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ABSTRACT. Some aspects of the transition probability P(w, u) between states w, ~, on unital 

*-algebras are discussed. It is shown that P increases under the action of any stochastic linear map 

T, i.e., P(Tco, Tp) >~ P(co, u). Some properties of P are derived in starting from a recently-proved 

characterization of the quantity in question. 

1. INTRODUCTION 

There is a very natural extension of the quantum theoretical notation of 'transition probability' 

to states given by density matrices or even more general mixed states. Computationally, if ~1 and 

~2 denote normalized Schr6dinger functions of a (say large, many-body) quantum system, and if 

Pl,  P2 denote the matrices of the corresponding reduced states of a (perhaps small, few-body) 

sub-system, then 

1(~,, ff2)l < Tr (p~/202p~/2)l/2. (1.1) 

Thus, we get a reasonable estimation from above of I(~1, ~2)1. The square of the right-hand side 

of (1.1) is called the 'transition probability of the two states given by the density matrices p~, P2 '- 

As has been proved by Uhlmann in [1 ], the assertions above are valid and consistent with the 

following general definition: 

DEFINITION. Let d b e  a unital *-algebra and ut, u2 two of its states. By P(ut, u2) we denote 

the smallest number satisfying the inequality 

1(@1, ~2)12 ~'~20(Ul, b/2) f1.2) 

for every unital *-representation 7r of J ,  which represents L/1 and u2 as vector states: 

e ,.4: = % ,  (1.3) 

(The unitality of 7r can be replaced by the requirement that ~1, ~b2 are normalized vectors.) 

We get an immediate corollary of this definition in considering a unital *-homomorphism q~ 
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from one unital *-algebra N into another one, ag. Using ~, every representation of  sg can be 

lifted to one of  ~ .  The associated dual map qs* transforms states of  ag into states of ~ and we 

always have 

P(ul, u2 ) <~ P( @*ul, O2"u2 ). (1.4) 

In the following we shall deal only with unital C*-algebras and W*-algebras since more general 

*-algebras have not yet been studied systematically in that context. 

2. GENERAL PROPERTIES OF THE TRANSITION PROBABILITY 

Let us start with a theorem, the proof of  which is given in [7] : 

THEOREM 1. Let  J be a unital C*-algebra and ul,  uz two o f  its states. Then 

P(ul,  u2) = inf ul (a)u2 (a -1) (2.1) 
a 

where the hzfimum runs through all positive and invertible elements a o f  ag. 

That it is possible to represent the transition probability, as given by (2.1), is an important enough 

property of P by itself. Besides, the fact stated by Theorem 1 opens exceedingly comprehensive 

ways for deriving all the other properties of  P, as will be demonstrated in the following. 

REMARKS. (1) The concavity properties of  P proved in [1], see also [2], can be directly read off 

from (2.1). 

(2) Let us assume the existence of  a state u and of  elements, bl, b2 C ag, with Us(a ) = u(b[abs) , 

]" = 1, 2, for all a, such that b*b2 = b'b1 >>- O. Then P(ul,  u2) = u(b*b2) 2 , according to Uhlmann 

in [1] and the proof implicitly contains Theorem 1 in this special case. More recently, Alberti in [7] 

has shown how to systematically compute P by representation-theoretic formulae. Also, Theorem 1 

has been proved there in its most general form; the proof being heavily based upon a result of Araki 

and Raggio in [3]. 

(3) That the right-hand side of  (2.1) is larger or equal to its left-hand side is true for every 

*-algebra and follows at once from the definition of  P. The nontrivial part is in the opposite 

inequality. 

As a first application of Theorem 1, we are now going to derive a new transformation property 

for P. 

Let us consider two unital C*-algebras, s~ and N.  A linear map T: d *  ~ N * is called 

stochastic iff it transforms every state of  ag into a state of  .~. If  a map S : ~ '+ ~/happens to 

exist such that for all states u of  sg and all elements b of N we have (Tu)(b) = u(Sb), then S is 

uniquely determined by T. We then say T .  exists and write S = T..  If T is stochastic, then T.  is a 

unital, positive linear map and vice versa. 
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THEOREM 2. Let  al, ~ be unital C*-algebras, T: d *  ~ ~ *  a linear stochastic map, and u~, u2 

states o f  J .  Then 

P(ul,  u2 ) K P( ru l ,  rua ). (2.2) 

Proof  Let us first assume that existence of T, .  Then, according to (2.1), we have with the 

positive and invertible elements b ~ 

P(T/A1, Tb/2) = inf  ul  (T,b)u2(T,b-~). (2.3) 

As following from Kadison's inequality (cf. [5] ), Choi in [6] has obtained 

T , b -  1 >~ ( T , b ) - I  (2.4) 

for every unital positive T, .  Hence, P(Tu 1, Tu2 ) ~/ inf  Ul (T,b)u2 ( ( T , b ) -  1), and the infimum is 

extended over all positive invertible a E a /hav ing  a representation a = T,b.  Now, by Theorem 1, 

we arrive at (2.2). I f  T ,  does not exist we use a variant of  the 'bidual trick'  as following: T induces 

a unital positive map T* from ~ * *  to J * * .  Then we consider the stochastic map S with S ,  = T*, 

apply the reasoning above and trace back to the property (2.2) of  T with the aid of the following 

simple fact (see [4] or [7]): i f  ul ,  u2 are states o f a  unital C*-algebra ad and vl,  v2 are their 

unique normal extensions to the bidual ag**, then P(ul,  u2) = P(vl, v2). [] 

In [4], another proof  has been given, not depending on Theorem 1, which assumes T ,  to be 

completely positive. In using Kadison's inequality and Theorem 3 below, this result has been refined 

by Alberti [7] by showing 2-positivity of  T ,  to be sufficient. 

Surprisingly, we now find that even 2-positivity is not necessary for the validity of  (2.2)P ~ 

kmother nice application of Theorem 1 gives the following 

THEOREM 3. Given two states ul .  u2, o f  a unital C*-algebra ad. We denote by (2 the set of alI 

linear functionals v ~ ad * satisfying 

Then 

Va, b Earl.: lv(a*b)[ 2 <-Gut(a*a)uz(b*b). 

P ( . 1 . . 2 )  = 

(2.5) 

(2.6) 

For the proo f  we return to the very definition of P. From (1.2) and (1.3) we infer: a ~ (~bl, rr(a)~z) 

is contained in 0. This comes from Schwarz's inequality, and tells us the correctness of % '  in (2.6). 

On the other hand, Nven v C O and a positive and invertible, we replace in (2.5) a by a 1/2 and b 

by a t/2. This gives iv (1)t a <~ u l(a)u2 ( a - l ) .  Theorem 1 tells us the correctness o f "  (2.6), and 

we have arrived at a reasonably concise derivation of the result in questioll (Cf. this added to the 

*The somewhat restrictive remark of [4] in this respect ~s s~mply due to a nustake. 
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proof given in [7], also provides, however, some other interesting features of transition 

probability.) 

As another example we shall demonstrate how useful Theorem 1 can be when applied for 

calculating transition probabilities in infinite quantum systems. To this aim, let d be a unital 

C*-algebra and ~ C d z  C ... an increasing sequence of unital *-subalgebras (not necessarily 

norm-closed ones) such that their union is norm-dense in d .  Given two states, u, v, of d ,  we 

denote by u# v/their restrictions onto d i. Since d = norm-closure U/~r and in the Hermitian 
part of d the invertible, positive elements constitute an open set, the union of all invertible and 

positive elements of all d !  has to be norm-dense within the former set. Hence, Theorem i implies 

P(u, v) = inf  u(a)v(a- 1) = inf inf u(aj)v(aT 1), (2 .7)  
/ a] 

where a] runs through all positive, invertible elements of ~4/. Applying Theorem 1 to (2.7) we see 

the following result: 

THEOREM 4. 

P(u, v) = inf P(u:, v:). (2.8) 
/. 

Once more, we again remark that there is another way of proving (2.8) which does not make 
reference to Theorem 1 but starts from (2.6). 

3. ONCE MORE ON A TRANSFORMATION PROBLEM 

In this section let us come back to our starting point, which we mentioned in the introduction. 

Let us look on a 'large' quantum system, characterized by the Hilbert space H. We assume only 

some subsystem of our large system is accessible, or of interest, to our observations, this 'small' 

subsystem being attached to a separable Hilbert space H1. By H2 we mean the Hilbert.space 

which represents the 'external world' or the surrounding of the small system within the large one. 

In the following we want to assume that the 'bath'  system is not a finite quantum system, i.e., H2 

is supposed to be dimensionally infinite, and H = H1 |  Let 41, Ca be two normalized vectors 

of H describing possible quantum-mechanical states of the whole system. Then, the states of our 

small system are (without further information) only accessible to a quantum-statistical description, 

given by the correspondingly reduced density operators Pl,  Pz over H~ : 

Pl = Trz p ~ ,  /32 = Tr2 P~2 (3.1) 

where P~I is the one-dimensional orthoprojection over H which corresponds to @ / = 1, 2, and 

'Trl ', 'Trz '  means the operation of taking the partial trace with respect to H1,/ /2,  respectively. 

Since these operations appear to be restrictions to normal states of certain stochastic maps, we 

arrive at (1.1) once more if we refer to Theorem 2. Let us now discuss the following problem: 

given density operators t91,/32 over H1 and state vectors ~1, fJ2 ~ H ,  what relations exist amongst 
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01, P2, ~1, ~2 provided the inequality (1.1), i.e., P(Pl,  P2) >>" I (~l ,  ~=)l 2 , is satisfied? The answer 

is in the following: 

THEOREM 5. Inequality (1.1) holds true i f  and only i f  there is a unitary operator u on H such that 

01 and P2 appear as reduced density operators o f  u ~1 and u~2, respectively. 

Proof  Due to unitary invariance of  transition probabilities the 'if '  part of  the assertion follows 

from our discussions above. To see the other way around, assume P(p 1, P2) >1 I(ffl, r  z , and let 

~ H2, ~01, ~2 E Hi be normalized vectors with (r r = (~1, if2). There is some unitary v over 

Hsuch  that ~p/| ~7 = v @  j = 1, 2. Let us by Pl,  P2 denote the one-dimensional orthoprojections 

over Hi referring to ~1, r and assume e is the one-dimensional orthoprojection over//2 which 

refers to r?. Then, from our assumptions we see P(Pl,  P2) ~>P(Pl, P2). By a result proved in [4] 

(Satz 3 there), the preceding inequality suffices to guarantee that there is some unital, normal, 

completely positive linear map T, over the bounded operators B(H~ ) on Hi ,  such that 

V a E B ( H i ) :  T r & a = T r p / T a ,  j = 1 , 2 .  (3.2) 

By our assumptions on H, H1,1t2,  some elementary facts on normal *-representations of  B(H1 ) 

together with the Stinespring's theorem* imply that 

Va ~ B(H1) : Ta = m*(a | 12)m, (3.3) 

with m being an isometry acting from H1 into H, with m*m = 11 �9 

Let there be defined another isometry w: H, ~ ~ ~ | 7? EH. Then 

Va ~B(H~ ) : Tr &a  = Tr (Pi | e)wm*(a | 12 )row*, (3.4) 

where (3.2) and (3.3) have been used. Defining win* = k ~ B(H), we may rewrite (3.4) into the 

form 

Va C B(H1 ) : Tr &a = Tr k*(p/|  e)k(a | 12 ). (3.5) 

Now, kk* = win*row* = ww* = 11 | e, hence k is a partial isometry on H and, moreover, 

s = ( p l v  P2 ) | ek is a partial isometry over H with a finite-dimensional final projection. This 

makes especially sure that a unitary operator k' exists over H such that s = ( P l v  P2) | ek'. Since 

P/| e = vp~fv*, we get with the unitary operator u = k'*v that 

k*(p] | e)k = s*(p/| e)s = k'*(p/ | e)k' = uP~iU* = Pu~j, 

for / = 1, 2. Therefore, (3.5) reads as 

Va ~B(H1) : Trp/a = Trpu~9(a | 12) = Tr (Tr2 Pug, fla, 

*For more detalled reformation and references, the reader is recommended to [8], where these problems are 
dealt with m the context of quantum theory. 
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which means O] = Tr2 Puny, J = 1, 2. [] 

Finally, let us state another consequence from all that we have proved: 

THEOREM 6. Suppose col, w2 are normal, pure states over the bounded operators B(H) on some 

Hilbert space H. Assume T is a stochastic linear map which transforms c~1, co2 into normal states 

TO~l, Tco2 over B(H). Then there exists a normal, unital, completely positive linear map T' from 

B(H) into B(H), such that Tc~j = coj o T', j = 1, 2. 

Proof By Theorem 2 we know P(Tcq, Too2) >~P(wl, o~2). Since col, co2 and Too 1, Too2 

correspond to density operators, where the former couple consists of extremal, normal elements, 

the result of [4] which we already referred to in passing in the proof of Theorem 5, provides T' 

as asserted. [] 
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