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Klein Gordon Particles il¥ piston
Armin Uhlmann, University of Leipzig

dedicated to Hans-Jiirgen Treder

Probably I met Hans Jiirgen Treder the first time in Jena, at a "Spezialtagung iiber
Feldtheorie” organized in April, 1957, by G. Heber and E. Schmutzer. Knowing each
other such a long time, I like to contribute something at the occasion of his 65-th
birthday. It concerns a rather old story, opened by Tomonaga [1] and Schwinger [3] with
the idea to associate to every (Cauchy) space-like hypersurface a quantized Hamitonian.
I try to explain the problem using the most simple example I can imagine.
It is my aim to consider a Klein Gordon particle in a 1-dimensional piston. To this end
let us consider the strip

0<z<1, -oo<t<oo (1)

equipped with the metric
ds? := dt? — L(t)? d2? 2)

This setting describes the geometry of a 1-dimensional piston with variable length
L = L(t) in our (1 4 1)-dimensional space time if considering the space-like
"hypersurfaces” given by ¢t = const. For these hypersurfaces the time derivative and the
normal derivative coincide.
The differential operator ,

P —%E;Tf +r%p 3)
with Dirichlet boundary conditions on 0 < z < 1 can be identified with a selfadjoint and
positive operator on the Hilbert space

H:={¢(z); <P, >:= /ol |9]%dz < o0} (4)

This Hilbert space is assumed to consist of the probability amplitudes for the position of
the particle in the piston, i.e. of the Schrédinger functions. A complete orthonormal
system of H respecting Dirichlet boundary conditions is given by ‘

¥; = V2sin(jrz), j=1,2,3,... (5)

Let us denote by D the form domain of the operator (3). This domain is independent of
and it consists of all vectors

v=3" Ay with Y%A < oo (6)
Being the form domain of (3), D is the domain of definition of its positive square root

1 9%

H=H:=\-T5:

+ K2 O]
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The latter is identified with an operator representing the (bare) energy of a free particle
within the piston at a given instant of time. (5) is a complete orthonormal system of
eigenvectors of H,. The Klein Gordon equation with rest mass « reads in our case

1o
Lot

One has to choose a suitable class of solutions of (8)- This is done by requiring ¢ to be
contained in D.

1 2 a
- i HRe+ 15 (LE) =0 ®)

0
p€eL ifandonlyif €D, a—(’:E'D for all ¢ 9
Then ¢ remains in the form domain of (3), and one gets as usual the integrated
continuity equation showing that the symplectic sesquilinear form

_ L _ 0p 0y,
(¢1,2) := % (< > <o >) (10)

is time independent. It satisfies further

(1, 02) = (92,1) = —(P2, 1) (11)

If the length of the piston is changing there is no time independent definition of
one-particle states because particle creation and annihilition processes are unavoidable.
Therefore one tries to define one-particle states at every instant t = 7 separately. This
will be done in two steps. The first is to Tequire an osculating Schrédinger equation, a
slight generalization of what one can learn (for instance) from Schweber [6], and the
second step is to relate it to the Hilbert space (4) according to Newton and Wigner [2).
The osculating Schrédinger equation is formed with the Hamiltonian (7) so that one falls
back to the well established one-particle definition (i-e. to the so-called positive
frequency condition) if the piston’s length remains constant. Thus

£={pec, (i‘;—“’ ¥ thp) =0} (12)
t Jt=7
Because H, is positive definite, these two linear spaces are disjoint. This means
LY+L;=L, LinLi=0 (13)
Assuming now ¢* € L one gets
(0% 0*) =L < ¢* H,ot >, (p*,07) =0 (14)

so that (10) defines a positive definite scalar product on every £}, as it should be for a
(time dependent) one-particle interpretation.

The Newton and Wigner setting [2] can be recalled this way: For every given instant of
time, ¢ = 7, and for ever Schrédinger function % € D there is one and only one ¢* € L,
and one and only one ¢~ € L] satisfying

+
¢*(r) = H7'%y, and %<r)=;iﬂ3/’w- (15)



415

This setting are Cauchy data guarantying at ¢ = r osculating Schréder equations (with
different signs of the time derivative). An essential effect of (15) is

(¢t et)=tL<y,p> (16)

i.e. the existence of isometrical mappings, scaled by +L, from D C X into £ at every
instant of time. These mappings shall be called

I¥: D2 (17

and they encode the selection of those solutions of the Klein Gordon equation (8) which
fullfil at time 7 the Cauchy initial conditions (15).

The task of the Bogoljubov transformation [4] is to relate solutions of the Klein Gordon
equations which respect the initial conditions (15) for different times. It is the same
question to ask for relations of the mappings (17) at different times. As explicite
relations for finite time intervalls are scarcely available, one remains with its differential
version. Then the problem is to find operators, A, B, such that

.1 d -
lim (s - IF) = I = AL + BI; (18)
and similarly with 7-.
This can be solved as following. Define
et (r,t)=IFy with ypeH (19)

which is a solution of the Klein Gordon equation in t. We need

+ — ot o+ -t
limw (T+6,t) L (Tat), limv’ (r+41) ¢t (r,t) for t=r1 (20)

§—0 § §—0 ')
where the dot indicates t-differentiation. Let us work with the more general Cauchy data
PEmT) =X, gH(rT) = FiX'Y (21)

with 7-dependent invertible operators X = X (7). For the time being they replace the
more special initial conditions (15). To calculate the first expression in (20) we use the
Taylor expansion

o(r+6,t) = Pr+86,7+8)+(t-T-6)(r+86,7+6)+... (22)
and take it at ¢ = 7. Inserting into (20), and take account of (21) yields

et T) -t () (dX)
i 5 “( dr +'X)'/’ (23)

Next we have to calculate similarily
.+ ~+ * i
i SOHET O Gy L dxt
}1_1{10 3 @T(r,7) = (H2X i— zLX ) (24)
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Equation (18) is valid for all ¢. Sufficient for such an equality is the coincidence of the
Cauchy data at one time. Therefore, to get A, B, it suffices to consider (23) and (24).
The result is

X)) -1
( e +1iX =(A+ B)X
dx* L
2y-1_ ;07 iy =1 _ -
(Hi X i ILX ) HA-B)X (25)
This looks rather cumbersome. However, returning to the initial values
X=X*=H'Y, HA=AH, (26)
(25) reduces itself to
o 11 1 H I
A—IH+§E, B——-2'(E+Z) (27)

Now all requisites to play the second quantizations are prepared. It will be done in three
steps. The first one is essentially the starting point of Segal’s quantization procedure. [5],
[7). It is the generation of an abstract *-algebra .A with unit element, the elements of
which may be viewed as a formalized version of Heisenbergs ”g-numbers”. A is generated
by a unit element, called 1, and by elements a(y) with ¢ € D subject to the folllowing
defining relations:

a(M1g1 + Az2¢2) = Ma(p1) + Aza(p;) (28)
a(p)” = a(p) 2)
[a(¢1),a(02)] = (61, ¢2) 1 (30)

A is a CCR-algebra because its defining relations, in particular (30) expresses the
canonical commutation relations. This is more transparent in the next step in which one
has to identify the creation or annihilation operators among the generators a(¢p). This
has to be done for every instant of time, t = 7, because they should create or annihilate
what is called ”particle” just at that instant of time. a(p) is considered as an creation
operator at time 7 iff p € £},

The basic definitions for this purpose are

aj(r)=L7'?a(I} y), aj(r)=L""?a(l;9), ¢eDCH (31)

In this way the creation operators depend linearly and the annihilation operators
antilinearly on the Schrodinger amplitude, as it should be. Looking at (11), (14), and
(16) the defining relations (29) and (30) are transformed into

[a(7),a0(7)] = [ag(r),a5,(r)] = 0 (32)

[ag(),ali(M]=<¥,¥' > 1, (af(r)) =ay(r) (39)
We now use the complete orthonormal base (5) of eigenvectors of the one-particle
Hamiltonian H;. To every time ¢t = 7 and to every element of the base belong a creation
and an annihilation operator:
j = af(r) (34)

where the index v; is replaced by j. Then, at every t = T,

[a]-_,a,f] = bjk, [a}',a:] = [a],a;]=0 (35)



-417-

I now return shortly to a general creation operator in order to consider its time
dependence. From (31) one concludes

d dL~1/? _ d
7o = Ll + L7 a1 v) (36)

By the help of (27) this can be examined further. The resulting relation becomes
particulary simple in the case of an eigenvector ; of the one-particle Hamiltonian. One
gets, (writing now ¢t instead af 7),

d 4 . + 1 Ej L
—a¥ = a¥ - (=L 4 2)aF
Rt +iE; a] 2(E,' + L)aJ 37)

To write this in a more general form let us introduce an auxiliary one-particle operator

1 2 1
G = 5(7:4-2) (38)

For an arbitrary Schrédinger amplitude v € D it is

Lay()= i) - sz ), ¥ =Hy, ¥'=Gv (39)

and similarily with the annihilition operators. Now it should be clear that the time
derivative is defined for every element A of the CCR-algebra .A. Indeed, given a time t.
Then A is generated by all the creation and annihilation operators at that instant of
time. Then there is a *-derivation (a linear map satisfying Leibniz’ rule) which coincides
with (39) for creation operators. This derivation can be written

te %’} =i[H(t),4, H'(t) = H() (40)

for all A € A. In the approach presented here, the time-dependent operator H(t) is the
Hamiltonian of the second quantization. Up to an arbitrary additive constant an explicit
expression is given by

-, ¢ - -
H= Z Ejafa; + EZGJ-[aj a; —ataj] (41)

where . . .

1LE L 1L kL%
DLV Ry Ay
By the by I remark that all these equations remain correct in higher spacial dimensions
n (and for Robertson Walker metrics) if L is replaced by L™.

Looking at (41) it becomes evident that this is not the end of the second quantization
story. There should be a further Bogoljubov transform

G; =< ¢;,G¢; >= (42)

bj*' = aj+ cosh§; + iaj sinh§;, by = aj coshé; - iaj+ sinh §; (43)

such that the second quantized Hamiltonian H may be written

H =3 E™b}b; +¢'1 (49)
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where the superscript ren indicates a renormalization of the energy levels, or a
"dressing” of the particles depending on the velocity the volume of the piston is
changing. A straightforward calculation yields

E; tanh(2¢) = G, E; = E}*"cosh(2¢) (45)

Em = \[E2-G? (46)

Remark that £, G}, and L always have the same sign or vanish simultaneously. Of course
€ depends also on the considered energy level, £ = £;. If j goes to infinity, §; and Gj tend
to zero.

The time derivative of the b-operators can be seen from

so that

d , ] d o re o
507 = iH, b+ FTon b =B 4 ikh; (47)
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