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The Transition Probability for States of x-Algebras
By A. UHLMANN
Sektion Physik und NTZ, Karl-Marx-Universitéit, Leipzig

Fiir Robert Rompe

Abstract. We explain how to define, in consistence with Quantum Theory, “transition probabili-
ties”” for general mixed states. Then some theorems concerning this quantity will be proved. It
turns out the possibility to characterize the transition probability by a minimal condition among state
functions which depend on two states.

Die Ubergangswahrscheinlichkeit fiir Zustinde von +-Algebren

Inhaltsiibersicht. Es wird erklirt, wie man sinnvoll ,,Ubergangswahrscheinlichkeiten‘ fiir
gemischte Zustidnde definiert. Danach werden einige Eigenschaften dieser GroBe fiir Zustandsraume
von *-Algebren bewiesen. Insbesondere zeigt sich, da die Ubergangswahrscheinlichkeit durch eine
Minimaleigenschaft vor anderen, von zwei Zustdnden abhingenden Zustandsfunktionen ausge-
zeichnet werden kann.

1. Heuristic Arguments

At first let us argue ‘‘physically”, to connect the mathematical parts with some stand-
ard reasoning in Quantum Physics. Let w be a pure state of a physical system. Then
there is an observable p which probe whether the system is in that state w. p is a pro-
jection and the expectation of p satisfies

a) o(p) =1
b) 0<ep<l if ¢+ o.

Namely, assume there is a measuring device at our hand the duty of which is “to
measure the observable p” & la von Neumann. Then the device will say ‘1> (or ‘“‘yes”)
with probability o(p) if the system sits in its state .

In fact, the device is not only measuring but also ‘“‘preparing”. If p(p) > 0, and the
measuring device says “1” (or ‘“‘yes”), then this is accompanied by a transition of g
into w. Thus if it happened the measuring device is showing ‘1, we are sure that the
system is in its state w, independent of the system state before its probing by the
device. :

It is this “preparing” function of the device which demands some caution in inter-
preting the expectation value o(p) as a transition probability if ¢ is not a pure state.

Let us consider two general states, o, and p,. How can one associate, in a physical
reasonable way, a ‘‘transition probability”, P(g;, 0,), to this pair of states ? We shall do
this with the concept of a subsystem. To distinguish a subsystem of a system is to dis-
~ tinguish among the observables those which measure properties of the subsystem only.
That is, every observable of a subsystem of a system is equally well an observable of



A. UsLMANN, Transition Probabil)ity for States of *-Algebras 525

the system itself. But the system admits (or is defined by) a larger set of observables.
In particular, two different states of the system may coincide by considering them as
subsystem states. Returning now to our pair of states, p; and g,, of a “‘given” physical
system. We may extend this system to a larger one by suitable adding to it observables
describing the extended system. Among these observables there may be two, p; and p,,
which probe two pure states, w; and w,, of the extended system, i.e. for j = 1, 2,

pi=p=p} olp)=1,
0<owp)y<l if oFo.
In this setting w,(p,) resp. wy(p,) is the transition probability from w, to w, resp. from

w, resp. from w, to w,. These probabilities are equal in accordance with Quantum Phy-
sies rules,

0(Pp) = wy(py)-
Their common value will be abbreviated by

Py, w,),

and it equals | (2, 2,) | in case the states are given as vector states by the normalized
Hilbert space vectors x,, x,. Let us recall the physical meaning of, say, w,(p,) not
only as expectation value but also as the a priori probability of preparing the pure state
, by probing w, with p,.

Let, now the pure states o; and w, be chosen in such a manner that their restrictions
to our original system coincide just with g, and g,. Then whenever a probing of w; by
Py gives “1” (or ‘“‘yes”), there is a transition from w; to w,. The probability that this
oceurs is P(w,, w,). A necessary condition for “P(g,, g,)”’, which is yet undefined, is

P(oy, 05) = Plwy, wy).

Indeed, every transition from w, to w, induces one from g, to g,, i.e. a transition of their
restrictions, too. There may, however, be further similar causes for a transition g; — g,.
It appears reasonable to define

P(oy; 05) = sup P(wy, w,)
where the supremum runs through all extensions of the system in question, and through
all pairs of pure states within such extensions the restriction of which to the given system
coincide with the pair g;, g,.

In doing so, P(g,, 0,) is the maximal a priori probability of a transition from g, to g,
caused by asking a pure state extension w, of o, whether it is a pure state w,, w, being
an extension of g,.

We have indicated why the notation and the use of ‘‘transition probabilities for
general states” (not necessarily pure ones) is completely compatible with the general
setting of Quantum Theory. There are, however, some computational aspects, too. For
instance, knowing their reduced states we gain by P(,) the best possible general estimate
for the transition probability of two pure states of the non-reduced system.

As is seen from the considerations above, our use of the idem ‘‘pure’ is more narrow
than in the standard algebraic approach. Below we shall call “‘strictly pure” those states
allowing for a vector-representation whenever the observables are given by “operators”.

2. Transition Probability: Elementary Facts

In the following we denote by A a unital *-algebra. Its unit element is denoted by
1, or simply by 1.

A is called “‘reduced” [1] if for every element a € 4 with a == 0 there is a positive

linear form ¢ with p(a) == 0. Sometimes we shall assume reducedness to get a uniqueness
statement.
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To define the transition probability, P(g,, 0,), of two states 0; and g, of 4 we proceed
as follows.

Definition 2.1. P(g,, 0,) is the smallest real number satisfying the following
conditions: Let {z, D, H} be a *-representation of A4 with representation space H
and domain of definition D, D dense in H. Let further &15 &5 € D denote normalized
vectors with

Vac A: pja) = (&, n(a) &), j=1,2. (2.1)
Then

Py, 00) = [ (&1, &) 2. (2.2)

This definition of ‘“‘transition probability” was the starting point in [2]. It already
appeared in [3] as a mathematical tool to examine infinite tensor products of normal
states of W*-algebras in generalizing the case of infinite product measures [4].

At first we apply the definition above to the pecular situation in which, whenever
02 18 a vector state of 7, we get by a suitable choice of &, equality in (2.2).

We assume the existence of

pcd, p=p*=p (2.3)
with ,

Vac A:pap = g,(a) p,  gy(p) = 1. (2.4)
Then a representation

01(@) = (§, =(@) &), (5,8 =1, €D, (2.5)
is valid if and only if #(p) £ = & With every such & we have obviously

05(p) = (&, 7(p) &) > |(&p, &) 2. (2.6)
Therefore, P = 0 follows from g,(p) = 0. If g4(p) = 0 we are allowed to use the vector

& = a(p) &/ (&y 7(p) &;)'2 (2.7

in (2.6). But with this choice for & the equality sign holds in (2.6), and g,(p) equals
Py, 0;)- We collect this in a definition and a lemma.

Definition 2.2. A state g of a unital *-algebra is called “strictly pure” if there
is p€ A with

p=p*=p* op) =1. (2.8)

Vac A: pap = o(p) p. (2.9)
It this definition applies, the element p is called a “support” of o. If A4 is reduced, then
the support is uniquely determined by the strictly pure state.

Lemma 2.3. Let ¢ and o be two states of the unital *-algebra 4. Let o be strictly
pure and let p be a support of g. Then

P(o, ) = w(p). (2.10)
Now we return again to the setting described by definition 2.1. From equation (2.1) we
get an estimate
|61, 7(a*D) &) [* < o1(a*a) 0y(b*D). (2.11)
Remembering (2.2) we immediately reach
Lemma 2.4. Let g,, o, be states of the unital *-algebra A. Then
P(g,, 0,) < sup | F(1,) 2 (2.12)
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where the supremum runs through all linear functionals, F, over A satisfying the
inequality

Va,be A: |F(a*b)|? < p,(a*a) 0,(b*b). (2.13)

Later on we shall sharpen (2.12) to an inequality. That this sharpening can be reached

for C*-algebras is known [5, 6]. At the time being we remark the weak compactness

of the set of all linear functionals obeying the inequality (2.13). In particular the sup-
remum in (2.12) will be attained by some of these functionals.

3. Canonical Lifting of a State to a Strictly Pure One

The purpose of the construction to be described is to get an extension of a unital
*-algebra 4 with ‘“‘universal behaviour”: It should depend only on 4 and on a given
state, o, of 4. It should further allow for lifting of g to a strictly pure state. We shall
see the possibility to do this with the effect of getting a link between the Lemmata 2.3
and 2.4.

The extension will be a direct sum
AA=A+1, I=1I (3.1)

where I is an ideal. We first construct the ideal I as a *-algebra (without unit element)
that allows for multiplication with elements out of A.

Thus with A4 and g given we start constructing I. Denote by J, and J, the left and
the right ideal determined by

bed, if o®*) =0, bed, if o(bb*) = 0. (3.2)

Now we perform over the complex numbers the algebraic direct product of 4/J, with
AN,
I=(4)J) ® (4/J)). (3.3)

Let x ¢ I. We may represent « by the help of the elements of 4 if we consider them as
representing classes modulo J; or J,. Thus we may write

x=2b;, ®c;, finite sum, (3.4)
and we can change this representation by the help of the rules

2b; @c=0 if XbelJ,

2b®c;=0 if Xeeld, (3.5)

Ab ®c)=(Ab) ® c =b ® (de),

here 4 is a complex number. A definition based on representations (3.4) is ‘“‘correct” if
it is consistent with the rules (3.5). We do not give explicitly these checks in what fol-
lows. They are, however, elementary and can be done easily.

Let z be given by (3.4). With a € 4 we define

ar = X(ab) ® ¢;, xa=2b; ® (c;a). (3.6)

This definition is correct and equips I with the structure of a left- and a right-A4-modul.
Let us consider a further element of I, say y, that can be given as

y=2d; ®e;. (3.7)
Referring to (3.4) and (3.7) we explain the multiplication rule:

It is easy to show correctness, the associative, and the distributive laws. Thus I will
become an algebra equipped with an ideal structure by (3.6). Given z by (3.4) we define

x* =¥ @ b¥. (3.9)
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This is consistent because of J§¥ = J,. One sees for x,y€ Iand ac 4
(xy)* = y*x*, (ax)* = 2*a. (3.10)

Thus we got a *-algebra that is at the same time an ideal of A4 in the generalized sense.
(It is not a subset of 4, of course.)
By the aid of p we define a linear functional on I:

R(z) = Zo(by) gbcy) (3.11)
with z given by (3.4). This consistently defines a positive functional on I for

R(a*z) = Zo(c¥) (c;) o(b¥;) = 0. | (3.12)
Let us choose an element

ke Xo(c;) b; + J;. (3.13)
Then with a € 4

R(z) = o(h), R(ax) =p(ah), R(x*x)= o(h*h). (3.14)
With this identities one establishes

Va€ A, xz€ I:|R(ax) < g(a*a) R(z*x). (3.15)

Let us emphasize the canonical structure of all the constructions above which depend
only on A and g. The same is true with the direct sum (3.1), i.e.

A° = A4 + I, direct sum. (3.16)
If a; + x;, @y + x, denote two general elements of (3.16) then
(@ 4 ;) (ay + 25) = 0,8y + 210y + Ty + T % (3.17)

is again such an element, where the last three terms on the right are contained in I.
The rule (3.17) makes of (3.16) an algebra which, by the definition

(@ + x)* = a* + a* (3.18)
becomes a *-algebra. Let us define
o™t(a + @) = (@) + R(@). (3.19)

Because of (3.15) this defines a positive linear form of 4. Moreover, it is a strictly pure
state: p®t(1) = 1 is trivial, and it is a straightforward calculation to see that

p=1, ®1, (3.20)

is a support for the state (3.19).
Having ¢ canonically extended to p®¢, we look for the other states of 4 and their
extensions to 4°. Let o be a state of 4, and let us try an ansatz

0™ a + z) = w(a) + W(z). (3.21)
In order that this ansatz gives a state, W has to be a positive linear functional on I and
Vac A, x€l:|W(ax)|? < w(a*a) W(z*z) (3.22)

has to be satisfied.

Let @ — F(a) be a linear functional on 4 which vanishes on J;. It can therefore be
considered as a linear form over 4/J;. The hermitian conjugate, F'*, of F is given by
the usual rule F*(a) = F(a*), the bare denotes the complex conjugate. F* can be
considered a linear form on 4/J,. Going back to a representation (3.4) we define on I

W(x) = ZF(b;) F*(c;)- (3.23)
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From

W(x*x) = ZF(c¥) F*(c;) 0(b;*d;) (3.24)
we infer the positiveness of W. To examine (3.22) we choose

ke ZXF*(c,) b; + J,. (3.25)
Then

W(x*z) = o(k*k), W(a*x) = F(a*k) (3.26)
and (3.22) reads

Va, ke A: |F(a*k) 2 < w(a*a) o(k*k). (3.27)

Now we reached the point where all this can be connected with transition probabilities.
Using (3.20) we get

o™ (p) = |F(1,) 2. (3.28)
But 1, is also the unit element of 42 Hence (Lemma 2.3)
P(Qext’ wext) — IF(]-A) ‘2' (3.29)

If we have a *-representation of 4¢ then its restriction to 4 can be used for the Defini-
tion 2.1 if the representability of the extended states by vectors is possible. Hence
P(o, w) > P(p™', »°*t). (3.30)
Now we consider Lemma 2.4. We choose F in (2.13) such that the supremum in (2.12)
is obtained. And just this specific F we take in the definition (3.23). But then the Lemma
2.4 states that P(g, w) is not larger than | F(1,) 2. By (3.29) and (3.30) we finally obtain
P(o, w) = P(o™*, 0*™*"). (3.31)

" Theorem 3.1. Let 4 be a unital *-algebra and g one of its states. This defines
an extension A¢, p®*! as described above. Every state w of 4 can be extended in
such a way to a state ™t of 4? that

P(Q, w) — P(gext’ wext)_

Corollary 3.2. In equation (2.12) of Lemma 2.4 the equality sign holds.
This can be sharpened. Let 7z denote the GNS-representation of 4° defined by »*', the
extension is chosen to satisfy (3.30).

Let 7 denote the ““vacuum” vector of the representation. If the transition probability
is not zero then we consider the normalization %" of 7(p) 5. Then | (1, ) |? is indeed the
transition probability. The proof is a copy of that of Lemma 2.3.. Hence we have, by
restricting 7 on A4,

Theorem 3.3. Let 4 be a unital *-algebra and ®;, w, two of its states. Then
there is a representation z of A with

i=1,2:w/a) = |(n; @) n;) 2 (3.32)
and i
P(wy, g) = [ (1, 1) [*- (3.33)

Our next task is to study the particular case in which @ is a strictly pure state of 4
with support ¢. Then, using Definition 2.2, we see

lo(ga*d) |* < o(ga*aq) o(b*b) = w(a*a) o(b*D) o(q)-
Hence we may define the expréssion W in (3.23) by the help of

F(b) = olgb)e(q) (3.34)
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to get an extension (3.21) of w. This extension fulfils (3.31), for W(1,) = o(¢) which is
by Lemma 2.3 equal to the transition probability P(w, g). It is nothing but a short
calculation to establish:

¢ = (¢ ®9h@ (3.35)
is a support of the just defined extension of w, i.e.

Lemma 3.4. Let w be strictly pure with support ¢ in 4. Then (¢ ® 9)lo(g) is a
support of a strictly pure state w®™*t of 4¢ which fulfils (3.31).

Why is this of importance ? We may start with two states, o and w, of 4. We build
up 42 ¢, and choose w®™* to fulfil Theorem 3.1. We know 0%t to be strictly pure.
Now we construct (A")“"EXt and apply Lemma 3.4 to get states of this algebra which

extend our original ones, are strictly pure, and preserve the original transition proba-
bility. That, is, we have

Theorem 3.5. Let g, w be states of the unital *-algebra 4. There is an algebra A’
which admits two states, ¢’ , @’, with the following properties:

a) A can be imbedded into 4’ such that g resp. w are the restrictions of o’ resp. «’
onto A4.

b) The states p” and «’ are strictly pure ones.

c) Itis

P(g, w) = P(¢’, »').

Indeed, we may take for 4’ either (42)® or (4®)?, where @, o denote w®** and 0%t as
in the context of our main construction above. We shall not consider here the question
whether these two algebras are canonically isomorphic, nor consider the plausible de-
mand of generalizing the theorem to more than twostates.

4. Transition Probability and Maps
We start with

Theorem 4.1. Let w, o be strictly pure states of the unital and reduced *-algebra
A. Let B be another unital *-algebra and assume for the states @, g of it the inequality

P(w, ) < P(w, 9). (4.1)
Then there is completely positive unital map

T:-B—> A (4.2)
such that

T*0 = 0, T* =¢. (4.3)

Proof. At first we choose an imbedding of B into B’ according to Theorem 3.5,
and consider the extended strictly pure states o, p’. Let p’, ¢’ denote the supports of
them. They generate (modulo the reducing ideal if B is not reduced) a 2-dimensional
matrix algebra B,. We can consider the states w’, ¢” as states over B, without changing
their transition probability. The unit element of B, is a projection of B’ defining a
completely positive map from B’ onto B,. Now let 4 be reduced. The supports of w
and o generate a 2-dimensional subalgebra 4, and the restriction of w, ¢ on this sub-
algebra does not change their transition probabilities. The inequality now shows the
existence of a completely positive map from B, into 4, the adjoint of it transforms the
one pair of states into the other. Collecting all the maps we get a completely positive
map from B into 4 which satisfies (4.3). That the theorem is valid for 2-dimensional
matrix algebra is a simple consequence of the results in [7], see also [8]. The special case
@ = p can be handled in a similar manner.
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We shall now prove results showing the behaviour of the transition probability with
respect to given maps. Let A, denote all those elements of the unital *-algebra 4 which
have non-negative expectation values for all states of 4. Let us then call “positive” a
linear map 4 — B that maps 4, into B,. We call such a map, 7, ‘“2-positive” iff it
fulfils a Kadison inequality

Vac 4: T(a*a) — T(a*) T(a)€ B,. (4.4)
Now let g,, 0, denote two states of B and consider a linear functional, F, satisfying
| F(By*by) [* < 04(bFBy) 02(b3by)- (4.5)

If T is 2-positive it is clear that T*F satisfies the corresponding inequality for the
states T*g; of A. If T is in addition unital, i.e. T'(1,) = 1p, we have

(T*F) (14) = F(1p). (4.6)
Hence by Lemma 2.4 and Corollary 3.2 we get

Theorem 4.2. Let T be a 2-positive unital map from A4 into B. Let p,, 9, denote
two states of B. Then

Ploy, 00) < P(T*gy, T*g,). (47)
There is a slight sharpening if one knows the strict purety of some states.

Lemma 4.3. If in Theorem 4.2 the states g, and T*g, are strictly pure ones,
then for the validity of (4.7) the positivity of the unital map 7' is sufficient.

For the proof we need supports p of g, and ¢ of T*g,. T'qg = b is contained in B, N
(1g — B). From this and g,(b) = 1 it follows g,(b%) = 1. This in turn implies that
pb(1 — p) and (1 — p) bp are contained in the reducing ideal. Hence b — p€ B,. But
this gives g,(b) > go(p). Now the assertion follows from Lemma 2.3.

At this place it is worthwhile to note a very interesting result: Staying within C*-
algebras, Theorem 4.2 is valid for every positive unital map 7. This result was obtained
in [5] and [6] by heavily using a result of [9], see also [10]. The essence of the method
used is to perform the calculation of the transition probability within commutative
*-subalgebras. In particular, in [6] a proof is given for

P(w, ) = inf o(a) o(a™) (4.8)

where the infimum runs through all invertible positive elements of the C*-algebra in
question. Practically all known properties of the transition probability in the C*-al-
gebraic case can be easily derived from this relation.

A by-result of this technique is a positive answer to the question whether a quite
another definition of ‘transition probability’ [11] coincides with ours.

Finally, we shall use Theorems 4.1 and 4.2 to give a ‘“‘categorial” characterization
of the transition probability. Let us assume we could associate to every triple

{A, 01, 05} (4.9)
a real number,

KA (@1’ 92) ’ (4.10)
with the following property: 1f

{B, w, Wy} (4.11)

denotes another triple and if there is a completely positive unital map

T:4—-B with T*w;,=p9; i=1,2 (4.12)
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then it should be

‘ K 4(01, 02) = K p(o,, wy). (4.13)
Let us call such an object a ““t-functor” (‘¢ for transition). Assume at first the states
in (4.9) and (4.11) to be strictly pure ones. Then 7' exists with property (4.12) if and

only if P(g,, g,) is larger than P(w,, w,). This means that K is a monotonously increasing
function of P, i.e.

K (01, 05) = u(P 4(01, 02)) (4.14)

where u is defined on the unit interval and is monotonously increasing.
Now let (4.9) be arbitrary, but (4.11) should consist of strictly pure states with
P05 05) = P(w,, w,). Here we could again conclude the existence of 7' performing (4.12).

Then (4.13) is valid with strictly pure states w,, w,. Applying now (4.14) and remember-
ing the assumed constance of P we get: -

Theorem 4.4. Let K be a t-functor. Then there is a monotonously increasing
function, u,

u:[0,1]— R
such that for every unital *-algebra 4 and every pair of states, g;, 0,, of 4 it is
K 4(015 03) = u(P 4(015 02))- (4.16)

Moreover, for strictly pure states p,, g, the equality sign holds in (4.16).
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