RIEMANNIAN METHOD IN QUANTUM FIELD THEORY ABOUT CURVED SPACE-TIME*)

A. Uhlmann

Department of Physics and NTZ, Karl-Marx-Universität, DDR-7010 Leipzig

Starting from a given Lorentz metric g_{ik} on a space-time manifold M and a tube T of world lines along which observers may move, we describe an algorithm to obtain the quantum theory of scalar particles of mass m.

Let e^{j} denote the 4-velocities of the world lines, and let V_{s} , s real, be a family of non-intersecting space-like hypersurfaces. We assume that the submanifolds V_{s} cover completely the tube T. Thus every point of T is crossed by just one world line and by just one V_{s} .

The essential content of my talk is now in the following statement:

One can reasonably associate to every V_s a Hilbert space F_s of one-particle states which are realized by measurable function concentrated on V_s . There is further defined a positive semidefinite operator H_s acting on this Hilbert space F_s , and which is interpreted as the one-particle Hamiltonian at the instant V_s .

Indeed, having at hand such a procedure one can do the following. One defines the Fock space \mathscr{F}_s to every F_s and defines the appropriate Hamiltonian by second quantizing the operator H_s . With the wave operator Δ_4 associated to g_{ik} one considers the wave equation

$$\left(-\Delta_4 + m^2\right)\varphi = 0\,.$$

If $u \in F_s$ one solves this equation with the initial data

$$\varphi = u$$
 and $i(\partial \varphi / \partial n) = H_s u$ on V_s .

This transport the initial data to V_t with $t \neq s$, and this transport extends, obviously, to the associated Fock spaces. Generally, this transport from V_s to V_t will not conserve the particle number, and the one-particle states of V_s will give rise to superpositions of many-particle states attached to V_t .

Hence the very problem is in constructing F_s and H_s . This will be achieved by associating to M, or only to the tube T, a Riemannian metric \tilde{g}_{ik} given by

$$g_{ik} + \tilde{g}_{ik} = 2e_i e_k$$

(the signature of the Lorentz metric is + - - -). Then the construction of F_s and H_s is achieved by solving

$$(-\tilde{\Delta}_4 + m^2)f = u$$
 on the set $\bigcup_{t \leq s} V_t$

^{*)} Invited talk at the International Symposium "Selected Topics in Quantum Field Theory and Mathematical Physics", Bechyně, Czechoslovakia, June 14–21, 1981.

and several other manipulations dictated by experience in the Euclidean formulation of Quantum Field Theory à la Nelson, Guerra, Rosen, Simon, Hegerfeld, and others. They are described in [1] together with some references to previous work.

Applying our procedure to stationary space-times it reproduces what everybody would suppose to hold in that case. But effective calculations are possible too for metrics of the Robertson-Walker type.

Received 27. 10. 1981.

Reference

[1] Uhlmann A.: Czech. J. Phys. 11 (1981) 1249.