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ABSTRACT

I try to explain the appearance and some
properties of certain algebras of smooth
superfunctions.

1. Introduction

The mathematical description of a supermanifold is
by means of ringed manifolds, i.e. sheafs of associative
algebras, where the elements of the algebras in question
are functions with values in a GraBmann algebra or, more
generally, in finite dimensional algebras which allow
for a Zz—grating. Differential Geometry with such objects
has been reviewed by Leitesq) and by Kostant2 where one
may find also some comments on the history of the subject.

At the time being there 1is certainly no substitute
to the sheaf-theoretic approach, in particular in the
holomorphic case. However, concerning smooth, i.e. dif=
ferentiable of class C%® supermanifolds all the structu=
re is carried already by the algebra of 'superfunctions'.
This parallels the 'ordinary' functions: As an algebraic
object the algebra CP(M) of smooth (say complex-valued)
functions on a differentiable manifold M carries preci=
sely all the properties of M , seeB).

In particular, the algebras C°°(M4) and C°°(M2)
are isomorphic iff M1 and M2 are diffeomorphic. The
group of automorphisms of such an algebra COO(M) is
canonically isomorphic to the group of diffeomorphisms
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of the smooth manifold M .
A corresponding statement is true for the algebras of
smooth superfunctions, though the automorphisms turn out
to be more complex in structure here.

In the following I like to give an impression how one
may look at supermanifolds 'with the eyes of associative
algebras'.

2. Geometry with Associative Algebras.
Let A be an associative algebra over the complex

numbers containing a unit element, 1 .

We like to define some Geometry by the help of A .
Therefore we discuss shortly those properties the algebra
should have in order 'to make Geometry!'.

"Point of " we shall call every maximal (two-sided)
ideal I of with finite co-dimension, i.e. the
factor ;lgebra A/ 1 , considered as a complex-linear
space, should be—of finite dimension. By its very defi=
nition the factor algebra A / I is simple and finite
dimensional. Hence by Wedde;burﬂ's theorem, see4) chap=
ter VII, § 5, this factor algebra is isomorphic to a
full matrix algebra over the complex numbers, and for
every point of the algebra there is a natural number

k= k; with dimy ( /I ) = K° . E))

e i

The "value a(I) " at an arbitrary point I of an
arbitrary element a of the algebra is the corresponding
rest class, i.e.

a — a(;) = a+1 €

=

/I (2)

In the particular important case kg =1, or if a(l)
is a central element of the factor algebra, there is
a complex number A with

a+ 1 = 21 o+ I (3

and we are allowed without danger of confusion to identi=

£y
a(Id) = A (3a)
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If we, however, like to identify in the general case the

value a(I) with a concrete matrix we cannot find a cano=

nical prozedure because there is the freedom of gauge.
Let us now call "space of 4", and let us write

space A (4)

the set of all points of A . A subset N of A will be
called "closed" if for eve;y point I wﬂich is_not con=
tained in N there is an element a e A with a ¢ I
but satisfyzng a & I' for all points I'e N . B
With this definition of closed sets Space—g b;comes a
topological space, and this space is compli%ely determi=
ned by the structure of 4 . The space of A is compact
iff every maximal ideal is a point,i.e. is of finite
co-dimension.

Let us now look for a condition guarantying the non-
triviality of (4). It would be sufficient to require for
every element a # O the existence qf a point I and of
a natural number j with a ¢ 1J . (For a linear
subspace of an algebra, L , its pow;r LY is the linear
space spanned by all possible products b1b2...bj where
b1""’bj is arbitrarily choosen out of L .) We like
to have a more restricted condition:

Condition 1: There is a natural number n such that

b € ;n+1 for all I € space A (5)

implies b =0 .
If condition 1 applies we call the smallest n possib=

le the "odd dimension" or the "GraBmann dimension" of 4.
Let us consider the intersection of all points of A

R t= /ﬂ\\ I, I € space A (6)

Condition 1 says something for the elements of R . Let

Diyees,b denote elements of R . Then Db E eseb
1 n+1 st = 172 n+1
is containes in the (n+1) power of every point. Hence
b1b2"'bn+1 = 0 . This can be expresses as
Bn+1 = ‘, (0] Z (7
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Because every b€ R 1is nilpotent it follows in standart
manner that (1 + b)~| exists, and that ae A posses=
ses an inverse iff a + R is invertible in —A /R .
This, furthermore, implie; that R 1indeed is tﬁe r;dical
of A , i.e. the intersection of all maximal ideals.

Now A /R 1is an algebra where the intersection of
all its Eoint contains the zero element only. An element
of this factor algebra is completely determined by its
values at the various points, it is a function on the
space of é / g with values in certain full matrix alge=
bras. One finds space A = space( A/R ) with the
canonical isomorphism I <« I/R . o

Hence in going from A tg —g/g we 'cut off' all the
available in A !super ;tructu;e'. It is therefore a
quite natural requirement to look at é/g as an algebra
of functions. As we are aiming at smooth superfunctions
one certainly has to require

condition 2: There is a smooth manifold M such that

A/R = c®wm) (8)

where R 1is given by (6) .

However, with this condition we cut down the numbers
k; appearing in (1) to the value 1 . More generally
one has to consider a smooth fibre bundle E the fibres
of which carry the structure of full matrix_algebras.(The
rank of the matrix algebras could be different on diffe=
rent components of the base space.) Then the smooth sec=
tions of E constitute an algebra sectionoo(E) , and
we have toureplace condition 2 by -

condition 2': With a suitable fibre bundle E as

described above we have -

A/R = sectioncoo)( E) - ¢))

One should not require at this point connectedness of M
or of E beforhand: M (or E ) could be disconnected
but 'cognected by the super st;ucture' .

All this is not enough to define an object that could
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be called a 'smooth super structure without singularities!
What is yet missing is a condition saying that 'locally!
the algebra A 1is a free finite-dimensional coherent
modul over thg germs of differentiable functions. The
problem 1s, how to get a good definition of locality. As
a matter of fact one excludes completely reasonable examp=
les in basing locality solely on the notion of space 4 .
Indeed, even the harmless looking condition 1 is perhags
too restrictive and should be replaced by the somewhat
weaker version requiring the validity of (7) only.

Let us now have a glance at the automorphism group of
4 which will be called Aut A . A complex-linear one-
Eo—one map T from A to A- is called"automorphism of
A ™ if it satisfies B

T(ab) = T(a) T(b) for all a,b e 4 . (10)

With the natural composition rule (T4T,)(a) = T4(T,a) ,
Aut é is a group. Every automorphism T of é induces
a transformation of space A by

I — ™D = {Ta, aeI} . (11)

Condition 2 or 2' guaranties that this transformation is
a diffeomorphism of M (or of the base space of E ).
Let Autoé denote the kernel of the homomorphism Bf
Aut A into the group of diffeomorphisms of M . This
normal subgroup consists of all automorphisms with

T(;) = I for all I space 4 . (12)

For every automorphism permutates the points, the in=
tersection g of all points remains stable as a whole.
Therefore every automorphism of é induces an automor=
phism of every factor algebra é / 53 . Thus, naturally,

0 — Aubs(A) —> Aut A — Aut( 4 / RI) (13)

is defining a normal subgroup Autj(é) for j=1,2,...
We have obtained a sequence of normal subgroups

Aut, 2 Auty 2 Aut, 2 ..., (14)

which terminates for Jj» n+1 1if (7) is true.
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T belongs to Autd(é) for j »1 iff for all ae A
one has a - Ta e 53 .

If kI = 1 always then Aut = Aut1 . In the general
case the factor group Auto/Aut1 characterizes the admis=
sable local gauge transformations of A/B ¢ Two automor=
phiéms of Auto(é) belong to the same_equivalence class
modulo Autq(é) y 1ff they induce in every matrix algebra
A/ 1 the same inner automorphism.

B an should have in mind that (14) shows only a small
subset of the normal subgroups of Aut é .
Let us now consider examples.

3. Split Algebras of Superfunctions.

Let A be an algebra and let R , defined by (6),
fulfil (7) . A unital subalgebra F of R 1is called
a "splitting factor" iff
A = F + R and F AR = O . (15)

If there exists a splitting factor the algebra A is
called a "split algebra", h

(15) implies the isomorphy of F and A/R , and
all splitting factors are isomorphis one-ta-angther.(By
condition 2 or 2' we shall fix the structure of F fur=
ther.) Let F and F' denote two splitting factgrs.
If f ¢ F there is one and only one element in F' which
we call for a moment Tof »such that f - Tof € _B .

f — T f , feF (1e6)

is an isomorphism from F onto F' . Now we ask for a
condition ensuring an exgension of (16) to an automorphism
of A . An answer, however, can be given only under very
special circumstances,

At first we see: If T 1is an extension of To then
it belongs to Aut,(4) . Further, if I 1is a point of 4

then InF = d 1is a point of F , and every point—
of g can be obtained this way. Denoting by g' =IA~AF
the corresponding point of F' , it is To(g) = J'.
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Indeed, let us decompose the element a < A according
to (15) as a = f+r . Then Ta = Tof + Tr , and
Tof = f + r' , where r,r' denote elements of R.
Eliminating Tof we see a-Ta<R and T ¢ Autq(é) .
This inturn implies the second assertion.

Let g be a splitting factor. A "complement of F "
is a unital subalgebra D of A satisfying

i) Every element of E comm;tes with every element of

D .

ii) Tet fqa""fs respectively dq"°"ds denote

linearly independent elements of g and of Q
respectively. Then f1d1 + eea + fsds #£0
iii) The algebra A is generated by its subalgebras

g and Q .

If D 1is a complement of F then the intersection
g,\g cgntains only the multiples of 1 by complex num=
bers. One further has D = C 1 + (2 A 5) y and D AR
is the only element of nspace Q . -

To have also in the "super structure" finite dimensio=
nality we shall require Q to be finite dimensional as
a complex-linear space.

Let D be a finite-dimensional complement of the
splittiné factors F and F' . Then there is one and
only one automorphism T of A  which extends (16) ,
and which let D pointwise fi;ed.

Let us write down T . Assume d1"""dq is a linear
base of D containing 1 . Then every a e A can be
written uniquely in the form

a = £, + .0 £ f.e¢ F . 17)

qdq ’ Jd
Then one defines
Ta := (Tof’l)d’l + eee + (Tofq)dq . (18)

The conditions above are sufficient to prove that a —Ta
is an automorphism of é . Without any special assumption
on E' (18) is defined as a linear map. Commutes F'
with D , the map fulfils T(ab) = (Ta)(Tb) . The Brobz
lem is to show T +to map é onto é invertibly. For
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this obviously suffices D to be a complement of F'

Fortunately one can relax the latter condition if

g -

is a unital GraBmann algebra. One can prove:

Let F be a splitting factor and 2 a complement of
P Let F' be another splitting factor which commutes
;ith D ._Let D be a unital GraBmann algebra. Then
D 1is a complement of F' too.

) The proof goes this way. Let a € A and 61,...,6n
a GraBmann base of Q . Assume we had a representation

a = £'1 + 2 £, . 0, ...0, +
(o] - kéS 11."11{ 1,1 lk
(19)
> £ .0, ...0. i i
kK> s 11"'1k i, i s 1 2

This is possible for s = O . If it is possible for any
8 then replacing in the monominals of degree s+1

all the f£f. by T.f. and rearrange
:L,l...is+1 o 11"‘is+1
the higher terms in such a way that a representation (19)

with s+1 1instead of s appears. The induction termi=
nates and show the reachability of every element of A
by a certain choice of (18) . (Remind T, is a one-to-
one map from F onto B .) Now let in (19) s =n and
a=0 ., If f'123 # 0 then multiply by 94...9n to
get f'42361...6n = f12394...9n = 0 with gzs— f123
in R . That contradicts the assumption that 2 is a
compliment of g . Hence f%23 = O . The same methode
gives the vanishing of all coefficients if a = O . This
proves T as defined by (18) to be an automorphism.
Hence has to be a complement of g' too.

D
If A 1is a split algebra with splitting factor F
and complement D then A 1is representable as the di=
rect product ove; the comglex numbers of F and D .
Hence we may write - -
A ~ D ® (A/R) . (20)

All possible complements are mutually isomorphic.
Let us now consider split superfunction algebras.
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Using a standart unital GraBmann algebra §n of odd
dimension n , we denote by §n(M) an algebra isomorph
to the direct product of §n and CO°(M) , where M is
a smooth manifold:

5,0 = 5 x coem) (21)
and we call such an algebra "split algebra of superfunc=
tions on M of odd degree n " .

A splitting factor F of §n(M) is called "function
factor" iff F belongs to che centre of §n(M) . (There
are many spitting factors without that property.)

From the direct product structure we see that there is
at last one furnction factor which has a complement, and
that complement has to be isomorphic to §n . By the
reasoning above we know now: If D 1is a complement to
the function factor F then it is a complement for every
function factor. Let us hence call "f-complement" every
unital subalgebra D which is a complement of one (and
therefore of all) fanction factors.

Using now our general reasoning we can state:

Let F and F' be function factors and D a f-com=
plement of §n(M3 . Then there is one and on1§ one
automorphism T € Autq( §n(M) ) fulfilling

T( F ) = B y W d ¢ D: T(d) =4 . (22)

There is a remarkable consequence: The subgroup of
those T € Aut, which leave fixed Q elementwise, acts
effectively and transitively on the set of all function
factors.

By a construction similar to that giving (22) by means
of (17) and (18) one finds: If F 1is & function factor
and Q and D' two f—complemengs,,there exists an auto=
morphism U Aut,( S, (M) ) with

U( D ) = 2' , V¥ fe E : U(f) = £ . (23)
U 1is not determined uniquely by (23) : Let us assume
D = 2' for a moment. In doing so, U is determined up
to an automorphism of Q = §n . The automorphisms of
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unital GraBmann algebras are explicetly known, of course,
Using both, (22) and (23), we see that Autq( §n(M) )
acts transitively on the set of pairs (F,D) where F
is a function factor and Q a f—complem;ng. The stabili=
ty group of this transitive action is isomorphic to the
group Aut §n .
Notice that the diagramm

e (:_E__",B) — (F' D')
\ (E,]z)') / = ’=

where the arrows denote actions (22) and (23) accordingly

(E,D)

need not be commutative.

Now we come to the problem to ennumerate all function
factors. This problem is connected with the derivations
of the algebra C9°(M) . Within our context a derivation
is a complex-linear map H fulfilling Leibniz's rule

H(f1f2) = H(fq) f2 + f1 H(f2)

In the algebra of smooth functions defined on M , H is
given as the Lie derivative with respect to a complex-
valued vector field. In the following it will turn out
that the function factors can be parametrized by 2n—1_4
(if n 1is even) or 2n=1 (if n 1is odd) deriva=
tions, i.e. by just that number of complex vector fields
on M .

Let us fix F and D in (22) so that T 1is the
extension of 50 as defined in (16). With f € F and
with a GraBmann base 84s...,0, we may write (2>

T = Tf = £ +>5_ Q (£) 6, ...0, . (24)
0 K> s 11“'1k 11 ik

Here the Q's map F 1linearly into F , and we require
that not all linea; maps Qi Y ;re vanishing. Now
(24) is a central element. 1 S Hence the coefficients
have to vanish if k 1is odd with the possible exception
k=n if n is odd. In particular, s is even and big=
ger or equal 2 , or s =n with n odd.
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One sees T € Auts( §n(M) ) under this assumption.

Writing down the condition under which an ansatz (24)
is an homomorphism is rather complicated. However, one
easily finds that necessarily every Qi has to be
a derivation of Fo.

Define

qeeeig

Q,T(£)

> . (£) 6; ...0
Ui 100
for elements of g , and extend it by
5 £i,0n. 80 )= Z Q, Tt

to a derivation of the algebra §n(M) . This derivation
is nilpotent for it highers the degree with respect to
the choosen GraBmann base always by at least s . It
follows trivially the convergence of

T+ (12 &F + ... (25)

T§ = id. + Q
The Lie sery (25) defines an automorphism with the
following important properties:

)6 cce
11... i,

T T§

™ e au ( 5,00) and ¢ = g (26)

Furhter, D 1is left elementwise fixed by (25).

Given ; ,» the set of all automorphisms of the ‘form
(25) depends on (g) complex smooth vector fields of
M.

From (26) and the construction above we conclude

§4-1
@™ e e aue (s W) ) (27)

if not n odd and s = n-1 , in which case we replace

Auts+2 by Autn in (27) .

Evidently, we should now vary s in the allowed ran=
ge 2,4,...,n to use (27) as an induction receipt.
Let T be of the form (22). One constructs

-1 -1, =1
=1, 1= @D, = (0,8,
and so forth, If n 1is even then this terminates with

T , T is always the identity map. If n is odd

n n+2 -1 1.8
one stops at T and defines Tn = (Tn-1 ...T2 ™°,

n-1
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Let us repeat this once more assuming n even:
Defining
§ 1 =Ty §
P S U ) (28)

T, = v Togen = (Tpg
we have

T = Tp Ty eee Ty« (29)

In this way we have found all possible T ¢ Aut1( §n(M) )
fulfilling (22) , i.e. letting D elementwise stable.
Because the group of these automorphisms acts effective=
ly and transitively, every function factor is one and
only one time representable in the form T(g) where F
is given and T runs through all automorphisms (29) .

Because of lack of place let me say only very few
words on the automorphisms (23) .

The algebra §n(M) be:gggs the structure of a "super=
commutative superalgebra" by distinguishing an auto=
morphism w with the following properties:

i) w° = identity

ii) w(a) = a implies a is in the centre of §n(M)
1ii) w(b) = -b implies b° = O

Then call "superautomorphism'" (of even character)
every automorphism T commuting with w : Tw = wl .
A1l the automorphisms (28) and (29) constructed above
commute with w for every choice of w , provided n
is even (otherwise, for odd n , just Tn is of odd
character).

If wU=Uw and U given with property (23) , one
can similarily find an induction process allowing to
write U= UyUsUs...Uy , k< n, with v, < Auty
U3 U1 U € Aut5 , and so on.

One then expects, and this expection is correct, that
it is possible to write T from Aut1 in the form

T = U1T2U3T4... (with slight redifinitions but essen=
tially the same induction steps).

Now there ''remains" only the inner Automorphisms of
§n(m) , i.e. those automorphisms V which are given by

V(a) =b a v~ with a certain be §n(M) .
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If w denotes a superstructure, V an inner automorphism
then Vw\/’"1 is again a superstructure and VwV"’l £ 0w
if V # identity. The transformations w = v , V inner,
act effectively and transitively on the set of all super=
structures w (if n>2).

Last not least I like to point at a certain space that
in my opinion plays for the algebra §n(M) a similar
role as the space M 1is doing for the smooth functionms.

Let us consider the set of all pairs (I,F) where I
is a point of §n(M) and E a function f;cgor of that_
algebra. Define

g(;,g) := ideal generated by InF (30)

and call "G-space of §n(M) " the set of all ideals of
the form (30) . The automorphisms act in a natural way

as transformations of this set. The generating process
(30) defines a ‘'transverse' double fibration. Further, if
J Dbelongs to the G-space we have

s, /3 = 5 . (31)

Hence the G-space consists of a certain subset of those

ideals which are kernels of homomorphisms onto the

GraBmann algebra.
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