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1. Generalities.

About 10 years ago a book [1] has been edited in honour of
Nikolai N. Bogolubov.

In this book F. Baumann and R. Jost described their work on

an entropy inequality, the so-called strong subadditivity
property conjectured by O.E.Lanford, D. Robinson, and D. Ruelle
(2], [37, and on the Yanase-Wigner-Dyson conjecture. E. Lieb [ 4J

was the first, partially together with B. Ruskai[B] s Who was able
to solve both problems which, indeed, are connected one-to-another.
Thus, I could add only two further variants of proving this.

One [[6] makes use of the concavity of A — Tr. exp ( B+ 1n 4 )
discovered by E. Lieb [4] and H. Epstein [7] , the other

variant relies on an interpolation theory [8] based on an

observation of W. Pusz and S. L. Woronowicz [ 9]. In trying to

analyse the strong subadditivity conjecture in the quantum case

( - it is almost trivial for classical discrete distributions - ),
as a by-product, the order structure of states [10] appeared,

a tool to describe some aspects of irreversibility (though not

the very problem of irreversibility).
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In asking about differences in the general properties of entropy

in classical and in quantum physics one finds astonishingly only

very few. Indeed, at the first glance the main difference is in

the much harder proofs of the quantum entropy properties. But

there is (at least) one striking difference between classical

and quantum entropy: the failure of monotonicity for the latter

(see [11] , [12] ).

Though mathematically rather simple, if not trivial, it is phy-

sically remarkable: The entropy of a subsystem can be strictly

larger than the entropy of the total system !

One does not mention, usually, this fact for several reasons.

At first, in characterizing subsystems by spatial separation and

then performing the thermodynamical 1limit, the entropy (per volume)

becomes additive and>monotonicity holds. Secondly, monotonicity

can be destroyed only if the observables characterizing the total

system do not commute with those of the subsystem.

This may well be compared with a measurement in the sense of

von Neumann. To recognize something as a subsystem of a total

system,"reduction" of the density matrix. This reduction is
accompanied by an extra increase in entropy. This

extra increase can overcompensate the usual decrease we have

in situations equivalent with classical ones.

In view of the non-monotonicity of quantum entropy it is important
and really not self-evident that most of the properties of entropy
known in classical statistics remain valid in the quantum case
also.

In the following we shortly discuss some of those properties

of entropy which have been under investigation in the last decade.
We restrict ourselves to the technical simplest possible assump-

tions, i.e. we handle only finite-dimensional density matrices,
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Hilbert spaces,... Some more complete discussions are given in

W. Thirring [[13] and A. Wehrl [12] .

2. Systems and Subsystems, states and reduced states.

Let us assume (for simplicity) that the observables of a certain
physical system can bee choosen as the set of Hermitian
n-by-n-matrices. We then call the matrix algebra M n of all

n-by-n-matrices the "algebra of observables".

A "state", (W, is uniquely determined by the family of

expectation values, G(A), where A € M n is any matrix.

One requires linearity in A —> W(A), CO(A) > 0 if A > 0
(positivity), and the normalization <O(E) = 1 with the unity
matrix E . These requirements are satisfied if and only if
there“with a density matrix W

W(A) = Tr.A for all A (1)
(We use the same symbol for the state functional A —> ¥ (A)
and its density matrix. Let us recall that a demsity matrix
is a positive semidefinite matrix of trace one.)

M , can be considered as the algebra B(H) of linear operators

acting on a n-dimensional Hilbert space H . If then x € H

is a normed vector, it defines a pure state A — T (A) = (x,Ax).

If U is the projection operator from H onto the subspace
spanned by x we have (x,Ax) = Tr. TA and X is a density
matrix. As it is known a density matrix 7JTC represents a pure
state iff it is a one-dimensional projection.

One of the most satisfying ways to define "subsystems" is by
observables. We have to select all those observables of the
total system which do not discriminate outside the subsystem.

Clearly, a state of the subsystem should be characterized by



- 4 -

its expectation values with respect to these observables.

A correct and sufficiently general definition is to associate
the concept of a subsystem with that of an algebra of observ-
ables which is a subalgebra A of the algebra M . For the

n
possibility of a correct interpretation the subalgebra A

should fulfil two conditions: A € A should imply Kk€~ A,
and E € A where E 1is the unit element of M n*
Every linear, positive, and normed functional on A 1is called

"state of A ", i.e. state of the subsuystem under consideration.

If we have a state of M n i.e. of our total system, then its

restriction onto é is called the state reduced to the sub-

system given by A4 .

The subalgebras in question are well known in its structure.

We shall consider here only those which are themselves isomorphic
to full matrix algebras. This is the case if and only if the
centre of A consists of the multiples of the unit element only
("trivial centre"). Technically, A is then called a factor.

Let A be a factor of M n‘ﬁ g(g) o Then there is a decompo-

sition H = H, @ H, such that A consists of all matrices
(operators) of the form A, ® E, where A, acts on H, , E,
is the identity on H, and ® is the (Kronecker) tensor
product. If we change the role of §1 and §2 we get again

a factor. It is denoted by A' and consists of all those ma-

trices of M n which commute with every matrix of A . '

ux

describes the subsystem orthogOnal to 4 .

Let now <O be a state of M n and I, its reduction onto A.
Then )

Ay =0 (4, @ E)) = w0 (4, ® E), Aye B(H) (2)
is a state of 2(51) and hence given by a density matrix 031 .

co1 is usually called reduced density matrix.
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Sometimes it is useful to 1lift the reduced density matrix to
a density matrix of the total system such that it carries as
few as possible information about the subsystem given by A' .

This is done by the map
w > e = (1/n,) WO, @ E, (3)

where n, is the dimension of §2 . The right hand side of
(3) can be obtained by invariant integration of U™l U over
the group of unitary matrices contained in A' . Let us now
assume X,;, X5, eo. and Y99 Jos eeo denote complete ortho-
normal systems of §1 and §2 respectively. The reduced den-
sity matrices (A)1, 032 of both subsystems considered with
respect to the pure state KT characterized by the vector

S ey %3 ® ¥y (4a)
have matrix elements with respect to the orthonormal systems

i,§ > 2 ¢4y Ejk and  k,1 > 3 ¢4 Cyq (4b)
k <

Here we see explicitely the reason for the non-monotonicity of
entropy: If dim §1 > dim §2 , every state of A can be

obtained by reducing a suitable pure state of the total system
to the given subsystem! In classical statistics, in contrat to

this, a pure state always reduces to pure states in subsystems.

There is, of course, no "total system" in Nature. Every system
can be considered as a subsystem of another larger oder more
detailed described system. (Feynman iﬁ is "lectures" remarked:
"But it is true that if we look at a glass of wine closely
enough we see the entire universe.") Hence the concept of
pureness of a state entirely relates to a given observable

algebra. By enlarging a system, by a more detailled analysis,
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a mixed state (mixture a la von Neumann and Gibbs) can become

a pure one and vice vera.
Unfortunatly, the connection of this pecularity (and of similar
ones) of quantum statistics to the phenomenon of irreversibility

is not yet fully analysed.

3. Entropy.
Entropy is a state functional of the following type: Let

s —» f(s) denote a real-valued function on the unit intervall
and define

Sp(d) = kg Tr.f( ) (5)

(kp is Boltzmenn's constant.) In the case f(s) = -s ln s
we write simply S( Q) and call it "entropy of o ".
There is a more intrinsic definition for S and, more general,
for S, if f£''< 0 (concavity), which applies for alle (here
finite dimensional) algebras A ¢ The set of all states of A
is naturally a convex set with respect to the performing of
mixtures. Its extremal elements are called "pure states". (For
M n this is a statement, for general é' it is a definition.)
Now S.(co) 1is the infimum of all numbers kg %‘. f(cj) where
the sequences Cqs Cpy e TUNB OVeEr all possibilities to get
W =3 cy TCi with c¢; > O and suitably choosen pure states x; .
The entropy of a state is zero iff it is a pure state. Because
we can get pure states after enlarging a given system, entropy
does not necessarily shows monotonicity in going from a system
to a subsystem or vice vera.
A very usual example is the observation of one pecular atom in

a molecule, the molecule being in its ground state. The reduced

density matrix of the atom observed is higly mixed. Exotic ex-
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amples are (i) the remark of Lieb [11] that the entropy of every
(meta-)galaxis may steadily increase though the universum's
total entropy remain zero and (ii) the absorption (going beyond
the horizon of forgetting of a black hole) of one component of
a particlé-antiparticle system originally in a pure state. If
the body is in a Gibbsian canonical state then the escaping
particle is in a Gibbsian canonical ensemble of the same tem-
perature as the body is (Hawkiﬁai

These affairs are controlled by some inequalities which, apart
from some finer technical points, characterize S uniquely
within the state functionals (not only within all Sf). If we

consider and A' of M n belongig to a decomposition

A
H = I={1 X 1;12 , a state <0 and its reductions C—Q1 snd W,

to A and A' accordingly, we have
S(w) ¢ S(w,) + S(w,) subadditivity (6)
triangel inequality: | S(w,) - S(a )| £ S(w) (7)

Subadditivity is long and well known, but (7) is discovered
by Araki and Lieb [14] .

The already mentioned strong subadditivity is a considerable
sharpening of (6). Here we consider the case H =H, ® H, @ Hy
and the corresponding to §j factors éj . For any permutation
(i,j,k) of the integers (1,2,3) the factor éjk corresponding
to gjk

state o onto a subsystem éi or éjk is denoted by QJi

satisfies éjk = éi' = éj ® A - The reduction of a
and <ijk strong subadditivity may then be expressed by

S(wW) + S(wi)é. S(wWy,) + S(@ij) (8)

One proof of (8) can be sketched as follows: We at first

notice that (3) implies S(TAGD) = S(co1) + lan, .



Denoting by Ti ’ Tjk , the maps corresponding to the factors

A éjk , one easily finds the equivalence of (8) with

S(co) + s(*riw) < S(Tikco) + S(Ti W) (8a)

J

because the logarithmic terms cancel.

This inequality can be handled directly by the Epstein-Lieb

result mentioned in §1. Another way is to introduce Umegaki's

relative entropy S(9,W) =Tr, (Wln W - wWlng )

and to mention the nice relation

S( Tex w0, W ) = =S( W) + S(T;,W) (9)

Now one finds Tij Tik = Ti and we are done if we could
prove for T = Tij and R = Tikw the general relation

S(R ,w) > S5(T8 , Tw) (10)

for a class of maps T which contain Ty * (10) is true
for all maps of the form ( t; > 0, st =1 )
€ > te =3t 0 & U7, U, unitary (11)

to which set the map Tik belongs. The proof is by noting

5(2,0) = - (4/ds)g_, Tr. co'™® g °® (12)

and proving the assertion for Tr. a8 S 8 .

The latter statement, however, is a consequence of Lieb's
concavity theorem [4] for (0< s < 1)

3, w > Tr.x* ' x ¢° (13)

Lieb has shown his theorem by analytical interpolation. Another
interpolation theory [8 ] shows the validity of (10) and the
corresponding inequality for the functional (13) for every map
T which is linear, and chaos enhancing (see below), and for

X
which T fulfils a Kadison inequality.
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4. The order structure of states.

Some properties of entropy are shared by many other state

functionals: Let frr <« 0 , ti 2 0 , 2 tj = 1 .
Then for arbitrary choosen states we have

Se( 3 ;950 > 2ty 80 94) (14)
which is complemented by

2 Se(t,85) 2 s (3 t584) (15)

According to (14) every Se 1is increasing in the "direction"

of performing Gibbs-von Neumann mixtures - but every Sf does

this in its own way. To get rid of this arbitrariness one
considers a partial order within the set of all states, the

"order structure" of states [10] , [12] , [13] in defining

o e8] iff S.(w) > S,(3 ) forgll £''z 0 (16)

Verbally, ¢o &— ¢ 1is expressed by saying <o is more
chaotic (or "more mixed", or "less pure") than Q .

A map T is called chaos emhancing if always TQ ¢ ¢

Every map (3) is of that kind. Other examples are described

in the quoted literature.

Generally, ¢— characterizes relaxations, diffusions and other
processes which point, in a very strict sense, "in the direction
of irreversibility".

The mathematical technique will be described in [15] .



- 10 -

References:

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.

1M1.
12.
13.

14.
15.

Problems of Theoretical Physics. NAUKA, Moscow 1969
Lanford, 0.E., and D. Robinson, J.Math.Phys. 9, (1968) 1120
Robinson, D.W., and-D. Ruelle, Comm.Math.Phys. 5 (1967) 288
Lieb, E., Adv.Math. 11 _(1973) 267

Lieb, E., and M.B. Ruskai, J.Math.Phys. 14 (1973) 1938
Uhlmenn, A., Wiss.Z. Karl-Marx-Univ. Leipzig, 22 (1973) 139
Epstein, H., Comm.Math.Phys. 31 (1973) 317

Uhlmann, A., Comm.Math.Phys. 54 (1977) 21

Pusz, W., and S.L. Woronowicz, Rep.Math.Phys. 8 (1975) 159
Uhlmann, A., Wiss.Z, Karl-Marx-Univ. Leipzig, 20 (1971) 633
and 21 (1972) 427;

Alberti, P.M., thesis, Leipzig 1973

Wehrl, A., Rep.Math.Phys. 6 (1974) 15

Lieb, E., Bull.Am.Math.Soc. 81 (1975) 1

Wehrl, A., Rev.Mod.Phys. 50 (1978) 221

Thirring, W., Lehrbuch der Mathematischen Physik IV,
Springer-Verlag Wien New York, to appear.

Araki, H., and E. Lieb, Comm.Math.Phys. 18 (1970) 160
Alberti, P.M., and Uhlmann, A., "Stochsticity and

Partial Order". (in preparation).



