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1. INTRODUCTION

It is my intention 1o show some aspects of the very the rich theory of mixed states. A more
or less subjective selection of the topics for this purpose was necessary. A certain complement
to this selection is reviewed in!-23,

My very aim is an introduction to the idea of extending the concept of topological phases
a la Berry* and Simon5 to the spaces of mixed states. However, a considerable fraction of the
material is ‘common knowledge’. This is in particular true with chapters 2, 3, and 5. Also the
content of the other parts (except of chapter 9 and the last topic in chapter 8) are essentially
known though, perhaps, not so widely. The introduction to Berry’s phase within chapter 3
touches only those properties the generalization of which to mixed states is known to me.

The problem of the topological phase is explained as a natural problem of transporting
phases along curves (not necessarily and loops) within state spaces. The naturality is expressed
by the fact that the result depends only on the curve along which the transport takes place,
and on the general setting of Quantum Theory.

In this paper I generally consider finite dimensional objects (Hilbert spaces, algebras)
mainly in order to minimize technicallities, and (hopefully) allowing easier reading. As a mat-
ter of fact almost all what is to be said allows for several extensions to much more general
situations. One then, however, enters large areas of complicated and partly unsolved mathe-
matical questions.

2. ELEMENTARY DEFINITIONS

The (pure) states of a quantum system can be described by the vectors of an Hilbert snace
H. In accordance of what has been said previously we assume

dmH =n< o

where n is the dimension of X as a complex linear space, while its geometrical dimension is of
course 2n. The scalar product of H will be denoted by <..>.

An operator of H is nothing than a complex linear map from H into H. In the finite
dimensional case there is no need for further requirements.

Maps can be composed and this is equivalent to perform the product, AB , of two opera-
tors, A and B. Hence, in addition of being a complex linear space, the operators constitute an
associative algebra (or ring). It is an algebra over the complex numbers, simply because one
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can multiply an operator by a complex number to get another operator. If A is an operator
on H, one denotes by A* its hermitian conjugate. Because of the antilinear operation 4 ~ A"
which satisfies (AB)* = B*A™ one may call the algebra of all operators a *-algebra. (Indeed,
it is the most elementary noncommutative *-algebra one can imagine.) There is a standard
notation: The algebra of all bounded operators acting on an Hilbert space is denoted by B(H).
In our case of finite dimension every operator is bounded trivially.

An operator 4 is called positive (more accurate posstive semidefinite) if < 1, Ay > is non-
negative real for all 9y € H. One then writes A > 0 . Clearly, 4 is positive iff A is hermitian
and all its eigenvalues are non-negative. A is called strictly positive (or positive definite) if 4 is
positive and one of the following conditions is fulfilled: a) A~ exists, b) < 9, AY >= 0 implies
¥ =0, c) all eigenvalues-are positive.

For every positive real number s > O there is one and only one positive s—th power 4’ of
a positive operator A. As an hermitian operator is uniquely given by its eigenvectors and its
eigenvalues, its definition may be given by '

A'Yy=a'y i Ay =ay

Ay =0 if AYy=0

Remembering a® = slna with real Ina, this definition could be extented to all complex num-
bers. This is well done for strictly positive A but comes otherwise in conflict with the notation
of the inverse A~1 if Rs < 0. In the latter case one speaks of the operational defined s-th
power if one uses the definition above.
Evidently
limA4* - P for s — 40

is a projection operator. P is called support of A and is denoted by supp4 , while I shall call
carrier of A the subspace PH whereon A acts non-trivially. (This distinction of support and
carrier is not generally in use.)

Now consider an arbitrary operator A . Then AA” and A* A are positive. The support of
AA* (of A*A) is the left support, I-supp, (resp. right support, r-supp,) of A . There is the
notation

carrier(A) := carrier(A"A) and range(A):= carrier(AA™)

The orthogonal complement of carrier(A) is the kernel, ker(4), of A . It will be convenient
later on to use the polar decomposition of an operator in the (unconventional but equivalent)
form

A= (442U

where U is a partial isometry (i.e. UU™ and U*U are projection operators) with
UU" = supp AA™ = l-supp 4

U*U = suppA™4 = r-supp 4

3. PURE STATES

As is explained in every textbook, the vectors 3 of H describe pure states — with the
exception of the zero vector. The same state is described by % as well by Ay , where A is
any non—zero complex number. This means the pure states are in one to one correspondence
to the rays {A¢, X € C} , or, equivalently, to the 1~dimensionsional subspaces of X . These
1-dimensional subspaces form a smooth manifold called complex projective space, CP*~1)  or,
remembering its inventor, the first Grassmann manifold of H . It is, however, somewhat easier
to handle operators than subspaces or rays. Therefore one equally well characterizes a pure
state by the projection operator projecting H onto the 1-dimensional subspace in question.
Thus the points of CP*~1) may and will be in what follows defined as the operators P of the
form lv >< 9|

P_P¢_<¢,¢>‘ 1)
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It follows from (1) for every operator 4

<Y, AY >
=—T1""-p 2
PAP <495 (2)

where the coefficient on the right hand side is the ezpectation value of A if the system is in the
state P .

A given 1-dimensional projection (1) does not only characterize a pure state uniquely, it
is at the same time an observable asking wether the system is in the state (1) or not. Hence
given two pure states, Py, P,, one considers the expectation value of P, in the state P, . This
expectation value is the well known transition probability :

< U1, Pyypy > _< Y1, Y2 >< Pa, 91 >
< ¥1,% > < U1, >< Pa, ¥y >

tprob(Py, Py) = (3)

which is a symmetrical quantity in its arguments.

Geometrically, the transition probability governs the relative position of two points of the
space of pure states: Two pairs of pure states are unitarily equivalent if and only if they have
equal transition probability (see below).

At that point it seems we have lost all relative phases. But this is not so. We lost the
superficial phases, all others remain. This can be seen by solving the following problem: Given
two m-tuples

Pl,Pz,...,Pm and QlQZ~Qm (4)

of pure states. The question is wether there exists a unitary operator U with
Q;=UPUY, j=12...,m (5)
One may assume that P; (resp. Q; ) is given by the normalized vector ¥ (resp. ¢; ). If
<Y,y >=<gj,pr > alljk
then the map ¢; — ¢; can be extended isometrically to a map of the linear span of the ; onto
the linear span of the p; . As both spans are of equal dimensions it is elementary to extend
the map to an isometry of H onto H , i.e. to a unitary map U with Uy, = ¢ . But ¢ and

€xpx With ey = 1 define the same pure state. Therefore it is sufficient (and necesary) for the
validity of (5) to have

<Y ¥ >=¢€6p < ;01 > alljk

with some phase factors ¢; . This is true iff for all 2 < k < m the numbers
< Wiy, Wiy >< Wiy, Wiy > <Py, Y0 > (6)

remain unchanged after replacing the y-vectors by the ¢--vectors. A number (6) is either zero
or it is the only non-zero eigenvalue of the partial symmetry

PP, - F (7)

One concludes that (5) is valid if and only if

spec{P; P;, --- P, } = spec{Q;, Qi, - -- Q..} (8)
for all subsets é;,...,% of 1,...,m with k > 2 . ( spec denotes "spectrum of”.) In particular,

an essential relative phase appears in describing the relative positions of at least three pure
states.

567



4. TRANSPORT OF PURE STATES

A partial isometry of rank one, V', can be written as
V= W)out >< ‘J)in‘y Vv* = out V'V = B, (1)

with two normed vectors, and it can be interpreted as annihilating P, = |¢;, >< %] and
creating Pout = |out >< Yout|- Given the in- and out-states this operation is fixed up to a
phase factor because there is no other invariant then tprob(Pin, Pout). This slight arbitrariness
cannot be removed without introducing a new structural element.

This new structural element is a curve, ¢, connecting smoothly Pi, and Pyy:

CZ.!HP,, 05351, P0=I:)im P1=P°ug (2)

By the aid of the construction at the end of chapter 3 it is now possible to fix the phase factor
in dependence on ¢. To this end one takes subdivisions

1>8>8:>...>8,>0 (2)
of the parameter s of the curve and perform
V =V(c):=lim PP, P,,...P, P, (4)

where the limiting procedure is taken over finer and finer subdivisions of (3). To calculate V
one uses a lifted path

it sy, 0<s<1, with P, =g, >< | (5)

of unit vectors with which (4) is converted into

V= hbl >< 1/)0|11m < 11’1,1/’., >< ¢n)¢n >...< ¢:,..)¢0 > (6)

It is convenient to require )
<Y, ¢, >=0 (7)

before performing (6). (The dot indicates s-differentiation.) A lift (5) fulfilling (7) is called a
parallel lift. Already in the early days of the adiabatic theorems of Born, Fock, and Oppen-
heimer condition (7) has been in use, and presently it is known as the condition for the natural
parallel transport in the unit ball of H after the work of Berry and Simon. For the time being,
however, (7) appears as a technical device, and the result of (6) does not depend on it.

From (7) and two times differentiability of (5) one estimates by the help of Taylor’s theorem

1= < ¥,9 > | < (s = t)*const. (8)

where the constant is independent of s and ¢. But this estimate implies in (6) that the limit
goes to one. Hence assuming (7) one gets

V(c) = |¢out >< winly 1z’in = 1/4‘0, ¢‘out = wl (9)
Now one may relaxe from condition (7) and obtains
Ve)= Wowt >< tinl exp [ < dv,0 > (10)
where the integral can be taken over an arbitrary lift (5).
For the proof one shows the indepenmdence of expession (10) with respect of regaugings

¥, +> €(s)y, with unimodular €(s). Then it remains to see that (10) reduces to (9) for parallel
lifts (7).
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V(c¢) does not depend on the way c is parametrized. It is a function of the curve as a
1-dimensional submanifold of CP*~! and of its orientation. Reversing the orientation, and
hence interchanging the in- and out-state gives the curve ¢~1. Obviously

V(e )=V(e) (11)

Let ¢; and c2 be two curves for which the out-state of second coincides with the in-state of the
first. Then c;¢; is a well defined curve and

V{eies) = V(e1)V(ez) (12)

V as defined by (4) satisfies a differential equation where the variable is the out-state.
Considering the curve
c, :t= P, 0<it<L1 (13)

and the corresponding
V, := V(c,) (14)

one uses (12) and (4) or (10) to arrive at
V,=PV, or dV = (dP)V (15)

Here the total differential notation in the second equation expresses the irrelevance of the choice
of the parameter: dV restricted to a curve s — V, results in V,ds.
It is P,V, = V, according to (13) and (4). Thus, surpressing indices,

V*V = V*PV = V*PPPV

But differentiating P = P? results in P = PP+ PP. Multiplying by P gives PPP = 0. Finally
one gets .
VV,=0 or V*dV =0 (16)

There is an interesting geometrical interpretation of (16). The manifold of rank one isome-
tries can be considered as a fibre bundle with the manifold of rank one projection operators as
base manifold. The bundle projection, =, is given by

Ve Vy*

A curve c in the base space can be lifted to a path in the rank one isometries. (16) is the
conditicn for being a parallel lift. (16) implies (15) and vice versa, while (10) gives the explicite
construction of parallel lifting.

It should be obvious, last not least, that a closed curve (2), a loop with P, = Poy, gives
Berry’s construction. It is V(¢) = eP,, with Berry’s phase factor

€ = Berry(c) = expf <dy,v > an

while the exponent (divided by i) is the Berry phase.
(17) is the trace of V{¢) for a closed loop. Otherwise (10) indicates that this trace depends

generally only on the curve, wether this curve is closed or not, and takes values within the unit
disk.

5. STATES

Pure states are not the only ones which can be attained by a quantum system with Hilbert

space H . On the contrary they form only a thiny (i.e. low dimensional) subset within the
state space. The latter will be introduced now.

A state, g, is a prescription that associates to every ”observable”, A , an ezpectation value
o(4)
A o(A), A= A" € B(H) (1)
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fulfilling three axioms:
1) Linearity.

o( A)is a real linear functional on the linear space of the hermitian operators.

2) Positivity.
o(A)>0 if A>0 (2)

3) Normalization.
o1)=0 (3)

Now every operator A can be uniquely decomposed into an hermitian and an antihermitian
part,i.e. A = A; + iA; with hermitian A;. One therefore extends the definition of ¢ by

o( 41 +i42) = o(41) +ie(42)

to get a complex linear functional on B(H) and not only on its hermitian part. One then
calls o(A) an ezpectation value even if A is not hermitian — though, physically, there is no
measurement apparatus for that if the hermitian and the antihermitian part of A do not
commute. With this abstraction one usually replace the first requirement by
1’) Linearity.
o(A)is a complex linear functional on B(H)

and so I will do in this paper always.

The normalization condition is good for two things. At first it prevends g to be identical
zero. Namely, like for state vectors in the Hilbert space the zero is never a state. Secondly,
every state is counted one time. If the normalization condition is neglected one calls an objekt
with axioms 1 and 2 a positive linear functional. (By the by, there is no logical distinction
between "functional” und ”function” if one not bounds the former to linearity, what is not
usual in Physics.)

The set of all states is called state space and will be denoted by

Q or Q(H)
This is a closed subspace of the linear space B(H)* of all linear functionals on B(H), and it

gains very natural its structure from this imbedding. It is also useful to consider {2 as a subset
of the real linear space of real linear functionals on the hermitian part of B(H).

It results from the axioms that  is a compact converset: Let py,...,ps be a set of reals
with
pi20 Y p=1 0)
Then for every choice gy, ..., g4 of states the linear form
0= pig (5)
is again a state. This explains the convez (or affine) structure of Q. One calls (4), (5) a conver
linear combination or, in more physical terms, a Gibbsian mizture of the states g;,..., 01 with

weights or probabilities py,...,pi. If (5) is valid and p; > O then one calls p; dominated by .

An often more convenient representation of states is given by densitiy operators and this
description is isomorphic to that given by linear functionals. Hecre the starting point is the
existence of exactly one linear functional 7 satisfying

7(1)=1 and 7(4B)=r1(BA) (6)
for all linear operators 4, B acting on the Hilbert space, and it is necessarily given by the trace

7(A)=n"'tr4, n=dimH ]
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The uniqueness is a consequence of the statement that the trace of an operator 4 is zero if and
only if A is a linear combination of commutators BC — CB. That in turn is equivalent to state
that the complexified Lie—algebra of SU(n) is simple and consists of all traceless operators. But
also explicit verification is not difficult.

7 as defined by (6) and given by (7) is a state, the unique tracial state of our state
space: The trace of a positive operator different from the zero operator is positive. While
the definition of the trace does not depend on the Hilbert space structur, the property to be
a positive functional does. There would be no state at all if the *~operation is given by an
indefinite, non—degenerate hermitian scalar product.

Next, every B € B defines one and only one linear functionai

A tr(AB) (8)

and because B and B* have equal dimensions, every linear functional can be gained by a suitable
B. Moreover, tf(AB) will be positive for all positive 4 iff B itself is positive. Hence to every
state o there is just one operator, g,p, with

A o(A) =tro,, A (9

and
Qop 20 tro.p =1 (10)

Every such g, is called density operator, and there is a complete correspondence between
states and density operators. Having this in mind no explicit notational distiction will be
made between state and density operator, and the index op will be neglected usually. As
the eigenvalues of a density operator are not negative and sum up to one they constitute a
probability vector.

The most simple density operator is a 1-dimensional projection operator I” characterizing
a pure state.

6. SOME CONVEX GEOMETRY

Above I considered states as individual objects which form, as a compact comvex set, the
state space {2. One may reverse this setting and look at a state as a point of the state space,
and one may ask to what degree its position in  determines its properties. In other words, one
wonders how much is encoded in the inner geometry of Q, forgetting for a moment the nature
of its points as linear, normed, and positive functionals or density operators. The symmetry
group Aut(f2) for this task consists of the affine automorphisms ¢ , i.e. linear mappings from

2 onto  fulfilling
O TIEDN T D (1)

for all convex linear combinations. Every unitary operator, U, gives rise to an element of
Aut(Q) by

e—¢" with ¢"(A)= (UAU™") = (U"gU)A) (2)

These transformations form a subgroup Auty(Q) of Aut(f2). In fact, Auty is a normal subgroup
of Aut of index two as will be seen soon.

According to general terminology a state g is called extremaliff for every of its decomposi-
tions (5-4), (5-5) one necessarily has p = g; whenever p; > 0. The set of all extremal elements
of a convex set is called its extremal boundary.

The pure states are exactly the extremal points of .

Indeed, every density operator allows for a decomposition

o=y NP (3)
as a convex set of 1-dimensional projection operators. Well known examples of (3) provide spec-

tral decompositions whith mutually orthogonal projectors where the A; are the corresponding
eigenvalues of ¢. The decompositions (3) show £ as the convex span of the pure states. But
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if P is both, pure and extremal, then so does PU with unitary U because both properties are
stable against the subgroup Auty of unitary transformations. But the unitary transformations
act transitve on the set of pure states. Hence every pure state has to be extremal.
An extremal point of a convex set is a particular case of what is called a face. A convex
subset g of Q is called a face of Q if g € Q implies g € N whenever g is dominated by p.
One knows the following: There is a one-to-one correspondence between faces and sub-
spaces of H. For every face §}y there is a subspace H C H, with

Qo = {0 : carrierp = Hp} 4)

The infinite-dimensional case is much mor complicate!4

Let now be Py, P, € Q two different pure states and let a denote their transition probability:
P PP, = aP; with a = tprob(P1 P,) (5)
Considering a Gibbsian mixture (convex sum)
0= mbPr+ paPy (6)
one gets by taking its square and then the trace
’\f + '\g = l‘g + l‘g + 2ap, po (7

where A1, A; denote the eigenvalues of g. As the latter sum up to one as is the case with the
coeficients y; equation (7) is equivalent to

AAz = pipo(l - a) (8)

From these elementary observations follow some important conclusions. At first, if g is
given by (6), one may ask for all possible decompoitons of g as a comvex sum of two pure
states. Then the product of the coefficients p; y, takes its minimum if and only if @ = 0, i.e. iff
the coefficients of the Gibbsian mixture coincide with the eigenvalues. Hence the eigenvalues
of p are determined by its position in Q.

Because of this, however, (7) or (8) shows that trans(P,, P,) is uniquely fixed by the relative
position of the two pure states within 2. Thus what is physically relevant of the Hilbert space
structure of M is encoded in the geometry of §2.

In particular it should be possible to measure transition probabilities of pure states by
performing mixtures. (Let gy = p2 then the transition probability equals (A; — A2)? .)

Furthermore, the transition probability between two pure states remains unchanged un-
der the action of an element of Aut({2). Applying now a well known theorem of Wigner one
concludes that every element of Aut() is induced either by a unitary or an antiunitary trans-
formation of X and the affine automorphisms of the state space reflect the essentials of the
Hilbert space transformations.

It is interesting to note that an explicite characterization of the semigroup of affine cndo-
morphisms is not known. Physically it is meaningful to consider restricted classes of them (in
particular the duals of comletely positive unital transformations of B ). However, a remarkable
exception can be found at the end of chapter 8.

Now one may pose the questions: How to extend the concept of tramsition probability to
general states, and how to extend equations (7, (8) to them. I shall explain the answer to the
first question later, and give a partial answer to the second.

If ordered in decreasing order, (7) or (8) gives

AL 2 2 p2 > Ag
and A; = A, iff ¢ = 0, i.e. iff PP, = 0. Considering the general case

=) B, MmZE>..20 (9)
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and denoting by A; > A2 > ... > 0 the eigenvalues of g in decreasing order, one finds'%?

k k
forallk: Y X > u (10)
;=1 ;=1

and equality holds for all & iff (9) is an orthogonal decomposition with the eigenvalues of g as
coefficients. (If the A- and the p—vectors are of different length, one adds zeros to compensate
this.)

For the proof of (10) one proceeds in the following steps. At first a set of inequalities of the
form (10) defines a partial order within the probability vectors appearing in decompositions
(9) of a fixed density operator. To every such vector there is at least one maximal element
with respect to the partial order. Assumings such a maximal element is not an orthogonal
decomposition it follows at least for two pure states, P;, P, with ¢ < k a positive transition
probability. But this is impossible: Replacing u;P; + p P by their orthogonal decomposition
shows (after some calculations) that a not orthogonal decomposition cannot go with a maximal
element of the partial order.

It is more complicated to derive handy relations similar to (7) or (8) for a general decom-
postion (9). To do so one has to characterize the relative positions of the pure states invoived.
This demands to know all the numbers

te P, ... P,

constructed from subsets of the Py, P,,.... This is clearly possible in an implicite form by
calculating the trace of the powers of the density operator g as given by (9).

7. Subsystems. Reductions

As before let B(H) be the algebra of operators acting on H. Within sektion 3 the pure
states have been described by normed vectors ¥y € H or by 1-dimensional projections P =
| >< ¢|. This usage of the word pure is bound to an assumption: The algebra B(H) should
be the algebra of observables. To be more accurate, the algebra of observables should contain
to every pair of different 1-dimensional projections {or rays) at least one hermitian operator
which distinguish them by its expectation value. However, a *-subalgebra of B(H) with this
properties coincides with B(H).

The conceptual perhaps cleanest way to distinguish a subsystem is by choosing a *-
subalgebra A of B(H) i.e. one which is generated by its hermitian operators.

Heuristically this can be understood as following. There may be distinct states (pure or
not) which, if restricted to a given subsystem, cannot be distinguished any more. Indeed, if
this would not be true, every state of the subsystem could be uniquely extended to the bigger
system, every state could already be distinguished from all others by the subsystem. But then
there is no possibility to explain in what system and subsystem are different, and both had to
be considered as identical.

Hence, looking from a genuine subsystem, some states can be no longer distinguished
though they are originally as seen from the system. Therefore, an operator with different
expectation values for a pair of such states cannot be an observable of the subsystem. Conse-
quently, a subsystem can be characterized by a subset of observables of the full system. This
is the key idea in the concept of subsystems.

It is, however, not completely deducable from this considerations that observables of a
subsystem can be given by the hermitian elements of a *-subalgebra A of the system’s observ-
ables. But here this assumption will be accepted and, moreover, A should contain the identity
map of H, i.e. it should be a unital subalgebra.

Even then the notation of a subsystem is a rather general one ranging from commuting
subalgebras describing compatible measurements to proper subsystems for which A is a factor
for which the centre contains the multiples of the unit element only. A theorem of Wedderburn
allows to ennumerate all unital *-subalgebras A of B(H). In such an algebra there exists an
orthogonal and central set @1,...@Qm of projection operators ( @; = Q? = @] ) with

1=)Q, QQxk=0 i j#k (1)
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which define subalgebras
Ai={4€A:QjA=A, QA =0otherwise} (2)

with
A=A1@A2@...@Am (3)

and with centres consisting of the multiples of Q; only: They are factors. Let
H:=0:H (4
denote the carrier of @;. (1) implies
H=H10H:0...9 Hn (5)

and A; can be regardes as a *-subalgebra of B(H;) because the carrier of every element of
A; is contained in H, according to (2). Be!ng a factor of B(;) there exists a direct product
decomposition

H; =H" o 1 (6)

such that
A =BHT )91 )

In this relation 1](-’) denotes the identity map of B('H,(-’)), and the algebra (7) consists just of
all operators

A @1 (®)

where the first factor runs through all elements of B(Hl(’”)).

It is fairly clear, how a state of A is to define. One literally repeats the definition of section
5: A state of A is a real linear functional on the real linear space of hermitian operators of 4
which takes non-negative values for positive operators, and is equal to one for the unity of A.
Of course one can and does extend these functionals uniquely to a complex linear one defined
on all A.

The states of A form a convex set (an affine space) {4, the state space of A or, equivalently,
of the subsystem defined by A. Now one defines the pure state of A to be the extremal states
of its state space.

If g is a state of B(H) its restriction

w=o4 wih)=gA) ai A€A (9)

is a state of A. This state, as defined by (9), is called the restriction of g on A. If w is the
reduction of g, o is called an extension of w.

One knows by general extension theorems (of Hahn Banach type) for positive functionals
that every state of A is a reduced state and can be gained as the reduction of a state of B(H).
Thus, the reduction of states is a map from 2, the state space of B(H), onto 4 , the state
space of A.

Generally, the reducing map does not directly respect the concept of purity. If w is pure,
its extension ¢ may not be pure. (This can occur also classically.) If g is pure its reduction may
not be pure. This is an important fact showing the influence of the superpostion principle of
Quantum Physics. Even more, every state can be considered as the reduction of a pure state.
This is contrary to all what is known from Classical Statistical Physics.

The next issue is to ask for the concept of density operators for staes of A. It should not
depend on the way, A is embedded within B(H) or within another algebra. To this end one
needs a particular trace, i.e. a lincar functional of A satisfying

tra(AB) = tra(BA4)
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and taking value one for all minimal projection operators of A. By the last condition this trace
is uniquely defined and called canonical trace of A. Using the general form of A explained by
(3) and (7) its existence can be shown by construction.

Given now w, a state of A, there is an operator w = w,, in A, called density operator, such
that

A w(A)=1trg(A) forall A€ A (10)

In case the state w appears as the reduction of a state of a larger system, the density operator
w is called the reduced density operator.

8. EXTENSIONS AND PURIFICATIONS

It is evident how to reverse the procedure explained in chapter 7, and how to ask for
extensions of the given system, i.e. for embeddings of B(H) in a larger observable algebra, and
extending the states of Q(H) appropriately. Though elementary, it is a key ingredient that an
observable (operator) of a system remains an observable in every larger system.

In extending H, B, Q I restrict myself to cases where B(H) as a subalgebra of the larger
system becomes a factor. The general case is obtained by performing direct sums of such
extensions.

Thus let
H*=HQH (1)

describe a system composed of our original one, , and a supplementary one, H'. Then B(H)
is embedded in B(H*) by

A€BH)~ A® 1' € B(H™) (2)

where 1' is the unit element of B(H'). In the same spirit the map
A'€ B(H')Y~ 10 A' € B(H™) (3)

is a unital isomorphism of B(H') into B(H***). The decomposition (1) induces in this way
uniquely these two embeddings (2) and (3), and as long one sticks to (1) it is possible and
convenient to consider B(M) and B(H') as subalgebras of B(H**t). This convention will be
used in the following. Then B(H') is the commutant of B(H), i.e. the set of operators of
B(H***) commuting with every element of B(H), and B(H) is the commutant of B(H').

An element § of Q** = Q(H***) is called an extension of g iff § gives g if restricted to
B(H).

Given ¢ € Q(H) the set of all extensions of g to 2°** will be denoted by {g}***.

{e}*** is a convex compact subset of 2°**. According to Minkowski it is therefore the
convex hull of its extremal points. However, no effective procedure is known to ennumerate
these points. This is a common difficulty arising mathematically from the positivity condition,
and from the point of view of Physics from the superposition principle: In a composed quantum
system there are much more states then obviously visible from the subsystems. Here the difficult
question is the following. Given density operators g; and g} from £(H) and H'). For what
coefficients a;; is the operator

z a1 0; ® O
a positive one?

Because of these circumstances I will pose a not so ambitious question and ask for the set
of pure states within {g}***. Clearly, every such pure state is automatically extremal in {p}***

while the reverse assertion is wrong.
Let 91,%,,...,%, and 9¥},..., 9., be a complete orthonormal system of H and H' respec-
tively. Every normed vector ¢ € Hext can be represented as

0= et ®%, 3 lkl=1 (4)

j=1k=1
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To reduce | >< ¢| tc B(H) one has to perform with A € B(H)

<p,Ap>= Y Eaci, < Y ® ¥}, (A¥) ® ¥, >

to obtain
<@, Ap >= Zéjkc.'k < ¥;, AY; >, (5)
&
This should be equivalent to
o(A) =trod =Y < 9,00 >< ¥, Ay > (6)
It

If the linear operator C from H' into H is now defined by
<%;,Cp >= cis (N

then one gets
e=CC" (8)

The result is: There are pure states in {o}*** if and only if
rank g < n' =dimH (9)

Therefore every state ¢ € () has an extension in 2°** which is pure if n < n'. Every pure
extension of ¢ € Q(H) is called a purification of p.

Looking at (7) one immediately sees: If there is one purification then there are many.
With an operator C of (7) also every other one given by

Crv = CU, U e B(H') (10)

with a unitary U will give the same g. Thus for the purification ambiguity a gauging with the
group of all unitarities of B(H') is responsible. It is possible (see later on) to construct a gauge
field theory to handle this situation. While one has

U{Q}extU-‘r = {g}ext (11)

with unitary U € H', it remains to remark the following. Let 9 € {o}*** and let € B(H') be
a partial isometry the right support of which contains the carrier of §. Then UgU* is again
in {o}***. However, the partial isometries are not equipped with the structure of a group but
only with that of a groupoid.

The next aim is to introduce the notation of transition probability for general states. Let
01,02 denote two states of @ = Q(H). In a suitable extended system (1) one can consider
purifications ¢, 2 of them which give rise to operators Cy, C, as indicated by (4) and (7. A
similar calculation yields

< p1,p2 >= tI‘C;Cg (12)

This number depends on the choice of the purifications. Both operators, Cy, Ca, can be gauged
independently according to (9). This changes the number (12). This means that one cannot
control completely by a system what is going on in a larger system. In particular, the absolute
square of (12) gives the a priori probability that g, goes over to g, if probed in the extended
system by the obsewrvable P; wether the state which is originally P, is equal to the state P;.

Though (12) and tprob(Py, Pz) is not determined by g; and g, one can correctly speak of
the supremum

tprob(e1, 2) = sup tprob(Py, P,) (13)

where Py, P; run through all possible pairs of simultaneous purifications of g, and g;. This
supremum is by definition called the transition probabilit; of g, 02, seel®.
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The calculation of (13) can be performed as following. There are polar decompositions

G =ofU;, j=1,2 (14)

where uniquness is achieved with maps U; from H' onto carrier(g; ) in M.
Now L1 11
trC1C; = trof o3 U2UT = tr|od 0§ |UU,UY (15)

In this relation the polar decomposition

L1 L1 L L L 1,
oie; =|oje;|U, |ofe;| = (ef0z0})? (18)

has been used. However, U, U, U, have operator norm one, and so the operator norm of their
product cannot exceed one either. This has the consequence that the supremum will be reached
if PR
UU,UT > supp|of 05 | 1mn
Hence
i Lo .
tprob(o102) = (tr(0f 0207 )7 ) (18)

and there are indeed always purifications Py, P; of g, g, with which the supremum of (13) is
attained.

I call parallel purifications those pairs P, P, which purify simultaneously o2, 02, and for
which (13) becomes an equality. The same notation (i.e. parallel purification) applies for pairs
of normed vectors ¢y, @;, of the extended system if there pure states purify sirnultaneously,
and if in addition there scalar product is real and not negative.

(17) can also expressed by

C1C,=CiCL >0 (19)

(18) indicates the possibility to calculate the transition probability in the original system.
Without proofs I describe some properties arising in this connectionl”~22,
Let v be a linear function on B(H) satisfying

[(A*B)|* < e1(4" A) e2( B*B) (20)

The typical example is
v(4) = tr AC,C} (21)

With C; given by (14). It can be shown that always

lv(1)]” < tprob(er, 03) (22)

and, using an ansatz (21), that equality can be obtained in (22). If v satisfies (20), if the
carriers of ¢, and y, coincides, and

(1) >0 with |v(1)] = tprob(ey, @2) (23)

is valid then v is uniquely determined. If the carrier condition is not fulfilled the uniqueness
question is more complicated.

It is also possible to get the transition probability by an infimum. Surprising enough one
gets

tprob(e1, g2) = inf@1(4) g2( A7) (24)

where A runs through all the positive operators of B(H).
The pecular role of the transition probability is further underlined by the statement: Let
¢ be an affine endomorphism of . Then

tprob(¢ o g1, © g2) > tprob(e, ¢2) (25)
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9. PARALLEL TRANSPORT

To treat the problem of chapter 4 in the case of general states?* is now more or less
straightforward: Given a curve of states (respectively density operators)

s, with 0<s<1 1)
defined on H, one looks for a purified lift

= |‘P: >< 99:!

s~ P, ,
<¢.7p' >

0<s<1, (2)

in an extended system with Hilbert space H*** as defined in chapter 8.
To restrict as much as possible the arbitrariness of such a lift the simple idea is to require
parallelity for ‘infinitely neighboured’ purifications. The Hilbert space metric

e —oell= V<o, — 0,0, — 00 > (3)

will be used to make this attempt correct.

Assuming at first the normed vectors ¢, and g, to be purifications of g, and g then,
according to the defining equation (8-13), it is

Il ¢, — ¢ |1 < 2 — 2tprob(e,, &) (4)

and the equality sign holds for parallel 1ifts?3:2¢. The latter case gives the metric of Bures?s in
the state space one is starting from:

[l e, = o || = /2 — 2tprob(e,, o) (5)

Returning to (4) and concerned with ‘infinitely neighboured’ states it is tempting to use

lime™? l@ose — 0. ll= V< 95,0, > (6)

and to require a minimal right hand side in order that (2) is a parallel lifting of (1). For

normed purifying vectors we then are done. It is, however, convenient to relaxe from norming

the purifying vectors. In this slightly more general case the following seems to be very natural:
A lift (2) is called a parallel purification of (1) if the expression

<$p>

7
<p,p> @

attains for every value of the parameter s its minimum with respect to all purifications of a
given curve of states (1).

For the transport of frames of degenerated eigenstates a similar proposel, though not
worked out at all, has been made already by Fock in the appendix of?6. As a first extension
of Berry’s idea it is discussed, however from quite another side, by Wilczek and Zee??. Their
theory concerns the case of a path of density operators (1) which is proportional to a path of
projection operators of fixed rank.

In (7) a fixed parametrization of the original curve (1) is assumed. The essentials are
parameter independent of course. This can be made obvious by considering the line element

1/___.< P02 45 (8)
<@,p>

There is, by the by, a slight difference between the Bures metric (5) and the metric given
by the line element (8) because of the occurence of the denominator in (7) and (8).
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The next aim is to get conditions for the curve
s, P, € Ht )

which are necessary for attaining the minimum of the expression (7) while (2) is a purification
of (1).

Using the notations of chapter 8, in particular the decomposition (1) and its consequences,
the following is obvious: For every hermitian operator B' of B(H') one considers 1® B' = B.
Then with (9) the curve

s> U(s)p, with U(s) = exp(isB) (10)
will not give a value smaller than (9) if inserted into (7). The resulting inequality reads
0 < <By,Bp > +i[< ,Bp > — < p,Bp >] (11)
If this ineqality is valid for all allowed B it implies
<¢,Bp>=<p,Bp> forall B=I@H (12)

Since the condition (12) is linear in B, and hence in B', and since the linear span of the
hermitian operators contains all operators, (12) holds for all operators of the form 1@ B' = B.
Remarkable enough every of the relations (12) is a transport condition like (4-7) which is
only slightly masked by the arbitrariness of the norms. Namly if for a particular B one has
< ¢,Byp >= const. then (12) sharpens to < ¢, By >= 0.

The necessary condition (12) does not reflect what is going on with the norm of the vectors.
This is natural since it is the same with (2). If now (9) fulfills (12) and is normed, one can
probe (7) with a new curve

s A0, A >0 (13)

In the expression (7) this will act as a substitution
<pp> L, = 89>
<p,9> <p,p>

A
+3) (14)
The net result is: The necessary condition for (9) to minimize (7) such that (2) becomes

a parallel lift of (1) is the following: The curve (9) fulfills (12) and the norm of its vectors is
constant, i.e. is independent of the parameter.

But is this necessary condition also sufficient? To decide this question one needs more
general deformations of a curve (9) which minimizes (7). One needs not only curves (10) of
unitaries but smooth curves of arhitrary partial isometrics

U,=10U!, with U, € B(H") (15)
They give rise to deformations
ﬂ"', =U,p, with U:‘P'. =P, (16)
A certain role will be played by the curves of projection operators
Q,=UU, and @ =U,U; a7
Its first role is in fixing U, uniquely by one of the relations (16). Within all partial isometries
fulfilling one (and therefore the other) relation (16) there is one for which the carriers Q, are

as small as possible. This choice will be made further on. Now

<o >=<Up,Up>+<UpUp>+<Up,Up>+<Up,Up> (18)
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The last two terms of (18) can be rewritten as following. By (12)

<Up,Up>=< U Up >=< o, U*Up > (19)
Hence ) ) ) i )
<Up,Up>+ <Up,Up>=<,UUp >+ < o, U Up >=<¢,Q¢p > (20)
Inserting into (18) yields
<¢ @ >=<UpUp>+<Up,Up>+ < p Qo> (21)

Examination of the last two terms yields
<UpUS > +<9,Qp>=<$,Q6> + < 9,Qp >=< 4,0 > (22)

where the last equality sign follows from differentiating ¢ = Qp. Combining (21) and (22)
provides o
<¢¢'>=<Up,Up>+<p,0> (23)

Thus the condition (12) is not only necessary but also sufficient under the additional assumption
that the projection operators (17) depend smoothly on its parameter s. In the case at hand,
where the Hilbert spaces are all finite dimensional, this additional assumption is fulfilled iff (1)
is smooth and of constant rank'!.

There is a further consequence if both, ¢, and ¢!, are minimizing (7) because (23) then
supplies Ugp = 0. The last is equivalent with UU*¢! = 0 as is shown by (16). Since the right
support of U* is choosen as small as possible it is the closed span of all A¢!, with 4 € B(H)®1'".
As these operators A commute with JU* one concludes Uu* = 0. Multiplying from the left
with U shows UQ = 0. Now differentiating UQ = U finally yields

U=0 or U, = const. (24)
This important results reads: If the curves of normed vectors s — ¢, and s — ¢ both
give parallel lifts of (1), i.e. if both curves minimize (7), then there is a s-independent partial

isometry U of the form (15) such that
o, =Up, with Uy} =p, (25)

It follows that

< o, Apy >=< pp, Ap} > forall A€ B(H)®1 (26)

In particular one can define correctly
Berry(s = 0,) =< @0, 1 > 27

for smooth curves (1) of constant rank.

If (2) is a lift of (1) it is possible to switch to another representation. To every normed
curve (9) there is according to (8-7) und (8-8) a curve

s=C, 0<s<1 (28)
of operators (maps) from H into H' satisfying
0, =C,C; for all s (29)

It is now simply a matter of translation to rewrite some of the results above in terms of
these operastors. (12) occurs to be equivalent to%?

C:C,-C:C, =0 (30)
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See also?%3° for further discussions and calculations. As (29) implies norm one for the asso-
ciated curve of vectors of H**  (30) is another necessary and sufficient condition for paralleltiy
if the supports of (1) change smoothly. If (30) is valid, i.e. for a parallel Iift, (26) now reads

20 Cy depends only on s = g, (31)

and the value (27) is the trace of Cy C} € B(H).
Now I return to arbitrary lifts. Comparing (29) and (30) it is obvious that a local gauge
transformation
C.,~C,U, U, eBH) (32)

with unitary U, will not change (29). (This is also true for the larger class of partial isometries
if relevant support condition are fullfilled. But this will be ignored for simplicity.) Therefore
one may ask wether the parallelity condition (30) can be understood as a parallel transport of
a gauge theory living, so to say, somehow between H' and H but mostly on H'. To make this
vague idea handable one first converts (30) into an operator valued differential form

crdc, - dcrc, (33)

the integral curves of which are the parallel ones. This form, however, will not be a connection
form with respect to a local gauge transformation (32).
Such a connection form, called A will be defined implicitely by3!

C;dC,-dC;C,=C*CA+AC*C (34)

A is a differential 1-form with values in B(H'). It depends by its very definition on operators
mapping H' into H and their adjoints.
The definition is completed by

<y AY' >=0 if Cy'=0 with ¢'€H (35)

A is undefined (singular) at tangential elements C in the direction of which the rank of CC*
is changing. These directions must be excluded. With this restriction in mind, (34) and (35)
determine A uniquely. This can be seen very easily by sandwiching (34) with a complete
orthonormal frame of eigenvectors of CC*.
The uniqueness yields
A*+A =0 (35)

and, the main point of its introduction, A behaves with respect to local gauge transformations
C—-CUas
A-UAU +U*dU (36)

which is proved by applying a local gauge to (34) and (35) and using the uniqueness property.
The connection form determines a covariant differentiation for (manifolds of) maps from
' into H and their adjoints. For instance one has

DC :=dC - CA (37)

and
DC* :=dC" + AC" (38)

Of course (37) and (38) are adjoints one from another. The change in sign is due to (35).
It is of some use to introduce a further differential 1-form, G with values in B(H) by

DC=GC (39)
By this G is defined for vectors of the form Cy' only, and the definition will be completed

soon. Substituting
dC =CA +GC (40)
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which comes from (37) and (40) into (34) results in
C*(G-G")C=0 (41)

Thus G is is hermitian if resricted to the subspace of the vectors C¢'.
The definition of G can now be completed without destroying (39) and (41) by

G=G" and <9, GYy>=0 if C*%=0 (42)

(C*% =0 is equivalent with the existence of a ¢' that produces ¥ = Cy'.)
A is obviously zero if restricted on a parallel curve. Because of (49) the parallel shifts are
integral curves of

dC - GC (43)

as well. It is therefore interesting to determine G alternatively.
Taking the total differential

d(CC*)=dCC* +CdC* (44)

and replacing on the right hand side the total differential by the covariant ones, (37) and (38),
one gets

dcc*y=DpCer +cper (45)

where the terms with A have cancelled. It remains to insert (39) and to replace CC* by
according to (8-8) or (30) to obtain

do = Go + oG (46)
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