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In this paper we investigate conditions under which two finite-dimensional density 
matrices can be transformed simultaneously into two other ones by means of a positive linear 
map which maps density matrices into density matrices. The result of this paper provides a 
complete answer in case of the matrix algebra of two-by-two matrices. 

1. The problem 

Let M, denote the C*-algebra of complex n x n - matrices. By Tr(.) we mean the 
standard trace on M,. Whenever A E M, by /A iI1 we mean the &-norm (functional 

norm) of the element A, i.e. (/A )I1 = sup 1 Tr AC 1, where 11. /I indicates the C*-norm 

on M,. 
IIC II G I 

DEFINITION (stochastic maps). A linear transformation L acting from M, into M, 

is said to be stochastic if L maps the positive cone of M, into itself and Tr L (A) = Tr A 
for all A E M,. 

As usually, a density matrix of M, is understood to be a non-negative matrix with 
trace equal to one. Thus, stochastic mappings are exactly those linear maps on M, 
which carry density matrices into density matrices. In this paper we shall deal with a 
particular case of the following problem concerning density matrices and stochastic 
transformations: 

Give necessary and sufficient conditions under which a given (but arbitrarily 
chosen) pair (Z, Z’) of density matrices can be transformed into another given (but 
arbitrarily chosen) pair (X, Y) by means of a stochastic map. 

We will give a solution of the problem in the case of the matrix algebra M,. We state 
our result in the following 

THEOREM. Let X, K Z, Z’ be density matrices from M,. Then there exists a 
stochastic map L on M, such that 
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if and only if 

IIX - 
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X=L(Z) and Y= L(Z’) 

tYJI, f 11 Z - tZ’ II1 for all tER: (2) 

(1) 

(R’ denotes the real axis). Moreover, whenever (2) holds a completely positive stochastic L 
satisfying (1) can be chosen. 

We note that the implication (1) +(2) is almost trivial, for any stochastic map is L,- 
contracting. Thus, in the proof we will have to show validity of the implication (2) --) (1) 
for a completely positive stochastic (CP-stochastic) L. 

We conclude this introductory part with some remarks. Although two-by-two 
matrices show some specific properties which allow to solve exemplarly basic problems 
relating to the structure of convex sets of completely positive and positive linear maps 

over M, (cf. [2], [9], and [ 1 l]), we believe that our problem is more closely related to 
CP-stochasticity than to general stochasticity in the general case, too. In fact, 
conditions like (2) on M, are strong enough to guarantee the existence of a CP-map 
transforming one pair of density matrices into another one. The difficulties arise from 
the requirement that our maps have to be stochastic ones! Furthermore, in some special 

cases necessary and sufficient conditions are known. Thus, in case Y = Z’ = ‘1 (1 
n 

denoting the unit matrix in M,) the conditions /I X - t 1 II1 < II 2 - t 1 iI1 for all non- 

negative reals are necessary and sufficient. Here, proofs using the es-number approach 
in context with the order structure of states are known (cf. [ 11, [lo]). 

Moreover, in case XY = YX and ZZ’ = Z’Z a consequence of the result obtained 
in [5] in employing classical statements proved in [4] and [7] is that j( X - t Y/I, < 
/I Z - t Z’ /II for all t E RI is the decisive condition. In using the well-known extension 
theorem for CP-maps (see [2]) these results may be traced over to more general cases, 
e.g. type II, factors. 

There are also some results relating to the general problem for M, with n > 2. Here 
by examples one is assured of the fact that the condition II X - t YI/, 6 II Z - t Z’ II1 
V t.E R: is not sufficient. It has to be replaced by a more complex condition closely 
related to complete positivity. We will comment on this a forthcoming paper. 

2. Notations 

In this part we introduce some notations and conventions to be used throughout 
the following parts. For convenience we will work in M, x M, equipped with the 
usual topology. We start with 
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DEFINITION 1. (K-sets) Let Z, Z’ be density matrices in M,. We set 

K(Z,Z’) = ((X,Y)E M, x M,: 11X - tYl/, < IIZ - tZ’I/, 

for all t > 0, X,Y - density matrices}; (1) 

&(Z,Z’) = ((X,Yk M, x M, : there exists a CP-stochastic 

map L on M, with (X,Y) = (L(Z), (L(2’))). (2) 

Note that both sets introduced in Definition 1 are convex and compact (in M, x MJ. 

DEFINITION 2. (s-numbers) Let X, Y be density matrices in M,. We define 

s1(X,Y)= sup t 
X-rY>O 

(3) 

i 

inf t in case (X - t Y), = 0 for a t 2 0, 
s2(yy)= X-'YSfl 

(4) 
+oO if (X - tY)+ #O for all r 2 0, 

where A, is the positive part of A in M,. 

Since X, Y are density matrices we have 

0 d s,(X,y) d 1 d s2(X,y) d + co. (5) 

Now we state some useful and obvious implications: Let X, Y Z, Z’ be density 
matrices. 

If 0 < si (X,Y,l < 1 < +(X,Y) < + co then X,Yare invertible. (6) 

If 0 = s1 (X,Y) then X is an orthoprojection. (7) 

If + co = s2 (X,Y) then Y is an orthoprojection. (8) 

If s1 (X,Y) = 1 then X = Y. (9) 

If sz(X,Y) = 1 then X = Y. (10) 

(X,Y)EK(Z,Z!) iff l/(X - tY)+ /II d ll(Z - tZ’)+ II1 V t 2 0. (11) 

The latter follows from the fact that //X - tY /I, + (1 - t) = 2 I/(X - tY)+ l/i for all t. 
The expression I/(X - t Y) + I/ 1 will play an important role in all subsequent argumenta- 
tions. 

As a function oft 11(X - t Y), ]I1 has some useful properties: 

Il(X - tY)+ 111 . IS convex, continuous and decreasing on the reals; 

11(X - tY)+ /I1 2 1 - t for all reals t, 

(12) 

(13) 
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Il(X - tv)+ /I1 = 1 - t for t < s,(X,Y), (14) 

/1(X - tY)+ )I1 = 0 for t > s2(X,Y) (in case sz(X,Y) < co), (15) 

Il(X - tu)+ II1 > max (0, 1 - t} if s,(X,y) # 1 (16) 

for all t with sI(X,Y) < t < +(X,Y). 

To conclude this part we prove three results about s-numbers and K-sets. 

LEMMA 1. LRt X, Y; Z, Z’ be density matrices in M,. Then, (X, Y) E K (2, Z’) implies 

ods,(Z,Z’)~s,(x,y)~s,(x,y)~s,(z,z’). (17) 

ProoJ Assume s1 (Z, Z’) = 1. Then Z = Z’ by (9). From (11) then follows that 

Il(X - Y)+ III = 0, so ll X - Ylll = 0 by the relation II X - Y (iI = 2 Il(X - Y)+ III, i.e. 

X = Y. This implies the equality sl( X, Y) = 1 = s2( X, Y) which proves our statement in 
case Z = Z’. 

Assume Z # Z’. Then, sl(Z,Z’) < 1 < +(Z,Z’). Suppose sI(X,Y) < sI(Z,Z’). 

Since (X,Y)EK(Z,Z’), we have /1(X - tY)+ II1 < ll(Z - tZ’)+ II1 = 1 - r for all t 

satisfying s1 (X,Y) < t d SI(Z,zl) < 1. This contradicts (16). Hence 

s,(Z, Z’) < s1 (X,Y) holds necessarily. 
Assume s2 (Z, Z’) = + 00. Then obviously s2 (X, Y) < s2 (Z, Z’). Let s2 (Z, Z’) 

< + 00. Since (X, Y) E K (Z, Z’), we have s2 (X, Y) < + 03 and because of 
!I(X - t Y), II’, < Il(Z - t Z’), (II for al! t > 0 we have for t = s2 (Z, Z’) = s2 the 
relation II (X - s2 Y) + II1 = 0, i.e. (X - s2 Y), = 0, so s2 = s2 (Z, Z’) 2 s2 (X, Y) by 
definition of s-numbers. q.e.d. 

LEMMA 2. Let X, x Z, Z’ be density matrices in M,. Assume that s1 (Z, Z’) d 
s, (X,Y) 6 s2(Z,.Z’) holds. Then (X,Y)EK(Z,Z’) if.7 

Il(X - tr)+ II1 d IKZ - t u+ III (18) 

for all t in the interval s,(X,Y) d t G s2(X,Y). 

Proof: Necessity is obvious. Assume (18) to hold for s1 (X, Y) < t < s2( X, Y). Then 
from the definition of s,-number and (15) it follows that (18) also holds for t > s2( X, Y). 
By’il4) we see that (18) is valid for t 6 sI(Z,Z’). Finally we use (13) and (14) to prove 
validity of (18) for s1 (Z, Z’) < t < s1 (X, Y). Thus, (18) is valid for any non-negative real. 
Then from (11) it follows that (X, Y) E K( Z; Z’). q.e.d. 

LEMMA 3. Let X, Y; Z, Z’ be density materices in M,. Then (X, Y) E K (Z, Z’) ifand 
only if 

and 

SI(Z,Z’) < Sl(X,y) G s,(X,y) G s2(Z*z’), (19) 

Det(X-tY)>Det(Z--tZ’) 

for all t in the interval sI(X,Y) < t < s,(X,Y). 

(20) 
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Proof: From Lemma 1 we see (19) is necessary for (X, Y) E K( 2, Z’). We compute 
11(X - tY)+ IIt, il(Z - t Z’), II1 for all t in the interval in question under the condition 
that (19) is valid. By definition of s-number we have 

I/(X - tY)+ \I1 = the non-negative eigenvalue of (X - t I’), (21) 

ll(Z - t Z’)+ II1 = the non-negative eigenvalue of (Z - t Z’). (22) 
(21) and (22) are the non-negative solutions of 

A2 - (1 - t)l + Det(X - tr) = 0 (23) 
and 

A2 - (1 - t)A + Det( Z - t Z’) = 0, respectively. (24) 

The non-negative solution of (23) for all t from the interval s1 (X, Y) < t d s2( X, Y) is 

I+ = (1 - t)/2 + [(l - t)2/4 - Det(X - tY)]i12. (25) 

Thus, under the condition that (19) holds, we infer from (25) and the corresponding 
solution of (24) that (20) implies I/(X - tY)+ [I1 d jl(Z - tZ’)+ )I1 for tE[sl(X,Y), 

s2( X, Y)]. Taking into account Lemma 2 we get (X, Y) E K( Z, Z’). Thus, (19) and (20) are 
sufficient conditions. Necessity of (19), (20) follows from Lemma 1 and (25) together 

with the non-negative solution of (24). q.e.d. 

3. Some special cases 

In this part we discuss some cases that play a decisive role in the general proof of our 
theorem. We start with 

LEMMA 1. Let X, Z, Z’ be density matrices in M,. Then (X, X)E K,( Z, Z’). 

Proof Let U be a unitary matrix diagonalizing X, i.e. UX U* = 
[ 1 “0 l ” x , where 

0 < x ,< 1. We define the matrices (Ai};==, by 

= ) A, x112 [ ; :, 1 , 
(1 x)1/2 1 

00 1 (1 - x)1/2 [ 00 
A, = - 1 o , A, = o 1 1 . 

Then an easy check shows that 

P= C U* Ai(.)Ar U 
1 

is stochastic and defines a CP-map with X = P(Z) = P(Z). q.e.d. 

(1) 

(2) 
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Now we state the first particular case of our theorem: 

LEMMA 2. Let X be a density matrix in M,. Then K( X, X) = K,( X, X). 

Proof: By our remark after the Theorem in 1, we can be sure that 
&(X,X) c K(X, X). Now, assume (2, Z’)E K(X, X). Then by the definition of 
K(X,X) we have )I Z - Z’ II1 < 0, thus Z = Z’. By Lemma 1 we see (Z, Z’) 

= (Z,Z)EK,(X,X), i.e. K(X,X) c &(X,X). Hence &,(X,X) = K(X,X). q.e.d. 
Whereas the preceding results are of more or less trivial character, the following 

requires more attention. 

LEMMA 3. Let X, Y be density matrices in M, and P, Q one-dimensional 
orthoprojections in M,. Then whenever (Y; P) E K( X,Q) (resp. (P, Y) E K(Q, X)) we find 
that (~P)E &(X,Q)(resp. (P,Y)EK,(Q,X)). 

Proof Since I/ T- r T’ /II = t I/ T’ - t- ’ T/I, for all t > 0 the validity of the 
implication (P,Y) E K(Q, X) -+(P, Y) E K,(Q, X) follows from (Y P) E K( X,Q) + 
(Y, P) E K,( X,Q). We prove the latter. Assume for the moment that this has been shown, 
i.e. we have CP-stochastic L transforming the pair (X,Q) into (Y P). Let U be a unitary 
matrix transforming P into Q, i.e. UPU* = Q. Then we have (UYU*,Q) 
= (P(X), p(Q)) with P = U L(.) U *, and P is CP-stochastic. Since U is unitary and 
K(X,Q) is unitary invariant, our problem is equivalent to that of proving the 
implication (A,Q)E K(B,Q) +(A,Q)E K,(B,Q). By analogous argumentation we may 

suppose Q to be of the form Q = [ 1 i i . Since for a CP-stochastic L the mapping P 

= U L( 1/a V*) U * is CP-stochastic whenever U, I/ are unitaries, we may consider our 

problem reduced to the case when 

A= 
a s&-q 

6Jqi-q 1 [ l-u ’ B= 1 ’ 
where 0 d a, b < 1, 

0 < 6,s < 1. This common choice of real (positive) phase is possible by taking for U, I/ 

unitaries of the form 
10 

[ 1 0 eiB 
with appropriate real /I’s. Since these unitaries commute 

with Q = 
10 

[ 1 00 ’ 
all we have to prove is that 

MQ)E:W,Q) implies (AQ)E&VLQ), (3) 
where 



PROBLEM RELATING TO POSITIVE LINEAR MAPS 169 

with 

0 < a,b d 1, 

By virtue of Lemma 1, Lemma 2 we can 
replaced by 

0 < fJ,& < 1. (5) 

reduce our problem to the one where (5) is 

O<b<l, O<abl; if ci = b, so E # 0. (6) 

We shall verify that (6) is the non-trivial part of (5). First, suppose b = 1. Then Lemma 1 

is applicable and (3) holds. Secondly, suppose a = 0, i.e. A = 
00 

[ 1 01 . This implies 

II@ - tQ)+/II = ll[ Tit I+II, = lforalltaO.ThusJj(B-tQ)+/I, =l(sincelisthe 

maximum value of li( X - t Y), /I1 for density matrices X, Yand t 2 0. The latter occurs 
iff BQ = 0 (as can be easily verified). Thus, A = B must be required (since we are 
working with two-by-two matrices). But then (A,Q)EK,(B,Q) is trivial (take L 
= identity map). Thirdly, let be a = b, E = 0. Since (A,Q) E K(B,Q) is assumed, we have 

By 2, Lemma 1 this requires s,(A,Q) > s,(B,Q) = a. Then, in particular for t = a, A 

- aQ 2 0 must hold. With a # 0, 1 this is only possible if 6 = 0, i.e. A = B and the 
identity map can be chosen to carry the pairs into each other. The case a = 0 (resp. a 

= 1) is discussed in the second (resp. first) possibility. Our discussions show that (6) is 
the non-trivial part of (5). We have to prove (3) under the conditions (4) and (6). We start 
with deriving necessary conditions for (A,Q)E K(B,Q), i.e. we may suppose that 

ll(A - tQ)+ 111 G II@ - tQ)+ /II for all t 2 0 (7) 

holds (see 2 (11)). The latter, however, means for sufficiently large t that 

Det (A - t Q) 2 Det (B - t Q) (cf. 2, Lemma 3). (8) 

We write down (8) in explicit form 

(a - t)(l - a) - a2u(l - a) 2 (b - t)(l - b) - &‘b( 1 - b). (9) 

(9) means that 

DetA - DetB > t(b - u) (10) 

for all t taken from s,(A,Q) d t d s,(A,Q)(cf. 2, Lemma 3). Excluding the trivial case A 
= Q (i.e. a = 1) in (6) which implies that (3) is valid by Lemma 1, we see that 

for a #l we have s2(A,Q) = + ~0. (11) 
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Therefore, in this case from (10) follows that 

b d a, 

where we used (11). 

(12) 

In particular, for t = s = s,(A,Q) we tind from the definition of si that 

(b - s)(l - b) < .?b(l - b), (a - s)(l - a) = a2a(l - a). (13) 

In deriving (13) we had to take into account 2, Lemma 1. From (13) we get 

(1 - d2)a = s Z (1 - e’)b, (14) 

where we made use of (6) and excluded the trivial case a = I. (14) implies that 

a2 d 1 - (1 - c’)(b/a) (15) 

by (6) again. This means by (6) and (12) that 

6 Q [l - (1 - .s2)(b/a)]“2. (16) 

Consider the following matrices 

(17) 

where 

(18) 

(19) 

- .z2)(b/a) - (20) 

(21) 

and by (6) and (16) and (12) these values are well-defined reals. We define a CP-map by 

L= A, (.)A: + A,(.)A$ + A,(.)A;. (22) 

Then by direct computations (which we omit) one shows that L is trace-preserving and 

L(Q) = Q. L(B) = A. (23) 
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Since (23) remains valid for a = 1, the implication (3) is seen to hold under (6), and 

therefore, as a consequence of our discussions, under condition (5). This completes the 

proof. q.e.d. 

4. The final proof 

We have to prove that K( 2, 2’) = K,( Z, Z’) for any density matrices Z, Z’, because 
of 3, Lemma 2 we may restrict our proof on the case Z # Z’. Let ex K (Z, Z’) denote the 
set of extreme points of K(Z, Z’). Since K( Z, Z’) is compact, K( Z, Z’) is the closure of 
the convex hull of ex K(Z, Z’). We begin with a result on the extreme points: 

STATEMENT 1. Let X, I: Z, Z’ be density matrices of M, with Z # Z’, Assume 

(X,Y)EK(Z,Z’) with 

Sl(Z,z’) < Sl(X,Y) < s,(X,Y) < s2(Z,Z?. 

IThen, (X,Y)$ex K(Z,Z’). 

For the proof we need 

(1) 

LEMMA 1. Let X, K Z, Z’ be as in the assumption of Statement 1. Then there exists at 

most one value t, with s,(X, Y) < t, d s2( X, Y) such that 

Det(X - t,Y) = Det(Z - tOZ’). (2) 

Moreover, if(2) occurs at t, from the interval in question, then 

s,(X,Y) < t, < sz(X,y). 

Proof of Lemma 1: We define a function D(t). on R’ by 

D(t) = Det(X - t Y) - Det(Z - t Z’). 

Then our assumptions together with 2, Lemma 3 and 2, (13), (14) imply 

D(t) 3 0 for all t from sr(X,Y) < t < sz(X,Y) 

and at the endpoints of the interval 

~(Sl(XJ?) > 0, D(s,(X,Y)) > 0. 

Thus, whenever (2) holds for t, from the interval in question we will find t, in the 
interior due to (6). 

Now, the equation D(t) = 0 is of (at most) second degree in t. Hence, there exist at 
most two real solutions (because of (6) D(t) cannot be equal to zero). Suppose there is 

one solution - say t, - in s1 (X, Y) -C t, < s2 (X, I’) (cf. (3)). Then for the derivative 
D’(t) of D(t) we find 

D’(t,) = 0. (7) 
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In fact, for D’(t,) > 0 we had o’(t) > 0 in a neighbourhood of t,, i.e. by (5) we had 
D(t,) > 0, a contradiction. In case D’(t,) < 0 we had U(t) < 0 for all t > t, sufficiently 
close to t,, so o(t) < 0 there, a contradiction to (5). This proves (7). Since o’(t) is a linear 
function oft, D’(t) is monotonous. Then (7), (5) and (6) together with monotony imply 
that 

U(t) = /?(t - to),. with p > 0. (8) 

Since D(to) = 0, (8) requires for o(t) 

B 
D(t) = y(t - t,)Z, with /I > 0. (9) 

The latter means that t, is the only solution of o(t) = 0 in si(X, y) < t < s*(X,Y) (cf. 
(6)). This proves Lemma 1. Moreover, we see from (8) that the existence of a solution of 
D(t) = 0 in the interval in question automatically implies that this solution is a double 
root. q.e.d. 

Proof of Statement 1: As mentioned several times before, in case of two-by-two 
matrices we may assume that 

XT = x, YT = Y ((.)’ - “transposition”) (10) 

since this form can always be obtained by an appropriate unitary transformation. Let 
us define families of hermitian matrices: 

u(r) = r 
0 i 

[ 1 -iO ’ 
b(r) = to ’ a(r) for real r, (11) 

where we suppose that t, E (s, (X, Y), s2( X, Y)), with 

D(t,) = 0 (12) 

in case (2) occurs (so, in this case t, is uniquely determined), and t, is taken arbitrarily 
from the open interval in question if o(t) = 0 has no root there. By means of (11) we 
define 

X(r) = X + u(r), Y(r) = Y + b(r), 

and denote by o,(t) the expression 

o,(t) = Det( X(r) - t Y(r)) - Det( Z - t Z’). 

(13) 

(14) 

Taking into account (10) one sees that 

Det(X(r) - t Y(r)) = Det((X - t Y) + (1 - t/t,,)a(r)) 

= Det( X - t Y) - r2( 1 - t/tJ2. (15) 
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Therefore, (14) reads 

D,(t) = D(t) - r2(1 - t/t())? 

Now, two cases are possible: 

(16) 

I. D(t) > 0 for all t with s, (X, Y) < t < s2( X, Y). Then, because of (6) and due to (16) 
- and since si (X, Y) and s2( X, Y) (the latter being < + co) depend continuously on X, 
Y - we find k > 0 such that 

Sl(Z,Z’) < s,(X(+k), YW)) < s,(X(fk), YW)) < sz(Z,Z’), (17) 

and D+k(t) > 0 for all t taken from the correspondingly inner intervals. Moreover, since 
0 < s,(X, Y) < 1 < s2( X,Y) < + cc both X, Yare invertible (cf. 2 (6)), so we can choose 
k such that. X( _+ k), Y( f k) are density matrices (we notice that Tr u(r) = 0). 

Then by 2, Lemma 3 we see that 

(X(H), YW))EK(Z,Z’), (18) 

i.e. (X, I’) = i( X(k), Y(k)) + $(X(-k), Y( - k)) so since k # 0, therefore 

(X,Y)#exK(Z,Z’) (19) 

II.D(t,) = Owiths,(X,Y) < t, < s2(X,Y)(cf. Lemma l).By(9)wethen know that t, 

is a double root of D(t) = 0. (9) and (16) together guarantee that t, remains a double root 
of l&(t) = 0 for any sufficiently small k. Again we can stress the continuity argument in 
order to show the existence of k > 0 such that 

X( ) k) and Y( f k) are density matrices, (20) 

sl(z,Z’) < s,(X(fk), Y(,k)) = s; < t, <s; = s2(X(+ k), Y(S)) < sz(Z,Z’). 

(21) 

D&s;) > 0, D&) > 0. (22) 

Since D&t) = 0 is an equation of second degree with a double root and (22) holds, we 
are sure that D?k(t) cannot change its sign in [sf ~$1, i.e. it has to be non-negative 
there. Again using 2, Lemma 3 and arguing exactly as at the end of Case I we infer that 
(X, Y) $ exK( Z, Z’) in this case, too. Since all possibilities are exhausted by I and II, our 
statement is proven. 

STATEMENT 2. Let X, Y Z, Z’ be density matrices in M,, with Z # Z’. Assume we 
have 

(X,Y)eexK(Z,Z’). (23) 

Then, (X,Y) obeys one of the following conditions: 

Sl(Z,Z’) = Sl(X,Y), (24) 
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s,(Z .q = s,(X,V, (25) 

s,(X,Y) = 1. (26) 

Proof: A detailed proof can be omitted since the result is an obvious consequence of 
Statement 1. 

LEMMA 2. Let X, x Z, Z’ be density matrices in M,, with Z # Z’. We assume 

(X,Y)EexK(Z,Z’). (27) 

7hen 

(X,Y)G&(Z,Z’). (28) 

Proof Because of (27) Statement 2 becomes applicable. First assume 

SI(Z,z’) = s,(X,Y) = sr. (29) 

Then by the definition of s1 and (29) we have 

z - SrZ = (1 - SJP, X - s,Y= (1 - sJQ, (30) 

where P, Q are one-dimensional orthoprojections. From the condition (X, Y) E K( Z, Z’) 
and (30) it follows that 

(1 - sr) /IQ - t(l - s,)-‘YII1 < (1 - sr) I/P - t(1 - s,)-‘Z’ 11, (31) 

for all t 2 0 due to sr < 1 which follows from Z # Z’, i.e. 

(Q, Y) E KU’, Z’). 

From (32), however, together with 3, Lemma 3 follows 

(Q, Y) E K#‘, z), 

i.e. for a certain CP-stochastic L 

Q = L(P), Y = L(Z’). 

Together with (30), (34) shows that 

X - L(s, Z’) = L((l - s,)P), i.e. X 

and therefore 

(32) 

(33) 

(34) 

L(Z)? (35) 

(X, Y) = (L(Z), L(Z’)), i.e. (X,Y)EK,(Z,Z’). (36) 

This proves (28) in case (29). 
Secondly, suppose (27) holds with 

s,(Z, Z’) = s2( x, Y) = s2 < + co. (37) 
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By the definition of s2 we have then 

2 - s2Z = (1 - s,)P, X - szY= (1 - s,)Q, (38) 

with one dimensional orthoprojections P, Q, and s2 > 1 due to 2 # Z’. Then 
(X, Y) E K( 2, Z) implies 

(~2 - 1) IQ - (~2 - t)(sz - V’YII, < (~2 - 1) IF’- (~2 - t)(sz - 1)-‘-W, (39) 

for all reals t (since jl X - t Y II 1 = 1 + (tl = )/ Z - t z’ 11 1 for t < 0), i.e. (39) implies 

(Q, I’) E KU’, Z’). (40) 

Again using 3, Lemma 3 we find from (40) 

(Q, Y) E K,(P, z’). (41) 

By (38) and arguments similar to (34)-(36) 

(X,Y)EKl)(Z,Z’). (42) 

Thirdly, let 

sz( z, Z’) = s*( X,Y) = + co. (43) 

Then by 2 (8) Z’ and Y are orthoprojections and 3, Lemma 3 becomes applicable. 

This leads to (28) again. 
At last, assume (27) holds with sr( X, Y) = 1. Then due to 2 (9), (10) we see that X = Y 

and the application of 3, Lemma 1 leads to (28). This proves Lemma 2. q.e.d. 

Conclusion 

By Lemma 2 and 3, Lemma 2 we are assured that 

(X, Y) E exK( Z, Z’) implies (X,Y)EK,(Z,Z’). (44) 

Then, since K,( Z, Z’) is closed and convex, we conclude that 

K(Z,Z’) = conv exK(Z,Z’j c K,(Z,Z’). (45) 

By our remark following the theorem in 1 the inclusion K,(Z, Z’) c K(Z, Z’) is 
obviously valid, so by (45) K( Z, Z’) = K,( Z, Z’) must to be true. This completes the 
proof of our theorem. q.e.d. 
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