by a base
of a real Clifford algebra with n + 1 generators (see below).

On the other hand, I learned at the conference from S. Zanzinger13 that for every
JW-algebra the set of coherent superpositions of two pure states fills a sphere in a
real Hilbert space with diameter one. This result supports nicely the ansatz of this
paper from quite another point of view.

6. Examples, Realizations, Holonomy
Let H be a complex Hilbert space with an antiunitary time reversal operator14 Θ.

Now the starting point of section 3 comes into use: An hermitian operator is called
observable iff it commutes with Θ. These observables constitute a real linear space
with a positive cone that contains the identity operator. The set Ω of normed positive
linear forms (being the states) is described by the set of density operators commuting
with Θ. Its set of extremal (i.e. pure) states is diffeomorph to a real projective space
if Θ2 = 1, and to a quaternionic projective space if Θ2 = −1. In the latter case i,
Θ, and iΘ is a quaternionic base15. Therefore their spaces of pure states are given by
real and quaternionic projective spaces respectively. Their spaces of mixed states can
be represented by the set of density operators commuting with Θ. Let us now equip
all these spaces, including also the usual complex case, with the metric of Bures16

(ds
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=

1

2
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)
with

(d%

dt

)
= G% + %G (17)

Here % is a general density operator. Eq.(17) is the restriction onto the density opera-
tors of the metric form belonging to the Bures distance11,17. There is a nice statement:

The lowest dimensional examples of the real, complex, and quaternionic cases are
isometrically isomorph to the 1-, 2-, or 4-sphere of Eq.(1) for the pure states, and to
the 2-, 3-, or 5-hemisphere of Eq.(8) for the mixed states respectively.

Notice that Θ2 = −1, giving the quaternionic Hilbert spaces, reflects the Kramers
degeneracy20: In the Hilbert space the pure states are represented by the Θ-invariant



2-complex dimensional subspaces or, equivalently, by the projections of rank two com-
muting with time reversal. The observables in the lowest non-trivial case may be in-
terpreted as (electric) quadrupole Hamiltonians. A detailed investigation can be found
in21.

To come to a manageable description a representation by density operators can be
introduced. Let y = {y1, . . . , yn+1} be a point of the ball Eq.(6) with diameter one. In
the following n is assumed even. Then in a Hilbert space with complex dimension n
a set E1, . . . , En+1 of operators fulfilling

EJEk + EkEj = 2δjkI, Ej = E∗
j = E−1

j (18)

is considered. I denotes the identity operator. Then

y 7→ %(y) :=
1

n
I +

2

n

∑
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is an affine map from the ball onto a set of density operators. If one solves on this set
Eq.(17) the result is

G =
n

2
%̇ + g n%̃ with %̃ = (

2

n
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If y is on the sphere (a pure state) then n
2
% and n

2
%̃ are projection operators, it is

%̃ = %(y⊥), and g remains undetermined, If y is in the balls interior then g is uniquely
determined by
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ẏn+2

2yn+2
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However, in both cases one gets (see16,23 for n = 2)
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= (ẏn+2)

2 +
∑

(ẏj)
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Hence the map Eq.(19) is an isometry of the n+1-hemisphere Eq.(8) into the density
operators equipped with the metric Eq.(17). This extends the assertion above to
arbitrary n-spheres, n even, and to its associated (n + 1)-hemispheres.

Similarly it is possible to give an explicit expression for the generalized transition
probability18,19 of two density operators Eq.(19)

p(%(x), %(y)) := (tr (%(x)1/2%(y)%(x)1/2)1/2)2 =
1

2
(1 + 4 xy + 4 xn+2yn+2) (23)

To handle the observables a Jordan isomorphism Π from O into the hermitian oper-
ators is constructed by

Π(Ax;λ,µ) :=
λ + µ

2
I + (λ− µ)

∑
xjEj (24)



Then the expectation values can be expressed by

Ax;λ,µ(y) = tr %(y) Π(Ax;λ,µ) (25)

The next task are the problems of phases, parallel transport, and holonomy. In the
following it is done for pure states only, i.e. y remains on the n-sphere, leaving aside
the issue of mixed states5,16.

In a Hilbert space the relevant phases are encoded by expressions

T = |ψm >< ψm, ψm−1 > . . . < ψ2ψ1 >< ψ1|, ξ(T ) =< ψ1, Tψ1 > (26)

and their limites. ψ1, . . . , ψm denote unit vectors. T is a transporter annihilating ψ1

and creating ψm. If ξ(T ) not zero, its phase is relevant, i.e. an invariant of the projective
structure. T can be written as an ordered product of rank one projection operators.

Above a Clifford representation of the states of n-spheres, n even, has been intro-
duced, Eqs.(18, 19), representing the pure states by projection operators of rank n

2
.

Hence Eq.(26) can be easily extended:
Let y(1), y(2), . . . , y(m) an ordered point set of Sn. The definition is

T (y(1), y(2), . . . , y(m)) := (
n

2
)m %(y(m)) %(y(m−1)) . . . %(y(1)), ξ(T ) = tr T (27)

Remark 1: (n/2)%(y) is a rank n/2 projection.
Remark 2: If two consecutive points have maximal distance then T = 0. Otherwise
there is a unique shortest arc from y(1) to y(2), from y(2) to y(3), and so on, resulting in
a piecewise geodesic curve. At every point yj there is a tangent plane with a natural
O(n) action. The transport defined above, however, uses the group Pin(n). This is
the reason for the need of the Clifford structure.
Remark 3: For n = 4 there is an antiunitary Θ commuting with these constructions21:
A density operator belongs to the image of Eq.(19) iff it commutes with Θ.
Remark 4: Let c be an oriented curve on Sn and let y(1), y(2), . . . , y(m) points of a
(geodesic) polygon approximation. Using finer and finer approximations the filter
of operators T (y(1), y(2), . . . , y(m)) converges to a partial isometry T (c). For n = 2
and n = 4 (see21) it is the parallel transporter for the natural or adiabatic parallel
transport 4,23.
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