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ABSTRACT

We like to explain why and how to use certain associative
algebras in the differential geometry of smooth manifolds.

1. Introduction

Let me start with some short remarks concerning the use
of algebras in topology. More than 40 years ago 1. Gelfand (1]
has shown how every unital C-algebra uniquely determines (up
to topological equivalence) a compact Hausdorff space by its
maximal ideals, thus giving a new input to the von Neumann -
Murray theory of operator algebras. Moreover, regarding C(T),
the algebra of all complex-valued continuous functions defined
on a compact Hausdorff space, T, as an abstract algebra, one
can recover its "natural” C-structur'e. Hence by Gelfand's theo=
rem, every topologncal property of the space T is uniquely
reflected in structural properties of the algebra C(T) . One
may, therefore, if one like to do so, establish a sort of "dic=
tionary" in which to every topological property of T there is
written down one or several ways of "translating” it into expres=
sions only using knowledge of the abstract algebra C(T) .
Of course, one could go egually well the other way round: To
look at algebraic properties of C(T) , and ask for the topolo=
gical meaning of them within T .

However, buy an ordinary dictionary and try to translate
something from the German into the Russian language. It doesn't
work that easy - and the same is with our hypothetical mathe=
matical "dictionary". A one-to-one translation of a topological
property is not obliged to fit well into the language of the al=
gebra, and often one has to modify the concepts in question.

Thus the space T and the algebra C(T) are really
different aspects of the same "thing". To look at both may be
a source of intuition. Furthermore, having "translated" topolo=
gical concepts into the language of the algebra C(T), one won=
ders wether these "translations" should not work in the case
of some non-commutative algebras too. This, indeed, is one
way in approaching the question what "non-commutative geometry"
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is or should be. And indeed, one may hope to find along those
pathes a new one that reaches again Quantum Physics, i.e. the
very source of operator algebras.

Let us now ask how to deal with differentiability by means
of algebra;. The quite important point js: One has to leave the
class of C -algebras.

Suppose ’?k) is a differentiable manifold (countable at infinity) .
The set C™/(M) of all complex-valued k-times differentjable
functions is not carrying a C -topology for k biger than 0

If k is finite one can make these algebras Banach algebras.
But if k is infinite, i.e( f’)r‘ smooth functions, this is impos=
sible. On the contrary, COO(H) carries naturally a nuclear
topology. One may construct this topology as following: Let D
be a smooth differential operator and K a compact subset of
M . Then

f "K,D = ;l;px I (Df)(p) 1|

is a seminorm in c‘°°)(u) . The collection of seminorms obtai=
nable in this way defines the topology. Though we have intro=
duced this topology by the aid of "(06) it is possible to do so
"abstractly" by using the algebra C (M) as an abstract ob=
ject. That this is so comes from the following fact: The algebra
of smooth differential operators is generated over the smooth
functions by the derivations (see later).

_ In the followin% e shall give some elementary proper=
ties of the algebra COO(H) and their geometrical interpreta=
tion. Similar considerations can be done with algebras the ele=
ments of which are smooth functions with values in matrix- or
Grassmann algebras. Further, as an more general object, one
may consider the algebra of smooth sections of a differentiable
fibre bundle the fibres of which are finite-dimensional associja=
tive algebras. It should be clear that only a first indication
how things work can be given, and for the experts of the
domain in questions this is, more or less, well known.

2. Points .

The set 1 of all those elements of C(°°)(M)
vanishing at a givgn point p @ M s a maximal ideal of this
algebra.

2.1. Proposition. Let 1| be a maximal ideal of C(oo)(ﬂ) .
The following conditions are mutually equivalent:

(a) There is a point peM with 1 = Ip

(b) I is closed in the natural topology.

(c) I is finitely generated.

(d) 1t is C(°°)(H) / 1 isomorphic to C (complex numbers),
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(e) There is a state u  with u(l) = 0.

For the algebra at hand a state is given by a probability mea=
sure with compact support on M , and u(.) denotes the ex=
pectation value.

We shall not give proofs of this (rather simple, indeed) and the
following assertions. The reader can find a rich and essential
selection of facts and proofs in the book of Malgrange (21

The proofs of most of the assertions of this section can be
found there (or at least their crucial idea).

Let us call every maximal ideal satisfying one (and hence.
all) of the conqg‘g?ns of proposition 2.1 a '"point ideal" or simply
N "
a "point" of C (M) .
2.2. Remark. Let | be any maximal ideal. At first restricting
it to the algebra of bounded smooth functions, and then exten=
ding it to the C -algebra of bounded continuous functio 5),on M
we see by Gelfand's theorem: The maximal ideals of Cc'®lm)
correspond one-to-one to the points of the Cech-compactification
of M . Hence a maximal ideal of the algebra of smooth functions
is either a point ideal or it characterizes a boundary point of
the Cech-compactification.
Further, the intersection of ‘all maximal ideals which ar not
point ideals consists of all smooth functons with compact sup=
port.
Thus M is compact iff every maximal ideal is a point ideal.

2.3. Proposition. )
(i) Two manifolds R, and M are diffeomorphic if and only
if C(oo)(H1) and C(oo)(lz) are algebraically isomorph.

(ii) Let N be a submanifold of M and let IN denote
the ideal of all smooth functions defined on M and

vanishing on N . There are natural homomorphisms
0 = 1, — ) — ) — o

This sequence is an exact one iff N n K is compact
for every compact subset K of K .
“f is worthwhile to notice in this connection the possibility of de=
fining "smooth (nogTifolds with singularities" by performing factor-
algebras of C'“/(M) with "suitable" ideals.

The next assertion is a basic one in reflecting the differentiable
structur of M by its algebra of smooth functions.

2.4, Proposition. Let I = Ip , P € M , a point ideal.
ltis fe 1" if and only if f and all its partial

derivatives up to order n vanish at p
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There are some immediate consequences.

For every point ideal 1 the factor algebra
C(°°)(M) / lp(m+4)

is the linear space of m-jets attached at pe€ M . Hence
7 12
P P

is the fibre of the cotangent bundle at p € M .

The fibre of the tangent-space at p is, therefore, the dual,
i.e. the set of linear forms, of that factor algebra. This fi(%ré?
()]

can be identified with the set of all such linear forms on C
which satisfy
u(1) = 0 and u(lpz) = 0
A (smooth) vector field, X , is now a (smooth) section
p———)Xp € (lp/lp2 )'_
All these concepts have to be understood in their complex ver=
sion for we work with algebras over the complex numbers, C .
Let J be an arbitrary but closed in the natural topo=
logy ideal. It is not difficult to see that by obvious modification
one can introduce the concept oiog)oint, of m-jet, of co-tangent
bundel, ... within the algebra C ™/ 3 .
More generally, one can define for unital -algebras A the
concept of point ideals by selecting those maximal ideals of A
which are of finite co-dimension. By the aid of the powers of
these point ideals the concept of m-jet, cotangent-bundle, and so
on can algebraically be given. Of course, not for all such alge=
bras this gives very meaningful concepts. But it does so for
example in algebras of smooth matrix- or Grassmann-valued func=
tions on smooth manifolds, and in many other geometrically
"meaningful" algebras.

Now let us return to the algebra C(oo)(H) . Let us de=

(00) - n
o 20 T
This ideal consists of all such functions the derivatives of all
orders of which vanish at p . Cho(osing a local coordinate
system, the factor class g+ | \®© corresponds to the for=
mal power sery of g at p witd respect to this coordinate
system. One knows that

is isomorphic to the algebra of formal power series in dim M
variables .

fine

Consider now an ideal J . For every pe M it
generates an ideal in the algebra of formal power series atta=
ched to p in the manner described above by the the homomor=
phism ) (00)
J — 5 g |p‘°° /ol
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It is one of the astonishing discoveries of Whitney (3]
asserting that those induced ideals in the algebras of power
series already completely characterize J if (and only if) J
is closed in the natural topology of the algebra of smooth func=
tions .

2.5. Theorem (Whitney) (c0)

Let J1 and .l2 be two closed ideals of C™ '(M) .

Then

= . {o0) _ (o0)
J‘| J2 iff ¥ pe M : J.l*lp J20|p i

There is a further remarkable ideal attached to a given

point p € M : Let .
g (min)

denote the ideal consisting of all such smooth functions f
which vanish in some neighbourhood of p . This ideal is mini=
mally primary and is defined algebraically as following.

2.6. Proposition: Let 1I' €¢I . Assume that I' is not
contained in any maxim3l ideal different from lp .

Then .
€ lp('m) S .0 .
The factor algebra .

is the algebra of the germs of differentiable functions at p .

As a further "translation" in the sense of the introduc=
tion we shall indicate how to handle folitations.

Let F be a subalgebra of C(oo)(ﬂ) . This algebra is called

foliating if _

a) it is a unital -algebra, i.e. it contains the identity 1 of
the algebra of smooth functions, and with every function its
complex con jugate . (00) -1

b)if fe€eF and f exists in C'%/(M) then f 'e F .

Let us assume F s foliating. Then to every point 1° of F
there are points p M with I°c 1. The set of all these
points perform a leaf, the leaf attachBd to 1° . The foliating
condition guaranties: Every point of M (and hence every point
of the aigebra) belongs to just one leaf, and the set of ail
leafs is parametrized by the point ideals of F . The para=
metrization can be called smooth if F is algebraically iso=
morphic to an algebra of smooth functions over a certain
smooth manifold. .

T)No foliating algebras may give the same foliation. However,
given a foliation F , the subset of all functions which are
constant along each leaf is a foliating algebra containing F
.and determining the same foliation. Hence if there is any there
is also a maximal algebra defining a given foliation.

These notations extend to more general algebras.



3. Derivations et cetera.

Let A be an algebra over the complex numbers, with
unit element, and not necessarily commutative.
A linear map

L : A ——> A
is called a derivation of A if for all a,b € A it is
L(ab) = (La) b + a Lb.

Such a definiton would be rather catastrophical for C'-algebras.
With these algebras one cannot require the domain of definition
of lr )to be the whole algebra. On the contrary, for the algeb=
ra C°°(H) and some other ones of nuclear type this is quite
natural.
The derivations of A form a comlex Lie algebra: with L1 ,L
also L L2 - L L1 is a derivation. Let us call the Lie algebr%
of all d,emvatiorgs of A by

Deriv A .

We now consider a representation
6+ a —3 4a) , ae€A

with the linear representation space L . We want not to consi=
der the topological properties of representations here. Thus we
consider 4 to be a homorphism of the algebra into the algebra
End L of all linear maps from L into L . The question is
now how to "transport" the derivation to the representation
space. To this end one introduces the concept of co-derivation.

Let § be a representation. A co-derivation p is a
linear map
p : Deriv A — End L

satisfying the following relation for all a € A and x € L
LY 8a) x = 4( La) x + ga) LV x_

Here the result of an application of the linear map p on a
derivation L is denoted by LY . It is not always wise to
require the full Lie algebra Deriv A as the domain of defini=
tion of p . But for simplicity we shall do so here.
One should emphasize the dependence of p from a given 4 ,
for without specifying a representation the notation of co-deri=
vatives is logically incomplete. In the most important applica=
tions there is a natural action of A on he) representation
space. A good example is the action of CY°/(M) on the sec=
tions of a complex vector bundle. Thus if there is no danger
of confusion we shall later on abbreviate

4(a) x by a x ( or ax ).

Let now J be an ideal of A . We abbreviate the set of all
$b) x with b € J and x € L by JL . Itis easy to
see that for n = 0,1,2,... one has
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P ™ML e U , with J° = A
The co-derivation p is said to be "of order k with respect
Of JII if
k+1

LA < JC implies YL ¢ UL

and if k is the smallest integer with this property.

Remember now that a point of A is a maximal ideal with finite
codimension.

We shall say from a co-derivation p it is k-local if p is
of order k with respect to every point of A . In the case
k = 0 we simply speak of a local co-derivation.

Local co-derivations are of special importance for they are the
equivalent to the affine connections.

Though a co-derivation is defined via a representation
of the algebra by linear operators in a linear space, it is by
no means true that the co-derivation is an homomorphism of
Lie algebras, generally. The deviation of u from being a
Lie homomorphism from Deriv A into End L , where End L
is considered as a Lie algebra with the commutator braket as
the Lie multiplication, will be "estimated" by its curvature.
The curvature of a co-derivation g is an antisymmetric.and

bilinear form on Deriv A with values in End L . It is defined
by the relation
BB - u
[L,¥,M] [L,.L,] + Q(LI,LZ)_

From this it is clear-that p is an homomorphism of Lie algeb=
ras jff =0 .

Now we have explained a (part of a) rather abstract
scheme that is attached to algebras and their representation.
A?ooalgebra'for which these concepts are meaningful is our old
C (M) . Let us now go once more to these concepts above,
and let us look how we can identify them with geometrical ones.

If X is a vector field of ‘M , then we can construct
the Lie derivative LX . LX operates on smooth functions as
as a derivative.
The point is now: There are no other derivatives of C(oo)(H)
as th?&ﬁ coming from vector fields. The set of all derivatives
of C™/(M) is identical with the set of all Lie derivatives Ly
formed by complex vector fields X of M . Indeed, let L
?e a derivation of our algebra and p € M . Then X is
lft_ﬁbentified with the following linear form over the cotangent
ibr

Xt f-te1 e f — Whe)

Let us remain a moment with derivations. If X is a
real vector field it generates locally a group germ of a one-
Parameter diffeomorphism group. Its orbits give a foliation of
M - Just this foliation can be given by a foliating subalgebra.
his subalgebra consists of all f with Lf = 0
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More generally, given m real vector fields, one can
construct with the corespona)igp Lie derivatives L . ...,L‘_1
a foliating subalgebra of C'®/(y) by the conditions .

L1 f = ce. = Lm f = 0.
At those points of M at which the sytem of derivations is or
generates by its Lie closure an integrable system of partial dif=
ferential equations, the leafs of the foliation coincides with the
integral manifolds.

Let us now consider some co-derivations of C(oo)(ﬂ) .
At first we have to specify the representation. The most simple
one is to consider the algebra itself as the representation space
on which the algebra acts by (left) multiplication: (00)
$ : 4(a)b = ab a,b € c'm)

Let p denote a co-derivation with respect to this representas=
tion. Then

t!b = LPb 1) = Lb b L¥ 1
by the general rules for co-derivations. In this case, the physi=
cist would say "in the case of scalar fields", the co-derivation
is characterized by a linear map

L=—L¥ 1, L e Deriv @y

into the linear space of smooth functions on M .

Let us now assume B to be local. If then a vector field
vanishes at p the co-derivative has to vanish at the same
point. That means (LM 1)p) depends only on the vector at=

tached at p , and can, therefore, be given by a covector at
P . Hence there is a covector field A  such that
B = k
LX b Lx b + (X Ak) b

where local expressions for the tangent and cotangent fields X
and A has been used. It is now plain to see

= xkyld -
(X,¥) b = x"y (Ak,j Aj,k) b

i.e. the curvature is multiplication "with the electromagnetic field
strength given by the potentjal A " as physicists would pers=
heps say. (We use comma notation for partial derivatives.)

But what if p is not local but n-local ? Then the
local expression for a coderivative can be expressed by
several "generalized potentijals” A as follol\gs:

B i) kyld 17" ngj
Lx bx *AXT AT A, M kgee ko
i.e. the Lie derivative ijs complemented by a rather complicated
form of the function L 1 that acts as a multiplicaticn opera=
tor. The curvature is a complicated sum

Qix,y) = _Qo(x,y)+ Qoxy) « . _Qn(x,y)
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Kiyi
,k1...ki'Y(x,k) .. *

My Kiyd
s Xy ) AN DI

i ! 1°°°7

This, acain, is a local expression valid with respect to some
coordinate system, and for the partial derivatives with respect to
this coordinate system the comma notation is used. Clearly, a
k-local co-derivation with k different from zero is a rather
complicated object.

,k1 ...k

Now let L be the linear space of the smooth sections
of a smooth vector bundle with ?aie space M . Canonically, L
is a representation space of C'®/(M) by (left) multiplication.

Every affine connection defines in an obvious manner a certain
co-derivation. This construction exhausts just all local co-de=
rivations in the case at hand.

To write down the form of n-local co-derivations is a cumbersome
but rather straightforward task.

Now | like to add some more general remarks.

The relation between vector fields and derivatives does
not remain valid for more general algebras A . A derivation
induces a map

L: 1 /125 A/1,
if 1| is a point but A /.1 is not isomorphic to C this map
does rkot give an element of the dual of the cotangent fibre
1/ 1° . By the very definition of "point" the most general si=
tuation is for A / I to be a full matrix algebra.

As an example we shortly consider the case
A = algebra of smooth matrix-valued function of order n
defined on a smooth manifold M .
A derivation L then is of the form

a—L a = an+ba-ab

where the Lie derivative acts on the entries of the matrix . The
derivative is called inner iff X = 0 . The inner derivatives form
8 normal sub-Lie algebra of Deriv A

The co-derivations B associated with left multiplication within
the algebra ("scalar" case a la Higgs) are defined by

B L— ¥
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It is L"l = 0 for all inner derivations L . It is for this reas
son that we get for local co-derjvations the correct transformas=
tion properties of connections for gauge theories in the expres=
sion

tPa1 o= XA , L. L

’ .
i X Lmner-

The local co-derivations of A are, therefore, In a one-to-one
correspondence to the gauge potentjals of gauge theories, and
the curvatures correspond as usual to the field strength of the
potentials. To obtain "alI" gauge fields one has to define the
co-derivations on a suitable Lje subalgebra of Deriv A which
is in physical applications often much smaller than Deriv A .

A further remark concerns the so-called modified derijva=
tions. Let w be a linear map of some algebra A into itself.
Here we have not in mind the algebra of smooth matrix funcs
tions!) A w-derivation is a linear map of A jnto A with

L(ab) = (La)b + ( wa ) Lb

Under very weak assumption ( L A should contain at least one
element that is not a divisor of the zero) one can then conclus=
de that w has to be an a morphism of A .

Of particular importance is the case where w is a distingui=
shed reflection, i.e. w w = identity , in which circumstances
one now calls w a superstructure. f w Is a superstructure
of A then one considers those w-derivations for which

L w + wlL = 0

is valid. Together with the ordinary derivations they form a so-
called super Lie algebra (a Zz—graded Lie algebra).

It is now plain to define co-w-derivations and their
curvature forms. A good canditate to study the situation is the
algebra of smooth functions on a manifold with values in a
Grassmann algebra. Due to the appearance of a non-trivial radi=
cal the notation of "k-locality" of a co-derivation has to be
used here with some caution In order not to exclude intere=
sting examples .
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