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1. In the following we try to approach quantization problems in
given curved space-time manifolds by some ideas of Euclidean
quantum field theory /1/ as proposed by Nelson, Dobruschin, Guerra,
Rosen, Simon,... We use a reformulation /2/ coming from the study
of reflexion positivity advocated by Hegerfeld, Frohlich, Lieb,...
The advantage of "Euclidean-Riemannian" methods is in obtaining
suitable "1-particle" Hilbert spaces attached to space like hyper-
surfaces, and in getting positive definite Hamiltonians acting on
that hypersurface-depending Hilbert spaces and govering the time
evolution in the Tomonaga Schwinger sense.

2; Let us consider a 4-manifold, I , equipped with a metrical
tensor, g, , of signature (+---).

Let e denote a time-like and normalized vector-field defined

on M .
This setting introduces uniquely a Riemann metric by

N

Bix * Bix = 2 €; €

and we consider the Laplace-Beltrami operator

Dl ~

A belonging to 811
Beeing an elliptic differential operator there exists for every
open subset, D , of M , and for every regular function, f , the
support of which is contained in D , and for given "rest mass",

m , one and only one regular function h on D satisfying

”~~/

(a) (- A +n°)h = f
(b) For every £ > O there is a compact K within 2 such that

|h(x)[ %= € if x €D and x¢K .
Clearly, h 1is the solution of (a) in D fulfilling the

Dirichlet boundary condition. We denoteit by

h = GD T

which in turn defines the avppropriate Green's operator GD .

Later on we heavily use Dirichlets' principle.
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Let h' be another solution of (a),

N 2
(- A +m©)n' = f

beeing bounded together with its first derivatives globally on D .
(Remind 'h' is regular automatically.).

- A’ ' V
then SD Wt £ dv 2 (thdv > 0
and the equality sign is valid in the first inequality iff h' = h,
0 .
The Dirichlet energy integral will be the starting point for the

H

and in the second iff T

construction of scaler product’, while the Dirichlet principle shall

guaranty the positive definiteness of Hamilton operators.

3. We now define the Hilbert spaces ND as the completion of the
pre-~hilbertian space NOD consisting of all distributions [ ,
with compact support within D, for which the Dirichlet energy
integral

(c) <, 4 ;= f:p {g}l((@; G:D F)(@k G_'D f) +~“-a'("‘m;‘%f)g 4V

exists. (c) defines, by polarization, the scalar product of Np
uniquely.

The set NOD (not its scalar product) is independent of the choice
of the time-like normalized vector field e. ‘

1
If furthermore D, € D, , then N°. < N°
1 2 1 D,

naturally. The Dirichlet principle assures

. " O
(a) < f,f> D, > <f,f7D1 if f €N D,

and both norms are coordinated.

D

Hence there is a natural contraction

Therefore, if D = M we get the largest in form sense possible
scalar product, and likewise the effect of a possible enlargement

of M can be seen from this.

Let us restrict ourselves to D = U ,

NM contains "Physical 1-particle spaces':

Let € Dbe a (piece of a) space-like hypersurface which intersects
the field e normally.,

Then we define the subspaces ol Ny,

N&” : = {f € NMI support fﬁ*G’}
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to be the l-particle Hilbert space associated to particles sitting

6 is crucial

at the instant®t & . The normality of e; on
for the interpretation.

There 1s the following nice fact: Let M ve s regular function
defined on 6@ , let 56. denote the Dirac distribution concentra-

ted on 6 . Then*Wd?% is in Ny and these functions form a

dense set within ND . Therefore, any l1-particle state onsas
uniquely given by a locally integrable function on the hypersur-

face 1n question.

4. Vie shall define the Hamiltonian HG#. In Huclidean quantum

field theory one constructs exp(-tH) £, f & Ng , by first
translating f the time t 1into the future and then by pro-
jecting within NM the result of the translation into Neg back.

There are more or less obvious generalization if M, gip 1S
time oriented,
We consider the set T ¢ of all world points of the past of the
hypersurface 6 . If 6 is in the future of & +then there is
a natural contraction induced by (d):

NTQ; T &’
and hence a natural contraction of Nc’ into Negt .

—> N

Now, for we cannot expect to get a semigroup we try to define a
generator of the time-movement depending on g . This, indeed,
is Tomonaga-Schwinger's 1dea. It should be done by a limiting
process

G

<f,H g>M : = 1lim 4

1 .
(<fag'7T"'6,J "<fsg>rjjg, )

where d denotes a "distance" and g' a translated g with
r,g € N¢g* .

By Dirichlet's principle one automatically gets, provided the

limit exists,

<f, H® £7, 2 0 always,
1.e. the usually extremely difficult to fulfil spectrality eon-
dition for the Hamilton operator is guarantied.
The 1dea is to translate <5'"infinitesimally" and geodesically
("freely falling") into the future.
1t is, however, not straightforward to do this correctly.

ey

In the case, @ devides M into two parts and if there is an

isometrical refelction of M with respect of 6 and g:1 » then
one may infer - ' .J . ~
<F. 7 _ = i
£, H f?M f e Qi GM f d%;

provided f € N (see /2/). G



Y. The Dirichlet principle even gives some hints how to overcome

the dependence on the vector field € .

We have seen <if,f>-D getting larger for increasing D .

In Mlnkowskl space one has to chose €4 geodesically Tfor flat
hypersurfaces. Because of time-dilatation these fields give within

O~

the contruction ik —> 84y the "longest" trajectories.
Hence, possibly, the Dirichlet integral sees M "largest" if
€ 18 as near as possible to a geodesic normalized field.
Hence, heuristically, one had to define

< T, £> sup <7, f>M

where the supremum has to run through all the possibilities to
make the constructions above, i.e. it has to run through all nor-
malized time-like vector fields cutting 6 normally. (Remind

that our scalar products depend on ei'.)

Then, generally, the supremum would not necessarily provide us
with a new Hilbert norm but only with a Banach norm, and then
the 1-particle states would be not Hilbert but only Banach
spaces.

Very speculatively this may indicate the "instability" of the
l-particle states. (In view of second guantization the wvacuum
"instability" had to imply the "instability" of the 1-particle
states and vice vera.)

Unfortunatly, even in Minkowski space I have been unable to prove
or disprove that the supremum above will be attainened by the
time-like geodesics. This, however, i3 a necessary requisit to
consider the discussions of this last section sSeriously.
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