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Abstract. This paper presents theorems on the structure of stochastic and normalized positive
linear maps over commutative C*-algebras. We show how strongly the solution of the n-tupel pro-
blem for stochastic maps relates to the fact that stochastic maps of finite rank are weakly dense
within stochastic maps in case of a commutative C*-algebra. We give a new proof of the density
theorem and derive (besides the solution of the n-tupel problem) results concerning the extremal
maps of certain convex subsets which are weakly dense. All stated facts suggest application in
Statistical Physics (algebraic approach), especially concerning questions around evolution of
classical systems.

1. Introduction

One of the most important notions we meet in applications of C*-theory to
physics is that of a normalized positive linear map, n.p.l.-map for short. Here, we
remember that a linear transformation acting on a C*-algebra with unit is said to
be positive and normalized if it throws elements of the positive cone into positive
ones such that the identity is preserved. The importance of n.p.l.-maps is due to the
fact that these transformations are natural candidates for the description of
dissipative dynamics. The set of all n.p.1.-maps on the C*-algebra 4 will be marked
by NPL(4). A linear transformation acting in the dual 4* of the C*-algebra A
will be called stochastic map iff it maps states into states.

There is a basic fact (see [13], [14], and [15]) concerning C*-algebras with com-
pletely positive approximation property (“CPAP”’). In these algebras one can
approximate every stochastic map by finite rank ones. In this paper we deal with
commutative C*-algebras with identity exclusively. All these algebras have CPAP.
But due to the commutativity one gets further and more explicite results:

(i) We give criteria whether a given n-tupel of states can be transformed into
another given n-tupel of states by a stochastic map.

(ii) It turns out that the solvability of problem (i) is equivalent with showing
the denseness of certain explicitely given classes of finite rank stochastic maps
within the set of all stochastic maps (weak density). Thus we get, in the commu-
tative case, an alternative proof of the above mentioned approximation theorem
of LANCE and EFFros.
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(iii) One of the special sets of finite rank stochastic maps mentioned in (ii) is
convex and generated by its extremal elements which can be described rather ex-
plicitely.

(iv) There are statements concerning the n-tupel problem (i) if we require the
maps involved to be doubly stochastic.

At last, let us remark that the n-tupel problem when seen in the non-commuta-
tive case is unsolved up to now, even if we make additional requirement that all
stochastic maps involved relate to completely positive transformations. To our
knowledge, there is only one case where the problem has been answered : arbitrary
2-tupels of hermitian two-by-two matrices (see [16]).

The results concerning the n-tupel problem admit further fruitful application
in context with the order structure of states (classical variant) and existence
considerations (cf. [9], [10], [12], [2]).

2. Stochastic maps (density theorem)

In this part we shall derive the key result of our investigations. All the other
goals we are aiming at will be, more or less, trivial consequences of the main theo-
rem. Some less obvious consequences will be published within the more general
context of stochasticity [2]. Let us take notice of the following notations and defi-
nitions. Throughout we will have to deal with a commutative C*-algebra A with
unit 1,. By 4%, A** we will denote the dual and the second dual of 4, respectively.
By 4., 4%, A% the corresponding positive cones are meant. The state space of 4
(i.e. the positive linear forms of norm one) will be denoted by S, . The C*-norm of
x€A (resp. x€ A**) will be written as |2/, the dual norm of w € A* is marked by
lloll;- Let L(A) (resp. L(4*), L(A**)) denote the complex linear space of bounded
linear maps from A into 4 (resp. A* into A*, A** into A**), where “bounded”’
refers to the norm ||.||. (resp. |.|l;, ||.]|..) on the underlying structure. In case of
PeL(A) or DcL(A**), @ cL(A*) we will denote the respective operator norms
by 1P|, |-

2.1. Definition (stochastic map)

PeL(A*) is said to be a stochastic map on A if we A% implies ®(w)€ A* and
D) (1,)=(1,) VreA*,

Clearly, a stochastic @ is uniquely determined by its behavior on S, : @ is
stochastic iff @(S )8, . The set of all stochastic maps with respect to the commu-
tative C*-algebra 4 will be denoted by ST'(4). Now, let @€ L(A). Then, by duality
we find uniquely determined adjoint map @+ € L(A4*) with &*(0) (z) = w(®(x)) for
all weA*, x€ 4. In this sense we have

(1) (NPL(A))*<=8T(4), and
(2) (8T(4))* SNPL(A**).
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2.2. Definition (weak topologies). As the w(A, A*)-topology we define the natural
topology given on L(A) by all pre-norms of type
Pr.o(@)=|0(P@))|, z€d, wcA*.
As the w(A*, A)-topology we define the natural topology given on L(A*) by all pre-
norms of type
P7{P)=[P(0) ()], x€d, wed*.
Equipped with the w(4, A*) (resp. w(4*, A)) topology the linear structure
L(A) (resp. L(A*)) turns into a locally convex topological HAUSDORFF space. Once

we will consider a set M < (L(A) (resp. L(4%)), by IM™ the respective weak closure
will be marked. By duality and definition of the w(4*, 4)-topology, we have for
the uniformly bounded convex set ST(4):

(3) ST(A) is weakly compact .

It is this set ST'(4) that will be the main subject of our investigation. We are going
to distinguish some subsets of S7T(4):

2.3. Definition. For every natural n we define ST, (A) to be
ST, (A)={®e8T(A): 3ay,...,a,64, , 2‘11:14 ,
Joyg, ..., 0,68, with @(») =tZ' (@) wf -
Furthermore, we define STO(A) to be the set l

ST(d)= |J ST, (4) .

n=1
An obvious but nevertheless very important fact will be that, because of 87',(4)c
8T, ,,(4) for Vn,
(4) STO(A) is a convex set .

Now, we are ready to formulate our key result:

2.4. Theorem (density theorem for stochastic maps). Let A be a commutative

L0y,
C*-algebra with identity. Then ST(A)=8T (4) .
Before entering the very proof we have to get acquainted with some technically
motivated results. Let ay, ..., a,€4, , with 3] a,=1,. Then, {a;} will be called a

(finite) positive decomposition of the unity. Regarding A in its canonical embedding
into the W*-algebra A**, we are going to derive the following result concerning
positive decompositions of the unit:

2.5. Lemma. The set of all finite positive decompositions of the unity within A is
strongly dense in the set of all finite positive decompositions of the unity with respect to
A**(st-topology: the strong operator topology with respect to the 4** underlying
HILBERT space).
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Proof. Let ay, . .., a,€ A%*, with }] a;=1,..=1,. By KaPLANSKY’s density
3
theorem we find nets (a;),,C A4 with |la;/|.=1 and st-lim a;, =a, Vi. Moreover,
A

since we are moving in a bounded sphere with respect to the st-topology, we may
assume (a;);c;C A, . Let ) a;=b,. Then, for ¢>0, we have }/ (a;+l,)=
7 7

=b,+nel, , with ||(b,1+nslA)‘1H,,§;1;, for VAi€l. Defining c¢;;=(a;+¢l )X
X (b, +nel 4)~1, we obtain ¢;; € A | with 2 ¢y =14V . By standard methods (resol-
vent!), from st-convergence of (b,) f(;llows that of (b,+mnel, )1 to the value
(st-li}n b, +nel ) 1=(1+mne)~t1,, and (bounded sphere!) finally:

ca€d ., ;’cuzlA , st-li;n co=(a;+el,) (14ne)~1.
Since ¢>0 can be chosen as small as we like (with » being constant!), the desired

conclusion is evident,

q.e.d.
We are going to make a first use of 2.5. in context of the following result:

0
2.6. Lemma. Let vy, ..., v,€8,, 2, ...,2,€A,. Then, there is ®cST (A)w
with
2 D) (x) =} vi=) -

B
Proof. Assume e>0areal, and {x;} C A** with |lv; —z/|.=¢ Vi, ; =210,
s
{@,} being a finite orthogonal decomposition of 1, into orthoprojections (trivially,

such ; exist for 4** is a W*-algebra), where we made use of the fact that 4** is a
commutative algebra, too. Look at T'¢ NPL(A**) defined by

(5) '—”(90)=ICZ7 2u(®) @y »
with {g,} states of A** obeying 0,(@;)=1 Vk (again, we are sure that such states
exist by standard arguments). Then, we check that
(6) T(a) =) tu@e=; Vi.

%
By 2.5., we find to the normal states v, € (4**), = A* (M, means the pre-dual of M)
a positive decomposition (finite!) {a;} = A4 of the unit such that, with T', defined by
(7) T.(x)=)] o) @ Vwcd**,

£
we have
(8) v (T (@) Zva))—e Vi

T, has, by its definition (7), the property that T,(4)c 4, so the adjoint map 7"
of T,/ is well defined on 4* by

(9) Tr)=) v(a) 0 (0x€A* by assumption!),
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thus, from (8) and (9)
(10) T () (@) =v(x)—e Vi

Remembering the beginning of the proof, we have to draw the conclusion from
(10) like

(11) 2 T () (xi)éz TF @) (@) —ne 22 vi(@;) — 2me 52 vi(x;) —3ne ,
and T, ¢8T9(A4) by (9).

0,
Because of (3), we find a universal subnet of (7'; )ejo cOnvergingtoa @€ ST (4)

so the desired inequality follows from (11),
q.e.d.
In the next step, let us take notice of the following notions and definitions
being of importance on its own right in other context, cf. [2]; in this paper they
will give us some support in making the proof of 2.4. more comprehensible.
n

2.7. Definition (>>) Let n be a natural number, |o,, . . ., o,| and |v,, . . . , v,| n-

tupels of states on A. Then, we will write |wy, . . ., wnlﬁlvi, « ooy vyl of there is
0y,
DcST (4) with w,=D(v,) for VE.

One result of the following will be that ; defines a pre-order in the set of
n-tupels of states on 4.
Let us define functionals by

(12) Ky, ooy 0,304, ...,0,)= sup 3 D) (b),
vest @"
where oy, ..., w,|is a n-tupel of states and |by, . . . , b,| means a n-tupel of posi-
tive elements of 4. Then, we make up our minds to prove
2.8. Lemma. |oy, ..., o= |v, . .., 0, ifand onlyif K(wy, ..., oy, . ., b)) =
=Ky, ..., v;by,...,0,) for any choice of byc A, .
Proof. We may think of |wy, ..., w,| and |vy, ..., v, as elements of

(Ao A®...®A)%, where AD...d A indicates the direct sum on n copies of the

e —

C*-algebra A. Because of (3) and (4) we see ST (4) to be convex and weakly
compact, so

(13) M, ={|Pry), ..., Cb(vn)l}¢€SvT0(A3w

has to be convex and w*-compact (w*-topology stands for the weakest polar
topology on A* in the dual pair (4, 4%)), so it is w*-closed and convex. Let
log, « - -5 04l €M, , with o, €8, . Then, by standard application of the H B-theorem
within (4®...®A)* we find a n-tupel |ay, ..., a,| of hermitian elements of A4
and a real ¢ with

(14) 2 Qi(“i)>052 ofla;) Yoy ..., 0,0€M,.

K 1
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Since all involved linear forms are states, we may shift a;’s into the positive cone
of A, thus with certain b,€ 4, and certain real ¢’:

(15) 2 ox(bp) =¢' = 2 opb) Vo ..., o€, .
Because of (13) and since 2.6. holds, however, (15) can be turned into
(16) sup Y] @(g;) (by)>¢ =sup Y () (by) »
ok (4 k 0
where the sup’s are running over the whole range of ST iA)w, i.e. in view to (12):
(17) Koy, -+, 003005 -, 0)=K(vy, ..., 95 b4,...,0b)
for a certain choice of b,€A4 , whenever the assumption oy, . . ., g,| ¢ M, was sup-

posed. Therefore, by logical negation we recognize the stated conditions to be

n
sufficient for |wy, . . ., w,|>vy, - - . ¥l
Necessity follows from the observation that each element of ST°(4) can be
considered as an adjoint of a n.p.l.-map on A4, thus, because of

K(oy, ..., 0,;by,...,b,)=sup ] D(a;) (by) ,
o %

where the sup runs over 87°(4), we have that the K-functional as a supremum of
w*-continuous functions (in the state variables) has to be w*-lower-semiconti-
nuous. This, however, makes that K(®(c), . .., D(0,);by, - . ., b)) =K (o, - - ., 045

Oy

by, ..., b,) not only for @€ ST A)!) but also in case of ®cST (4) ,
q.e.d.
Now, let us introduce another family of functionals by
(18) K (0w ., 04 %y, . .., T,)=8Up 2 ' 2 Jaz) x, L,
{ag} k=
where |y, ..., w,| and |z, . .., x,| are n-tupels of states and positive elements,

respectively, and the sup runs through all systems of positive decompositions of
the unity of length . Then, we have

2.9. Lemma. Let ®cST(A). Then, for x;€ A, and w, €S,
K (D(wy), -y D(wy); By - o By) EK (04, 0o o5 05 T4y 000, T)
holds.

Proof. Let ay, ..., a,=0 form a positive decomposition of the unity of 4.
We may think of 4 as canonically embedded into 4**. Then, with @+ € NPL(A**)
denoting the adjoint- map of @ we have

(19) E(D ) () x—E (DPF(ay) x;€4 .,

with w; mterpreted now as a normal state on A**. Respecting 2.5., (18) gives
that

(20) Ko, ..., oy Ty, . x,)=sup /| 2 da) )l
() T

1) for, from @, @’ €STY(A) follows @ - D’ €STYA), too.
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now the supremum running over all finite decompositions of the unity of length r
with respect to 4**, where {w;} are normal states on 4**. Taking into account that
DT e NPL(A**) and (19) holds, we get by twice application of principle (20) the
inequality we were looking for to hold for every @cST(A) and any choice of
w;€Sand z;€4 ,,

q.e. d.

2.10. Lemma. For any n-tupel |w,, ..., w,| of states and every n-tupel |x,, . . . , z,]

of positive elements of A we have to be true that
Koy, .o s 0,2 ...,2,)= sup ) D(w) (z;) .
PEST(4)

Proof. Let a4, ..., a,=0 be a decomposition of the unity. Then, by w*-
compactness of S, we find ¢,€8, obeying the relation
(21) \\2 wi(a) x| .= oy, (2 o) x;) -

1 1

Because of o, (2 w,(a;) z;) :2 w;(a) o)) 22 olao.(x;)), from (18) follows

(2 K3

(22) ; !\2 () xiHm'—“E wi(¢(xi)) ’

3

with the n.p.l.-map @ = 3] a;0;(.) on 4. Then, the adjoint @+ of @ looks as D+ (v) =
%

=} v(a;) 6,€8T,(A), so from (22) follows the validity of
k
(23) K(og ..., 05 2,...,2,)= sup ] Do) (x).
DeST(4) G

The opposite direction of (23), however, follows from the trivial fact that
o( Y] i) ;) =|| Y oia;) ;. for each element o of S,
7 i q.e.d.

2.11. Proposition. For n-tupels of states we have
N P R
if and only if there is @€ ST(A) such that
w,=Pv,) for k=1,...,n.
Proof. Since ﬁo(jjwc ST(A) the one direction is obviously. For the other

proof we remark that from 2.10. together with the definition of K-functionals (12)
follows

(24) K(og, ooy 0p; @y oo oy ) =sup K (o, ..., 0y Xyy v o, )

for every n-tupel |6y, . . . , o,| of states and positive x;. By 2.9. and (24), however,
we have that

(25) K(@wy), ..., 00,2, ., ) =K@y, ..., v @q, ..., )

for all the @€ 8T (A4). Together with 2.8. the latter implies our statement to be
valid.
q.e.d.
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Proof of the main result 2.4.

Let F be the family of all finite subsets of states of S, . Consider F as a directed
set (inclusion of sets, increasingly). Let @ be an element of ST'(4). Fix A¢cF, and
look at the relation

(26) Dy, ..., qs(v,,A)|>A Wil

where n,=card 4, and the numeration of the states within A is fixed for each A

Y
separately from the very beginning. By 2.11. and 2.4. we find ®,€87T (4) with
(27) D,(v)=D(v) Vved.

0 w
Look at (D) 4., ST (A) , and let (Q)Aﬁ)ﬂa denote a universal subset of the
0

net (®,),cp- Then, since ST (4) is weakly compact, we have w-li;n ¢Aﬁ:¢0r

0y
with @,€87T (A) . Now, by construction, for »¢S, we find g,€I with AgD{v}
whenever § = f,, so with € A we have li;n diAﬂ(v) ()= ;ing @Aﬁ(v) ()= fl}ir{; D) (x)=

=®(v) (x)=Dy(v) (x), where we made use of (27). The latter has to hold for every

0
v€S, and Vax€A, so D=D, i.e. ST (A)w. This closes the proof of our key re-
sult,
q.e.d.
Let us consider ST0(A**), where the definition of the set in question with re-
spect to A** is analogously to that of S70(4) with respect to 4 (cf. 2.3.). We define
a new convex set of stochastic maps over 4** by

ST(A**) = {@eSTA**) : D((A**)*) (A**),]) .
Hence, for ®cSTY(A**) normal states will be mapped into normal ones. In the
usual identification (4**), = A* we then have that @(4*)c A*. Especially we will
be interested in those @€ ST (A**) the definition of which refers to positive decom-
positions of the unity the members of which have spectrum consisting of finitely
many points only. The convex set of all such elements will be called ST (4**), and
in consequence of 2.5. we see the set S700(A4)=_8 T?O(A**)/A* to be weakly dense in
ST0(A4), so from 2.4. we obtain:
2.12. Remark (density theorem for ST00(A4)).

00

ST(4)=8T (A) .
As one easily checks the structure of S7'00(4) is not more complicated than that of
8T9(A). The work with ST%(A4) instead of ST0(4), however, brings in some new
and interesting features as it will be shown throughout part 4. Finally, in case of 4
being a W*-algebra, there is no need to leave the A-context for a definition of
S8T"(A4). Now, let us finish work of this part in extracting from the material
derived a result we will make use of in part 5.:
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2.13. Theorem. Let wy, ..., w, and v,, . . ., v, be states of A. Then, in order
that w,=D(v,) with ®ST(A) it is necessary and sufficient that

(28) SUPZHZ wy(ay) xiHmésuPZ HZ vi(ay) xi“»
{ag} % [ {ag} & 7

where the sup’s are running over all finite positive decompositions of the unity, with
x,€A4 , arbitrarily chosen.

Proof. In fact, 2.8. 2.10., 2.11., (24) and (25) guarantee for the validity of the
result,

n q.e.d.
At last we remark that the pre-order > throughout this paper figures only as a

remedy. In form of the redefinition “|w,, ..., wn|;|v1, ce s v if 3PEST(A)

with w,=®(v,) Yk~ that is allowed to be performed due to 2.11., ; plays an
independent role in applications that are not the main concern of this paper.

3. Normalized positive linear maps (density theorems)

In this small part of our work we want to draw some consequence from 2.4,
concerning n.p.l.-maps over the commutative C*-algebra 4. With the notations
and definitions throughout 2., let ®¢ N PL(A). Then, &+¢ST(A4). By our density
theorem 2.4. we are assured of the existence of a net (D)2 belonging to ST(A)
and converging in the w(4*, 4)-topology towards @+. By construction of S70(A4)
each of its elements is the adjoint of a n.p.l.-map @, . Thus, we see @; (v) (x)=
=w(®;(x)) Vwe A*, x€ A. Buth then, from ®; "™ @+ follows @, "4 &. Lot us
define NPL(A)c NPL(A) to denote the counterpart of S7'0(A), i.e.

NPLYA)={®eNPL(A): 3ay,...,a,64,, Y a;=1,, and

Jwy, ..., 0,68, such that
¢:2 CL)L() ai} .

Then, our considerations from above show that we may state:

3.1. Theerem (density theorem for NPL(A)). Let A be a commutative C*-ql-

——

0
gebra with unit. Then, NPL(A)=NPL (4) .

While the notion of S7'00(4) is very useful, there is no direct counterpart of it
within NPL(A). In case of a commutative W*-algebra, however, we may define
such a set without troubles. Call thisset N PLY(A4) (we.omit the detailed definition
for its simplicity). Then, by procedures resembling the preceding ones, we obtain

3.2. Theorem (density theorem for N PL(A)). Let A be a commutative W*-al-

004

gebra. Then, NPL(A)=NPL (A4) .
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4. Some convex analysis within ST(4) (structure theorie)

The goal of this part is to give results on the convex structure ST(A) which
provide good insights into the construction of the set. Since ST (A) is weakly com-
pact, the first (and most important) question will be: “What can be said about the
extremal elements of ST(4)?” In general, experience in working about convex
sets shows that the extraction of the extremal elements is highly complicated. By
the KREIN-MILMAN theorem one only knows that extreme points existin, belong to,
and generate canonically the set is question. Of course, in case of the simple algebra
0¥ (N-tupel of complex numbers) the construction of ST(C¥) is well-known and
we know:

(1) a N X N-matriz belongs to ex ST (CV) iff it shows only the numbers 1 and 0
as entries, and in each of the rows there is exactly one entry with value 1.

In the infinite dimensional case, however, things are much more intricated. But in
most cases it is not necessary to know exactly the extremal points in order to get a
feeling for the structure of the set. Often, the best result one can expect to find is a
closed set of points of a very simple canonical structure that contains all extremal
elements and, moreover, counts only a ‘few” non-extremal points among its
stock. To begin with, let us define a set N(4)c8T%(4) by

(2) N()={®eST"(4): D(») =) v(Qy) wy, with {w,}cex Sy,
3
{Q,) being a finite orthogonal decomposition of 1, into orthopro-
jections of A**} .

As usually, whenever »€S, and x € A**, »(x) is understood to denote v’ (x), where »’
is the » corresponding (uniquely determined) normal state on A**_ Let us prepare
for a proof of

4.1. Lemma. For every commutative C*-algebra with unity we have N4)=
=ex 8700(4).

Proof. Let @ be an element of ST%(4), i.e. we find states oy, . .., @, €84,
w; + 0, Vi+K, and a positive decomposition {b;} of the unity such that
N
(3) b= 4? @ Vk,
t=

with {Q;} an orthogonal decomposition of 1, into orthoprojections @€ A**, with

(4) D)= v(by) w, Vved*.
&

In formulation (3) we made use of the fact that A** is a commutative algebra.
Now, the n X N-matrix () is stochastic, for

M iy=1 from ' b=1,, and
k z

Ay =0 from b,=0 Vk.
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The latter means that (4) is element of the set of stochastic maps from C¥ into
(", so by a minor modification of (1) we see that (4;;) can be represented as a con-
vex combination of points from ex ST(C" —C™) being of known structure. Let
{(ep)},=ex ST(CY ~C"). Then

(5) (A)=D) p,(ef;) with certain p,=0, 3 p,=1.

r

From (3) and (5) then comes that

(6) bk=12’ TZY preIZZleé‘J pr(%__] Q) -

From the modified variant of (1) we get the information that

(7) Qm——-lZ el vr. k

are orthoprojections with

(8) QiQm=C0km VT,

and )] Q=) 3 Q=2 @,=1,, thus from (6), (7) and (8) we have to con-
cludeLto o l

(9) kaZPrQrk ’

with {@,;}, being an orthogonal decomposition of the unity into orthoprojections.
We define @,¢ST%(4) by

(10) d)r(’p) = k21 V(Qrk) Wy -
Then, as a consequence of (4) and (9) we see

(11) =3 p®,.

Since in case of @+ @, for all r we have (1) to be non-extremal, from (11) follows
that the candidates for extremal elements of S7%0(4) are reduced to those maps
that are of the form

(12) D)= (@) o1,

[]

with @,€ A** forming a finite orthogonal decomposition of the unity into ortho-
projections. Obviously, we have to assume o,€ex S, in (12). Therefore, what we
know is that ex S7'0(4)c N(A). So our task will be to demonstrate that each ele-
ment of N(4) is extremal within S7'00(4). Assume @', @’ € ST0(A4), with

13 (15—1(15’ 1<15”
(13) =+ O

Then, for all states P that have support in a member of {§);}, we have to hold
(14) Dv)e{o}cex S, VveP.

19 Math. Nachr. Bd. 97
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Then, from (13) and the structure of S700(A4) arises that
(15) @'(y)zgj va) o, D()=2 )0,

7
with {a;}, {a;} denoting certain decompositions of 1, with respect to A**. The
decompositions both are of type we meet in 87'00(A) construction. In the conclu-
sion leading from (14) over (13) to (15) we made use of the fact that P is a faithful
family of states.

In the next step we find a minimal N and a orthogonal decomposition of 1,

into orthoprojections of A**, {P,\¥_ such that
(16) a;:EAZum, a;’zglgr’npm! QIZE .u’lum'
m m m

Then, proceeding as we did from (5) to (11), but now with {P, }, yields @,¢ N(A4)
(because of g,cex S,) and sets of weights {p,}, {p,} such that

(17) =3 p®, &'=3p/®, and D=0,
for a certain s (§,’s are orthoprojections!).

Defining q,:; (p,+p, ), we obtain from (13) and (17)
(18) D,=3 q,9,.

By (14) we see that @, (v)=®,(») V»€P in case that 0 <¢,<1. This, however, by
construction of @,’s implies @, =, for all r with 0 <q,<1. Since ¢,=0iff p,=p. =
=0, we may summarize all that to the conclusion that only @, non-trivially occurs
in both, @ and @"’. So, by the last part of (17) we have to conclude to @ =@’ =@,
l.e. @ is extremal,
q.e.d.
As it can be read off from the (more sketchy) proof of 4.1. (ef. (11)), the set
S8T%(4) is an example of a convex set containing extremal points the convex hull
of which, beyond it, is dense.
In fact, every stochastic @ of form as given in (12) can be approximated
(weakly) by elements of conv N(A4). Tosee this, let ®(w) =} w(P,) w,, with {P;} a
7

finite orthogonal decomposition of 1 within 4**, and {w;}c S, . Then, we may
approximate w;’s in w*-sense by states

wl' = _S/_’ D50
8=l
,
with {o,JcexS,, p,>0, 3 p,=1 VI. Moreover, we may assume that each of
s=l

p;’s is a multiple of N1, for a certain natural N. Then, with “redefined’’ states
o, 0, can be written as:
N

’
w, =N 112 o
=1
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(it may happen that oy =0y, , also in case k=+%'). But then,
N
@’(w): Z'N_lzw(Pl) Oy aJld Oy, = Oy
E=t 7

for some s for every [, k, i.e. &' € conv N(A4), and @' is a weak estimate of @.

We will summarize all our results obtained in this and the second part in form
of:

4.2. Theorem (structure theorem). Let A be a commutative C*-algebra with
unity. Then, the convex subset ST(A) of ST (A) possesses the following properties:

00

(i) ST (4) =8T(4) (density property) ;
(i) ex8T0(A4)=N(A4)+09 ;
00
(iii) convex ST (A)w =8T(A) (generation property) ;
00

(iv) exS8T (A)wDex ST(4) (support property) .
Here, the very meaning of (iii) is that S7'9(4) contains extremal points enough
that allow to reconstruct the set “almost’” completely (i.e. “almost’ in sense of
“dense”) although ST"(A) is not compact in general. The support property turns
out to be very useful with regard to several applications. This is mainly due to the
distinct shape of the members of N(4) (see (2)) and (iii), which allow to reduce most
problems to manipulations with orthoprojections and pure states, this being most
evidently in case of a W*-algebra 4 where we are not required to make reference
to the envelloping algebra. With this remarks we close considerations on the struc-
ture of ST'(4) and we will turn our attention to more applied problems.

5. Stochastic maps and h-convex funetionals

In this part we want to make some remarks concerning a functional charac-

n
terization of the pre-order . Having in mind our results on the structure of

ST(A), we may adopt the redefinition of ﬁ :

04 O Sy, i 3GEST(A) with w,=B) Vi,
where wy, »,€S, for all k, I. Now, let f be a continuous realvalued function on R :
(1) FrRY sy, oo, ) (S0 o 25 8y) -

Assume a€ 4, . Then, we define functionals on n-tupels of states
(2) Hoyg ooy ap) (@)=f(wya), . .., o,(@) Yare8, .

It is a matter of triviality to notice that each of the in (2) defined functionals is
w*-continuous on n-tupels of states. By means of the setting (2) we let follow the
definition
3) Sf(wi’ L) wn)ZSuPZf(wi’ cees ) (@),

{ag} &
19*
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where the sup runs over all finite positive decompositions of 1. Clearly, S; is
w*-lower-semicontinuous on n-tupels. S;’s have a nice property:

(4) SUD(y), - - ., D) =8y, - - -, w,) VDEST(A)

and all n-tupels of states, the behavior being due to (3), w*-lower-semicontinuity
and our results of 2. Because of our assumption on f, we may suppose S; to be
defined on all n-tupels of positive linear forms. Of course, not all the functionals of
type as in (3) have a deeper meaning in more physically motivated context.
Among the continuous generating functions (1) the convex and homogeneous (of
first degree) ones deserve our main interest. These functions will be called k-convex
functions. Thus, a A-convex function f defined on R" possesses the following
properties:

(57) f(Bsi+(1=B) by, .., B+ (1—B) 1) =Pf(s1, - - ., )

+(1_ﬂ)f(tiv ceey tn)
for 0=8=1, and

(5") flrsy, ..., rs,)=rf(s,...,s,) for r=o0.

By (2) and (3), properties (5) extend naturally to S; (now thought of as a functional
on n-tupels of positive linear forms!). S; in this situation will be referred to as a
h-convex functional.

That h-convex functionals should play an important role follows from 2.13.:
if we define

(6) Fag(se - - - ,s,J:H%] saill., sERY, x€d,,
then (6) is a h-convex function and
g+ oy | > |vys - ., 9,| if and only if
Sf{xi}(wl’ ce, W) ésf{xi}(”i’ cee s V)

for all n-tupel |z, . . . , x,| of positive elements of 4. Hence, with a view to (4), we
may formulate

5.1. Proposition. For n-tupels of states |wy, ..., w,| and |vy, ..., v,| we
n
meet |y, . . ., 0y >|V1, - - ., v,| if and only if
Sf(wl’ .- =y (,()n) éSf('Vi, e ey ’Vn)

for every h-convex functional S;.

In case of a h-convex generating function f, the definition (3) may be simplified
enormously what gives the notion of a h-convex functional a more practicable
meaning. In order to demonstrate this, let us adopt our usual agreement concern-
ing the meaning of »(z) in case of v€ A*, x€ A**. Then, in (3) we might replace the
set of all finite positive decompositions of 1, within 4 with the set of all finite
positive decompositions of the unity with respect to 4**, where we have to take
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into account result 2.5. Moreover, the elements of the decompositions in 4** may
be thought to be of form

(7 ak=lZ] @i, =0,

with {@,} a finite orthogonal decomposition of 1, into orthoprojections of 4**.
Then, from (2) and (5) comes that

(8) sz'f(wi, cees o) (@) é;;’luﬂwu cees @) (@)
élzyf(wi’ cees 0y) (@)

where we had to pay attentionto 3] a;=1.From (8) together with the (7) preced-
ing remark we conclude to k
9) Silwy, - v s wn)=s£l})127 Hoy@), - - -, @,(@)) »

1
the sup running through all orthogonal decompositions of 1, into orthoprojections
of A**. It is just the formula (9) that will give us the standard idea of a h-convex
functional in case of a W*-algebra A (then, the decompositions may be thought to
be within 4, exclusively!):

5.2. Example (4 =0%). Let {o,}7_, denote N-dimensional probability distribu-
tions, with o, = (a}c, o,%., cee, okN ). Then, for a h-convex f we have

(10) 8os, -y 0)=flol, 05, ..., 0.

The proof is due to (9) and inequality (8) when applied to the set {@)7, of projec-
tions @;=(1,0,...,0),@,=(0,1,0,...,0)etc.

More generally, one can say that the so canonical shape (10) of a h-convex
functional with only minor modifications can be generalized to other homogeneous
algebras, for instance 4 =L~([0, 1]) etc. As examples of (10) might serve the func-
tionals of type of generalized relative information (cf. [11]).

Since 5.2. provides us with a very expressive (and non-trivial!) example we
will formulate the statement of 5.1. in terms of it:

5.3. Proposition. Let {0}, {0;} be two sets of N-dimensional probability distribu-
tions, each containing n members. Then, we find a stochastic map (stochastic ma<
trix!) T with

op=To, for k=1,...,n

if and only if
N . . . N ) . . .
2 e s = Y flot, oh, e, 0y)
i=1 i=1

for every h-convex function f on R". .

As it is well-known from order structure of states and classical statements of
matrix theory (see [9], [12] for instance), given two N-dimensional probability
distributions p, ¢ allow us to extract a doubly stochastic T (i.e. T is stochastic
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with 7'1 =1) performing the transformation

o=To
if and only if

N
§ f(e")

for every convex function f on R",

By 5.3. we are put into state to give a generalization of this problem and its
solution:

N

2/ fla)

=1

I

5.4. Theorem. Let {p.}, {0,} be two sets of N-dimensional probability distribu-
tions, each containing n members. Then, there is a doubly stochastic map (doubly
stochastic matriz!) T throwing oy into o, simultancously for every y k,

(11) a=To, Yk,
if and only if

- N . . . N . . .
(12 Yl e d)= Yoo
for every convex function f defined on R"..

Proof. The problem is equivalent to that to find a stochastic & transforming

1 1
{01, cee, Gy, l—\fl} into {91, c ey O Nl} . By 5.3. such @ exists iff
i i1 i i 1
(13) Ef Ql""’@n’ﬁ é,gf O'i,...,O'n,E
for every h-convex function defined on R"*'. Look at f 8y« - 8)=
=f (si, ce ey 8y, N> , Then, f' is a specia] continuous and convex function on R",

so by (13) we find (12) to be a sufficient condition. On the other hand, let exist
doubly stochastic T performing the transformation of (11). Then, 0= 2 T"a,

with 7" =0, and 2 T = 2 T" = 1. Therefore, we may conclude with convex func-

tion f: ngu---’Qn 2)‘(2’1’”’01,...,ET”G’A)éZST"fal,...,a,l):

= 2]‘ (6, ..., d}), so necessity of (12) is an obV1ous fact
q.e.d.
We remark that, in principle, there are no serious objections against formulat-
ing generalizations of the demonstrated results, especially in cases where 4 means
a commutative W*-algebra. One has to start again from (9) and to take into account
that all the finite orthogonal decompositions of 1, into orthoprojections form a
directed set, and {3 f(04(@)), - . . , ©,(@))} « 18 an increasing net of numbers.

7

This, however, allows us to insert all the specialities of the L~ underlying measure
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space (4 is such an L~-algebra!) in order to arrive at a more “compact” defini-
tion of S, in terms of “coordinates” and “integrals” like this has been the case for
C¥=L"({1, ..., N}, counting measure). These generalizations and more advanced
applications of the material we derived in this note are ieft for another paper.
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