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0. Introductory remarks
There are several attempts to find unitary invariants P: S,x S,—= [o,d

which extend the notion of quantum mechanical transition probability (which
is defined between vector states, i.e. normal pure states over é = B(H), the
bounded linear operators on some Hilbert-space H) to full state spaces SA(resp.
normal state spaces) of general (unital) C’-algebras resp. Wk;algebras 5:.

We shall give some of the definitions which are possible and known from
literature, discuss (without proof in general) the relations amongst them

and their properties from a mathematical point of view. The motivations for
favouring the one or the other of the definitions descend from their origins,
which are in axiomatics of quantum theory, quantum logics, statistical in-
ference theory etc.. Another more pragmatic point of view (and we join this
one) is in the following: given a large many body quantum system find reaso-
nadble estimates for the ordinary quantum mechanical transition probability
l(x,y)|2 between the two state vectors x,y if only the reduced states f,g

to a (in general) small subsystem are given. Note that, in such a situation,
neither f nor g is a pure state any longer in general; in extending the noti-
on of transition probability to general C*-algebras (observable algebra of

a possible subsystem) and mixed states (possibly arising from a reduction to
the subsystem) in a "suitable" way we will arrive at such kind of estimates.
Certainly, a minimal requirement an extension P has to meet is that in case
of quantum mechanics, i.e. A = B(H) and states arising from vectors x,y ,

the usual expression I(x,y)]2 should be reproduced.

1. Definitions of transition probabilities
Having in mind the idea of that we have said at the end of the introduction

a first and very straightforward extension of transition probability can be

read off from the following elementary observation:



let x,y be unit vectors in some Hilbert-space H, with scalar product
(ey.), and define Px and Py as the corresponding one-dimensional orthopro-
Jections; a rank 2 operator R is defined by R = Px - Py (the spectrum of R
1s{ tRN, -IRM}), two states £, end £ eve defined by £, (.) = (x,(.)x) and

fy(.) = (y,(.)y). Then it is easy to follow the subsequent conclusions

Koy 2 =1 - (2 -2k 2)/2 = 1 =(1/2)2r. R% = 1 - URWZ = 1 =(1/4)(TrJRI)

-1 - (1/4)Ifx - fyl(z , where in the last expression the functional norm is
meant. Therefore, if we define for states f,g on a unital (f" -algebra A
r,‘f’(f.s) =1 - (/e - g,

we can be sure :hat Pé‘()l){)(fx'ty) = I3l 2 , i.e. 2(°) peets our minimal re-
quirement. Also the other properties make that P(o)should be listed among
the other (existing) definitions.

Another definition works in case of a w*-algebra _A and normal states
f and g. To every element e taken from the set PVM(é) of all projection

valued measures over é and the two states we associate two Borel measures

mt,e and m o by the following settings : mf'e(B) = f(e(B)),mg'e(B) = g(e(B))

&

for any Borel set B of R ., Let dQM(m

.0} ) be the quadratic mean of the

m
[- 3]
two measures at hand, i.e.

dm am
. f,e g,e y1/2
aQumy m ) =( 57 F) P

where m is some dominating measure for both LV and ms e * Then, following
1] ’
a definition in [3] one has another candidate for a "transition probability"

through the setting

(1) ; 2
e - e Saautm, jim, )7 .

One can also introduce a transition probability in the state space
of a c“-alge_bra A which is connected to the ordinary transition probability
in a natural way by its very definition, where the definition goes back to
[2]. Moreover, in case of a W*-algebra and normal states the definition is
intimately connected to a dictance function introduced in [1] . To give the
definition, let us call a unital *-representation {W.H} of awmital C*-al- -

gebra é ,on some Hilbert-space H, f,g-admissible (f.geSA) if there exist
x€H and y ¢ H such that £(X) =(x,n(X)x), &(X) = (y,mX)yJ ¥Xe4 .

Let us define

2
Piz)(f,g) = sup I(x,y)l .
= Xy ®
where the supremum extends over .all vector representatives x,y of f,g , res-

pectively, within all possible f,g-admissible representations.

Phe last definition we shall consider in this paper has been intro-
duced in [5] in case of a o=-finite w*-a.lgebra and normal states. We give a
modified variant to meet the general case of a ' -algebra.
Let f£,8 be normal states on a W*-algebra é , and let P be the support projec-
tion of £ + g . Then, M = PAP is *-isomorphic to a vN-algebra'lT(ip on some
Hilbert-space H with a cyclic and separating vector 4’ : so we have a VN-alge-

bra in standard form {R(M), ?} , with associated normal positive cone

P+ - {AJAJ } e where J is the corresponding modular conjugation operator.
By standard the;)ry, there exists a homeomorphism ; My 2 h «» ;(h)e P +
between the positive normal forms on l_ﬂ and the cone P¢, with the property
ined

n(x) = (;(h) ,‘K(X);(h)) for any hely and g(h) is the uniquely determine
vector in P¢ representing h in this form. The definition now reads as

(3)

Pe (f|5) = (Z(f)9§(8)) .
Since a representation of M in standard form is unique up to unitary trans-
formations, the definition is independent of the special representation at
hand and so makes sense. Due to selfduality of P+ also positivity is guaran-
teed.

Let us now list some of the properties that are common to all the
P's we have defined above. ,
(1) A=BE , £() = (x,()x),2,() = (7,(.)y) implies P22 )= (2,905
(1.2) P(f,g) = P(g,T) 'Vr.gesA (resp. normal states) ;
(1.3) ®(£,8)el0,11 V¥ f,ges8,

(1.4)  B(£,g) = 0 iff £ is orthogonal to g (i.e. If - gl = 2);
P(f,8) =1 4iff £ = g ;

2 2)1/2
(1.5) concavity properties : P(o),P(B), P(1)1/ , pt ) are jointly

concave,

P(1) and ?(2) are separately concave ;



(1.6) let T be a unital, positive linear map acting from one unital C*-al- 4 % 2.1/2
gebra (resp. W¥-algebra) A into another one B , then (2.4) l P(z)(f.h)z- P(z)(%,h-)’.ll‘(é_ﬁ - P(z)(fgﬁ)V )1/ Vf,S,hCSA 3

1/2
PA(f-T,g-T) 2 PB(f,s) Vf,geSB (resp. f,g normal and (2.5) l 1’(3)(f.8) - P(B)(hyg) |€g-nll / V norms1 f,g,h
2 = = T a normal map, too) §
in any of the definitions from above in case T is a 2-positi'.ve | P(j)(f,8)1/2 - P(J)(hnS)Vz" hr - h"1/2 in case j=1,2 .

map (i.e. T(A*A) > T(A)*T(A) holds);

(3)
. the fact that
if s: gh- E* is a stochastic linear map (i.e. state preserving), Bemerks: (2.3) and @2.5) in case of P follow from the fac

2
- - hism ¥ between the posi-
in case of P(®) ang p(? we have even more to hold : H?(f) £(n)ll €H4f - hll is true for the homeomorp } etwe P

ti7e, normal linear forms on M and the cone P, associated with{‘l(l_ﬁ),(‘v}(see

PR(5(£),5(2) > y(f,6) ¥ z,8€5, , see [41,1e],[0] ; )

> = follows from
for the proofs in case of P(1),P(3) see [10] and[12] ;

section 1. and the definition of P(3)). (2.3) in case of P

the P(B)case via (2.1). Combining (2.4) with (2.3) gives (2.5) in case of

(1.7) assume B is a c*- (w*-) subalgebra of A , with the same identity, (2) (1)
then: = P and P (the latter via (2.2)). There exists a proof of (2.5) in case

Po(f,.,8,,) ® P, (f,g) Nf,geS, (resp. normal states)
B /E /E A’ ’ 2 ’ of P(Z)vhioh doesn't make use of (2.4), see a personal comunicationﬁﬂ.

which can be seen by application of (1.6) (the embedding map is

unity preserving and completely positive); 3. Representations for P's and further properties
. *
(i.8) if {ét} is an increasingly directed set of C-(W'-)algebras (all with If B is a C -algebra, U(B) denotes the unitary group in B and
a common identity) in sense of inclusion and A=0 ét‘ or B1 stands for the unit sphere of B , E' for the commutant (if this makes sense).

A =(UA_)" (double commutant, A,: w*-algebras actzng on some common %
4 A » By (2) 2, 24 Y :
Hilbe;t-space), we find in either case 3.1 B,"(£,g) = sup{lh(l)l : BEAT, Inx*nl 2(XX) e(x'1),X,veE l.‘}'

P,(f,g) = inf P, (£,, 08/, ) V¥ f,ges, (resp. normal st.), (3.2) it §n,8} is f,g-admissible, and £(.) = (x,7(.)x),g(.) = (y,x(.)y)
= t =t =t =t

(2) 2 2
12) P,“/(f,8) = sup l(x,ky)l° = sup Il(x,uy)l ;
where /Ay means the .restriction onto A, (the P'“’proof is in [e]l, A ’ Ke:[(é)f‘ UE U(m(a)’)
the P(B)proof is in a preprint of Kosaki, quoted in [12] ); (3.3) if f,g<<h , and {R,H: *’} is the h-GNS-representation, and
(1.9) let A be a unital C*-algebra acting on a Hilbert-space H, and suppose Tf,Tge ‘ﬂ:(é)'*_ are the Radon-Nikodym operators of f,g with re-

f,g are normal states on g"-, then it is at least helpful to know

spect to h within T , we have:
2D (r,0) = 2{P(e

n 28/,) 1 2 2
A e 2D, = swp 104,11/ % 2 %) ;

(the corresponding result for P is trivial). = ke %(é)'1
2. Relations between P's, estimates (3.4) PXZ)(f'g) = inf £(X) g(x—1) 3

In restriction to their respective common domain of definition we - X é*’ *
have the following relations : (3.5) let A be a g-finite W -algebra, and f,g,h AT,H, 43 as in G.3),

2 " . A

(2.1) p(o)y P(2)’ p(My p(2) , p(21/2  ;(3) § p(?) , h a faithful normal state (or modification as in 1.), and let be

the modular operator with respect to SC”(;\),#} . Then
2 e,0) = (Ir,' 2072 ¢, 17,2 a7V34) , wnere

|R| is the modulus of the operator R ;

i.e. P(2) = min P(j) (the P(B)estimate is in [5] using a tech-
J
niqué of [6], for the rest see [2] ) ;

(2.2) P(z) extends P(1) to the C*-case, i.e. Piz)(f,g) = Pi”(f,g) in )
4 - 3 (e f =0
case of a W*-algebxa J=L and normal states f,g (the proof of this .6 Pé () = igf PE ¢ /298/9) or 3+0,1,2 ’

result is given in [7]); where B runs through all commutative C'-(W*-) subalgebras of A ,
(2) g 1/2 y p(3) -
(2.3)  P(a8) T2 PVN(E,0) Y 1 - (1/2) N2 - gl note however Pf\”(f,g) ¢ inf PéB)(f/E’S/E) with # occuring

in general.



Remarks: These representation formulas are sources for explicite cal-
culations and further useful estimates. As an application, we give a proof of
(2.4) which is due to one of us (P.M.A.).

assume P2 (2,n) » 22 (g,h) , and let {%,H,4} be the GNS-representation of

A via the state (£ + g + h)/3 . Then, T is admissible for any two states
taken of {f.g,hs . Let x,y,z€H be £f,g,h vector representatives via T ,
Suppose £ > O . Then, by (3.2) we may suppose that (x,y) 0 , and
(x,y) » 1"(2)(1,5)1/2 - ¢ (positivity by chosing a phase for one of the re-
presentatives appropriately). By (3.2) and weak compactness of 'lt‘.(zl:)'1 we
find Ké‘lf(_A)'1 such that P(z)(f,h)“/2 = | (x,K z)| . Therefore :
(2,2 - 2D (g,n)"/2| =[xk 2| - owp M,U ) <
£ l(x,k z2)!I-U(y,K z2)l € | (x,K z) - (y,K 2)] ‘.J O
- lx - vk DI€lx -yl = (2 - 22 47 (1 - 2P, 2 )2,
Since € >0 was arbitrarily chosen, (2.4) follows at once. Most of the re-
sults of this section are taken from [8]1 , for special cases see also [2] .,
4. Examples
There are few cases where P's can be calculated explicitely. We give some
of them.
(4.1) A - a commutative W -algebra (which is isomorphic to L°(X,m)):
PP, = @D, §1,/%2 % an)? (c£.(3.3) ana (3.4
(4.2) é-- B(H) , £,g normal states given by density operators F,G
P (,0) = 1 PY%Y202 o (2. (5% PV/V/22 | (1 31/251/22,
I,(3)(1,'3) - mr.7V/21/2

(4.3) a very instructive example arises if g is obtained from f via a
Radon-Nikodym construction with a positive M : g = £(M(.)M), M
existing, then
(e, - t0)? = g2,

Remarks: Our interpretation of these generalized transition probabilities in

1

some situations as estimates for the quantum mechanical transition probabili-
ty (see section 0,) is supported by the properties listed above as follows
(see[2],[9] ana [11}): 1et A = U—m) be the fermion or boson field
algebra over the corresponding Fock-sgace H, é(L) the L C IR3 associated local
field algebra (L - some bounded region). Then, A acts in either case irredu-
cibly over H, i.e. A" = B(H) (and the same is true for é(L) wer.t. H(L)).

10

Let x,y¢ H be unit vectcrs, and i’L, gL the corresponding reduced states, i.e.
fI‘(X) = (x,X x), gI'(I) = (y,X y) for X€ _A(L). These reduced states might be
identified in a unique way with local density operators FI- and GI. over H(L).
By (1.9) and (1.7) we know that

I, 2 - P£2)(fx.fy) < Pga)(fl',gl') M1 |, i.e. we have

upper bounds;
by (1.8) we even kmow |(x,y) 2 . 1im Pif;‘)(fn:sll) .
Due to (4.2) this means: o=
o ¢ o)z 22, end @)l = e T gy

(2) (3) (o)
By (2.1) we see that PQ(L) if compared with PJ_\(L) or PQ(I‘) gives always
sharper bounds from above (but in the limit they agree, of course) .
For further applications in context with some transformation problems see
references [41,[9] and[11] .
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