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The requirement of reflection positivity is investigated and its general applicability to different 
physical theories is pointed out. Its role is illustrated on an  example from electrostatics and 
on several simple examples of field theories. Then, after presenting an abstract construction 
of the concept, the role of reflection positivity in classical lattice systems is discussed. 

Reflection positivity has appeared in Euclidean quantum field theory and in 
lattice theory. It has been used in constructing the Hamiltonian in quantum field 
theory, the transfer operators in spin lattice systems, and in formalizing part of the 
Peierls argument in existence proofs for phase transitions. 

What will be said below to this topic is not only ~ncomplete but also highly subjecti- 
ve. Therefore I bave to point out some very important aspects which are hot con- 
sidered here, and which have been handled much better than I can do in textbooks 
[1] and review articles [2] already: As a constructive tool RP is one of the Oster- 
walder and Schrader axioms [3]. Here RP reflects the positivity condition of th• 
Wightman axioms as analytically continued to the Schwinger points. How is it pos- 
sible to continue a positivity condition9. For the complicated case of QFT this is well 
described in [1, 3], in GgAS~R [4], and other papers. Here, to see the flavour of the 
argument, let us notice one version of a theorem due to Fitz-Gerald: Assume f ( z ,  w) 
to be analytic in Izl < 1, Iw] < 1, and choose 0 < 5  < 1. If  then for every natural 
m and every choice of real si . . . .  , s,~, with 0 __< sy < e the matrix a u = f ( s � 8 7  si) 
turns out to be positive definite it follows the positive definiteness of the matrix 
bjk = f ( z j ,  ~.y no matter how the complex numbers z~, z2 . . . .  bave been chosen 
out of the interior of the unit circle [5]. Consldering f along the imaginary axis 
and redefining g(sj, sk) = fOsj ,  isy one arrives at the positive definiteness of the 
matrix g(sj, - se) for real numbers s i bounded by one. Though this example is widely 
oversimplified it shows how to obtain RP by analytic continuation. 

Quite another way RP is entering in Nelson's approach, [7, 6], to Euclidean QFT. 
The centre of this theory is the famous generalizing the concept of Markov random 
processes to that of Markov random fields [1, 27. RP shows up as a consequence of 
the Markov property. There are some indications, [8, 9], that with the afd of reflec- 
tion positivity a "good"  class of stochastic processes can be defined in which the 
Markovian behaviour is "weakened". The derivation of RP from Markov proper- 
ties was presented by MACK [10] last year at Primorsko. His lecture further includes 
an application to lattice gauge theory found also in [11]. 

*) Invited talk at the "Symposium on Mathematical Methods in the Theory of Elementary 
Particles", Liblice castle, Czechoslovakia, June 18--23, 1978. 
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In preparing this talk I was influenced by the work of DYSON, LIEB, and SIMON 
on the Heisenberg ferromagnet [12] and by the Rome talk of Lira [13] where also 
more references can be found. 

An e x a m p l e  f r o m  e l e c t r o s t a t i c s .  

Let us start with an example, due to LIEB [13], that nicely explains some important 
concepts. We consider the set L of all electric charge distributions 4 = 4(x, y, z) 
with finite electrostatic self energy. Lis a real li.near space. In Lwe introduce a positive 
definite scalar product ( , )  which, up to an unimportant for us factor, gives the 
interaction energy of two charge distributions 

;d �99 e )  = af  dar  ' Q'( r ' )  4 ( r )  I f  - t ' I - '  . 

Thus Lbecomes pre-hilbertian. Now define the reflection operator 

(04) (x, y, z) = 4 ( -  x, y, z) .  

The square of 0 is the identity operator. 0 is an isometric map of L onto L. This we 
see either by calculation or by recalling that e and 0Q should have the saine electro- 
static energy. A one-parameter group s --* T~ of translations 

T~4 = Q ,  w i t h  4y =4(x-s,y,z) 

is naturally defined in L. The reflection plane x = 0 divides the Euclidean 3-space 
into two parts, and we shall now consider such charge distributions which are in one 
o f  these half-spaces. They f o r m a  linear subspace L+ of L 

L+ = { e e L : e ( x , Y , z ) = O  if x _<0}. 

Let  us imagine a charge distribution Q ~ L+ and its reflected counterpart 0Q. It is 
suggestive to think that the interaction energy of ~ and 0Q is always positive. Another 
version of this assertion arises as follows: If  the reflecting plane were ideally 
conducting, then Q would be attracted by the plane. The potential and the electric 
field of  this situation is generated by the joint distribution Q - 0~. Setting Qy = T~O 
with s __> 0 the electric energy 

( e ,  - o4~, es - o4~) 

bas to increase with increasing s. This is equivalent with the decreasing of (es, 04˜ 
Hence the last quality has to be non-negative because it decreases to zero with s ~ oo. 
The conclusion is 

( 4 , 0 e ) > 0  fora l l  4 e L + -  

Let us now prove this inequality rigorously. 
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Using continuity arguments we can restrict ourselves to sums of Dirac measures 
though these distributions are not in L+. Let us, therefore, start with the distribution 

o(r) = EqJ 6(r - r i ) ,  xs __> O. 

We thus have to prove the inequality 

~q.q~((x. + xm) 2 + (y. - y,.)2 ,-t- ( z . -  z,.)2) -1/2 > 0 .  

Replacing 1/r by its Fourier transform 1/k z and introducing 

a. = q. exp i(kyy. + k=z.) 

out inequality is converted into 

f~a.~,k-2(exp i(x, + x m ) k ~ ) =  dak 0 .  

Let us now carry out the integration with respect to k:, only. With t 2 = (ky) 2 + 
+ (kz) 2 and noticing xj _>_ 0 the integral 

flkl exp Xm) k. dk~ 
~ 2 i(x, + 

becomes a product of two real factors b, and bru with 

bj = rcl/2t-l/2 exp (t-~xj) . 

Hence our left-hand side becomes the non-negative expression 

f a.~,nb.bm dky dk~ 

and the assertion is proved. 

F r o m  e l e c t r o s t a t i c s  to  o t h e r  e x a m p l e s .  

At first we mention the one-particle Hilbert space of Euclidean quantum field 
theory. One defines S(x), x ~ R a, d = 1, 2, 3 . . . .  as the solution of 

( -A_ + , : )S(x)  = 5(x) 

which vanishes at infinity. (If d = 1, 2 one has to have m ~e 0. For d = 2 RP can 
be obtained under tlie additional assumption that the total charges are zero.) In 
a suitable function space the scalar product reads 

(~J, ~k') = fO(x) $'(x') S(x - x') dx dx' . 

With x = (x 1 . . . . .  x d) we define as above the reflection on the hyperplane x t = 0 
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and the translation operator T, for a shift of amount s .  L+ denotes again the sub- 
space of such functions of L which vanish for x ~ =< 0. Then we bave reflection 
positivity 

<O, 0~>=0, O~L+. 

The proof can be done literally as in the electrostatic case. The usual next step I I I  
is to construct the Fock space over the completion of L and to extend RP to the 
Fock space. 

There are hot only scalar theories showing up rettection pos i t iv i ty -  though, 
to my knowledge, this point bas hot been discussed to its end yet. One of the best 
known examples is the massless free vector field, or, magnetism with stationary 
currents. Indeed, let Lbe the set of all divergence-free vector fields, j(r), in Euclidean 
3-space with (say) compact supports. (The dimension can be altered as in the scalar 
theory but the vanishing of the divergence is important.) The translations T, in 
x-direction are defined obviously. The reflection is 

(Oj,) (x, y, z) = - j = ( - x ,  y, z) ,  (Oj,) (x, y, z) = + j , ( -= ,  y, z) 

and j= behaves as jr. The scalar product is defined by the expression for the magnetic 
energy 

<j,j> = j j ( r )  j (r ' )  [r -- r'[ -1  dZr d3r '"  

With this definition it is again possible to show RP. If  L+ is the space of currents 
situated right off the reflection plane, 

<j, Oj> > O fora l l  j e L + .  

There is an interesting observation to be made: Also in the last example we can 
refer to a problem in magnetostatics: Here we have to choose the reflection plane 
to bave infinite permeability. Then every system of currents, placed on one side of this 
plane, will be attracted by the plane. The magnetic energy decreases during a move 
of the plane towards the electric current system. It seems so that the same effect can 
be reached with other hypersurfaces, especially if they are convexly curved. Thus it 
looks like the saine phenomena as in RP, or, as a formulation of "RP without 
symmetry". 

An a b s t r a c t  c o n s t r u c t i o n .  

Our aim is to abstract some general structure from the foregoing examples. We 
have had, (a), a real or complex linear space Lequipped with a hermitian form ( ,  >. 
In the examples, this form had turned out to be positive definite. This, however, 
is not the general case. Further we had, (b), an isometric reflection 0 with 

0 2 = identity,  (0™ = (™ 0~>. 
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There was given, (c), a subspace L+ of L with RP property 

(~ ,0~)  > 0  fora l l  ~ L + .  

Then there appeared, (d), an isometric 1-parameter group s -~ T~, To = identity, 
satisfying for all s 

0 T f l =  T-s and, for s >-0, T~L+ _ L + .  

We have to have two further conditions of technical character. (e) Continuity condi- 
tion: For aU r/~ L 

s ~ (~/, T~q) is continuous in s .  

(f) Growth condition: For all t /e  Land  every 8 > 0 

lim (exp - as) (t/, T~r/) = 0.  
$ " >  O0 

The growth condition is satisfied automatically for positive definite ( , ) .  But it is 
just the example of axiomatic Euclidean QFT where we generally do not have posi- 
tive definiteness of ( , )  but only polynominal boundedness of (t/, Td/) in s and hence 
condition (f), see [1, 3 3. 

L e m m a :  Given L, L+, 0, T~, satisfying the conditions (a) to (f). Then there is a Silbert 
space 3r with scalar product (,), a self-adjoint operator H with H > 0, and a mapping 

from L+ onto a dense subset of W with 

<q, 0t/') = (rt/, zt/ ' ) ,  t/, t/' e L+ 

�9 ~ = ( e x p ( - s H ) ) ~ , ,  s > 0 

To prove this one first define on L+ the scalar product (~/, ~/')o = (q, 0~/') so that 
by RP L+ becomes pre-hilbertian. With this new scalar product T~, s => O, restricted 
to L+ becomes hermitian. We choose a ( , )0-normed t /e  L+ and examine v(s) = 
= (t/, Td/)0. One gets v(O) = 1, v(s) >__ O, and, by Schaarz' inequality, v(s) v(t) >= 

v(s/2 + t/s) 2. Because w(s)= In v(s)is continuous this means convexity of s 
w(s) for s > O. Using w(O) = 0 we have 

w(sp) <__ p w(s) + (1 p )w(0)  = p w(s) .  

Therefore, setting p = So/S , 

s W(So) =< So ~ ( s ) ,  s > so > 0 ~ * 

Now (f) tells us 

0 = lim (exp - as) v(s) > lim exp (--as + s/so W(So)). 
$ "*' O0 $ " ~  00 

For all a > 0 this can be true if and only if W(So) < 0 whatsoever s o => 0 was. Hence 
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(r/, T~r/) 0 is bounded by one for normed ~/. It is standard to identify A" with the 
completion of  L+ modulo the null space of  ( , ) 0  and to define z to be the natural 
map from L+ onto this factor space. In 9ff then is induced by Ts a hermitian contract- 
ing semigroup. Such a semigroup is known to be of the form e x p ( -  Hs) with positive 
semidefinite H. 

Now we consider further examples. 

R e f l e c t i o n  p o s i t i v i t y  in c l a s s i c a l  l a t t i c e  s y s t e m s .  

In a lattice which is "translation invariant", the group parameter of the group 
g ~ T~ admits on]y the numbers s = 0, 1, 2, ... or a multiple of them. Hence it 
suffices to consider T = T I only and its connection with the reflection operator 0 
is described by OTO = T -I.  We need no continuity condition. However, we generally 
can n o t  conclude z(T) > 0 and the representative of T in  .Of (usually called "transfer 
operator")  will be a hermitian operator of norm less than one. 

In the following we bypass these questions, concentrating only on reflection 
positivity. We assume, for simplicity, all lattices t o b e  f i n i t e .  

Let  X be a lattice with lattice points x, y . . . .  Its configuration space (for spin 1[2) 
is the family 2 x of  all subsets of X. For  every x ~ X one defines the observable sx 
(spinoperator at x) by s,~(A) = 1 if x ~: A and s~(A) = - 1 if x ~ A for ail subsets A 
of  X. More generally, if B is a subset of X, one defines s�87 to be the product of all 
the sx with x ~ B. One sees s�87 = ( -  1) m with rn being the number of lattice points 

in the intersection A n B. 
For  general observables A ~ f (A) ,  defined on 2 x, we consider a caricature of the 

Fourier transform of chapter 1: There is a unique decomposition 

s= Es% 
where the sum runs over ail subsets of  X and where fA denote numbers ("Fourier  
coefficients"). I f  Y, Y ~_ X,  is a part of the lattice, f is said to be concentrated on u 
if and only i f f  a =~ 0 implies A ~ Y. Note the special role of  the empty set 0 which 

is contained in every Y. 
One introduces further the notation ( f ) o  for the arithmetical mean of  all the num- 

bers f (A) ,  A ~_ X ~. It'is sg = 1 and hence (Sg)o = 1. But conversely (sn)o = 0 for 

ail non-empty subsets of  X. 
Now we are prepared to define reflections and RP. 
A map 0 : X ~ X which is just a permutation of the lattice points is called "]attice 

reflection" if its square is the identity map. It is obvious how to define 0A for a subset 
A of  X. Assume now a decomposition of  X in two, eventually overlapping parts X § 

and X "  
X = X  + w X -  with ~X + = X - .  

Next, Lshould denote the set of all observables, i.e. the set of all real valued functions 
defined on the subsets of  the lattice. Clearly, L is a real linear space. L+ is the sub- 
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space of all observables concentrated on  X +. The reflection operator is given by 
(Of) ( A ) =  f ( O A ) .  We are now concerned with rather simple in form hermitian 
scalar products: We choose d e Lwith d = Od and write 

( f ,  g )  = ( fgd )o  

so that 0 becomes an isometric reflection. We further specify by a Gibbsian ansatz 
d = exp ( - h )  with h = ~Jasa.  

We shall distinguish two cases. They may be illustrated by a 2-dimensional cubic 
lattice with nearest neighbour interaction. If  the lattice points then are denoted by 
(n, m) with integers n, m running, say, from - N  to +N,  we can choose 0 to be the 
reflection (n, m) --* ( - n ,  m). Another possibility is to choose 0 to be the reflection 
(n, m) -~ (m, n). For  both choices we bave the general situation referred to further 
a s  

Case  A: The intersection X ~ = X + n X -  consists of  fix-points of  0 only. Ja  4= 0 
should imply either A c X +, or A ~ X - ,  or A ~ X ~ 

Obviously, in case A, every bond connecting X + and X -  is entirely in X ~ 

L e m m a :  In case A we have reflection positivity. 

Indeed, we may write h = h+ + h_ + ho with Oh+ = h_ and h o is the sure of  all 
such Jasa having A G X ~ Introducing the exponentials d+ = exp ( - h + )  and so on, 
we get 

(d fOf)  = (do(fd+) O(fd_)) o . 

Assuming f to be supported in X+ then the same is true for g = fd+. In g = ~.gBs�87 
we collect ail terms with B ~ X ~ and denote their sum by g0. Then we have 

(d fOf)  ~ = (dogoOgo)o > 0 

because Ogo = go and do(go) 2 is non-negative. Thus the lemma is proved. 
Returning to our 2-dimensional model, there is a further possibility. Let  the integers 
in (n, m) run from - N  to N + 1. Then (n, m) --. ( - n  + 1, m) is a reflection. With 
this example is connected the following 

Case  B: The intersection X + n X -  is empty. Rewriting 

I(A, B) = - J c  if C = A u SB with A, B =_ X + 

we demand the matrix A, B ~ I(A, B), indexed by the subsets of X § to be positive 
semidefinite. 

L e m m a :  In case B we have reflection positivity. 

To prove this we first write h = h+ + h_ + ho where h+ resp. h_ is concentrated 
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in X + resp. X -  and 

- h o = E I ( A , B )  sts�87187 with A , B ~ X  + 

with f supported in X + we set g = f exp ( - h  +) and have to show 

(dfOf)o = }-'(1/ml) ( ( -  ho)" gOg)o > O. 

It turns out that every term of  the right-hand side is ffon-negative, To see this we 
denote by Al, A 2 . . . .  the family of  all subsets of X +, indexed in arbitraryorder.  
For  a set of m indices i 1 . . . . .  ira we define 

ai~ . . . . .  ira = gn with B = AhA~~ . . . . .  Ai,, 

where on the right we used the "symmetric difference", i.e. the operation AB = 
= (A u B) x ( A n  B). Because the intersection of  X + and X -  is empty we get 

<(-- ho) n* g0g>o = ~Ii,j, . . . . .  I~,d,,al,...~maj,..jm 

where we have used the abbreviation I~j = I(A~, Ai), But Itj is by assumption positive 
semidefinite and so is the Kronecker product of  rn copies of this matrix, q.e.d. 

Case A typically applies to nearest neighbour interactions. Case B allows also for 
some long range interactions, for example Ix y[-S with 0 < s < 1 in a Lenz-Ising 
chain. 

T h e  D y s o n - L i e b - S i m o n  c o n j e c t u r e .  

There is a general and important problem with quantum lattice systems and reflec- 
tion positivity. 

Let ~3 be the algebra of  all N-dimensional matrices. To every lattice site, x, of our 
finite lattice X we associate a copy of  ~3 called ~3=. To a subset A of  X we associate 
the direct (Kronecker) product algebra 

~3 a =  ~3=~|174 . . . w i t h  A =  {xl, x 2 . . . .  } .  

To the empty subset o f X  we associated the algebra of the complex numbers. We can 

uniquely imbed ~3A into ~3 x. Namely, if g ~ ~3)t and B = X \ A, we identify g with 
the matrix g | 1 where 1 is chosen t o b e  the unit matrix of ~B. If  0 is a reflection 
of the lattice there is a unitary matrix 0 in ~3 x with 

0 2 = 1 ,  O~AO=~3�87 

Furthermore, if B is a set of fix-points of ,9, then 0 should commute with all operators 
(matrices) in ~3�87 

To see the DSl_;-conjecture arising from a Heisenberg ferromagnet problem, we 
consider first this model. In the d-dimensional cubic lattice with general lattice site 
(rn 1 . . . . .  rny we choose rn 1 = 0 to be the reflection plane so that ~ reverses the 
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sign of m 1. We get a "case A" problem. The hamiltonian is of the form h = ~hxr 
with hxr e ~{x,r} and x, y nearest neighb. We call X + and X -  the sers of lattice sites 
with m 1 > 0 and ma < 0. Reflection symmetry of h enables us to decompose h 

in a sum 
h = h+ + h _ ,  Oh+O= h _ ,  h + e f 8 x + .  

Because the intersection of X + and X -  is hot empty, the two matrices h+ and h_ 
do hot commute in general. However, if b is an operator supported in X + \ (X + n 
n X- ) ,  b will commute with h_. One conjecture of Dyson, Lieb, and Simon then 

asserts 
T r .  (bObOexp h) >- 0 .  

A little bit more general this reads 112] 

D L S - c o n j e c t u r e :  Assume h+ to be a hermitian operator supported in X + and 
define h = h+ + Oh+O. Assume further the hermitian operator b to be supported 
in X + \ (X + n X- ) .  Then Tr. (bObO exp h) ~ 0. 

In finite dimension, and with the case we are concerned here, one may disentangle 
this a little bit further: There are hermitian operators b �87  b z . . . .  supported in X + \ 
\ (X + c~ X - )  and c 1, c 2 . . . .  supported in X § r~ X -  such that 

h+ = b 1 | c 1 + b 2 @ c 2 -4- . . .  

h_ = 51 | c 1 + 52 | C2 "Ji- . . .  

with bi = ObjO. One sees every "b"  commuting with every "5",  and every "b"  and 
every "5"  commuting with every "c".  

The conjecture is not only ofvery general nature but also highly non-trivial. Hence, 
if someone were clever enough to prove (or disprove?) this wonderful assertion, 
we surely would gain important new insight in quantum lattices. 

Let me remark the triviality of the conjecture in the case of mutually commuting 
operators c �87 c 2, . . .  because then h+ commutes with h_ = Oh+O. Writing 

2exp  h = (exp h+)(exp h_) + (exp h+)(exp  h+) + R '  

one sees that the conjecture is "good up to a remainder R of order three in the norm 
of h". However, the remainder Ris  of awfully complex algebraic structure. 

A by far less trivial, and up to now also unproved consequence is the conjecture 
of BESSIS, MOUSSA, and VILLANI. It asserts, [14], that the matrix aij = j (s i+ si) is 
positive definite for arbitrary real s~, s 2 . . . .  and with j given by j(s) = Tf. exp.  
�9 (h + sk) with any choice of the hermitian matrices h and k. The DSL-conjecture 
gives even a slight]y sharper conjecture: For  every finite set d �87  d 2 . . . .  of hermitian 
matrices the matrix a u = Tr. exp (d�87 + dj) should be positive definite. This, indeed, 
is equivalent to the DSL-conjecture in case of mutually commuting operators 

a l ,  a 2 ,  . . . .  
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Apply ing  L ie -Tro t t e r  decompos i t i on  o f  the  exponent ia l  the  last  p r o b l e m  is connect-  

ed with one concern ing  b lock  matr ices .  Give  na tu ra l  numbers  n and  m. Le t  d = 

d = (dii) deno te  a nm,d imens iona l  ma t r ix  in " b l o c k  f o r s " ,  the  b locks  m a y  be 

assumed  o f  d imens ion  m, so tha t  every dgj is i tse l f  a ma t r ix  o f  d imens ion  m and  

i , j  = 1, 2 . . . . .  n. Assume d to be posi t ive  definite.  Cons t ruc t  the  n -d imens iona l  

ma t r ix  (b~j), bij  = Tr.  (dij) k. Is (bij) posi t ive  defini te? F o r  n = 2 the  answer  is "yes" .  

I t  is u n k n o w n  what  happens  for  n > 2. 

For valuable discussions I should like to thank J. L6FFENHOLZ. 

Received 26. 6. 1978. 
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