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THE ORDER STRUCTURE OF STATES IN C‘- AND W- ALGEBRAS

P. M. Alberti, A, Uhlmann,
Leipzig, G.D.R.

0. Notations

In this paper we deal with a relation » defined in the state
space of # -algebras and with its "dual". There it is an inti-
mate connection of this mathematical structure with physics:
The relation » describes some aspects of irreversibility.
With the help of simple examples this will indicated in the last
section.
Let A be a C*-algebra with unity element e. We denote by

Ay the set of hermitian elements of A, by

A, the cone of positive elements. by

AT the dual of A, by

A: the cone of positive functionals, by

£L (or £1, ) the convex set of all states of A.
Further we write

E or EA for the unite ball of A and

U or UA for the group of unitaries of A.

1. The relation » in the state space of A.

Definition 1: Let A be a c*—algebra with unite element e.

For two states, f and g, of A we write

f > &g (1)
and call f more mixed than g (or "more chaotic than g" or "less
pure than g") iff f is contained in the weak closure of the con-
vex hull of the set

{g“, ue U} where g%(a) = g(uau™').
Clearly, > defines in 2 a pre-semi-ordering. For being short,
W. Thirring has used the name "order structure of states" for
phenomena connectd with the relation "more mixed than".

The set
{t: f v g8} (2)
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is a convex and weakly closed one. Because of this one easily
proves

Theorem 1: f, ¥ f, if end only if

G(fe) 2 G(£)) (3)

for every concave and semi-continuous function g - G{g) de-
fines on (1 which is unitarily invariant.

The use of standard separation theorems gives slightly more than
stated in theorem 1. Define

K(g,a) = sup g%(a) with a € A, BE _ﬂ..A (4)
ueu

These objects are called Ky Fan functionals: If A = B(H),
H a Hilbert space and (i) p a projection of dimension m,
(11) g a normal state given by a densitiy matrix 4 in
the form g(b) = Tr - bd, then K(g,p) equals the sum of
the m largest eigenvalues of d . Hence equ. (4) generalises
en ansatz of Ky Fan.

:I‘heorem 2: £

o > f, if end only if

¥ a €A, : K(f,,8) € k(f,,a) (5)

In the next section we give a much sharper theorem. But let us
first consider some consequences of a theorem of Dye and Russo.
Theorem 3:
—
unite element, then EA is the norm closure of the convex hull
of UA‘

As a consequence of this we have with g€ () , a € Ah

(Dye and Russo). If the C*-alge'bra A contains a

K(g,a) = sup g(b'a b) (6)
beE

K(g,a) = sup Real g(b1e.b2) if a0 (7
biEE

Combining this with theorem 2 one has

Theorem 4: (iyen elements b, c; € E, satisfying
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Z by degu €0 (8)

and define with g € £2 the linear form f by
f(a) = Z g(b; & cy) (9)
]
If fe¢fL2, then f is more mixed than g.

Theorem 5! jgoume with some by € A the validity of

*
Zb b = e and o, by < e (10)

Then for all g
»*
g — Zg(bi . b)) (1)
3

Remark 1:

A mapping ¢ '~£L—>Lig called mixing-enhancing if
¢ £ % £ for all states. Theorem 5 shows the dual of the map

*
a——PZbi a.bi ’ a € A

with condition (10) to be a (completely positive) mixing-
enhancing map. Affine mixing-enhancing maps may be considered
to be generalisations of double stochastic transformations.
As Wehrl has shown one cen find also importent examples of
non-linear mixing-enhancing maps.

Remark 2:

Theorem 4 enables us to enlarge definition 1 to the whole

dual A® . In its weakest form we write f $ g for two linear
forms iff f is in the week closure of the convex hull of lin-
ear forms a-—>g(b,ab,) with by € E. We shall not use this in
the following, however.

2. The Ky Fan functionals.

We start with an important statement.

Theorem 6: 1. A be a W'algebra. Then f %= g if
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K(f,p) £ K(g,p) (12)
for d11 orthogonal projections p € A.
For different classes of algebras this theorem has been proved
by Alberti, Chlmenn, and Yehrl. Alberti developed a technique
that enables one to prove the theorem for all W*a.gebras.
In the way of proving this theorem in full generality, i.e. for
all states including singular ones and for all W*Lalgebraa in-
cluding the not countably decomposable ones, a remarkable prop-
erty appears. It was called " 2 -property" by Alberti.
One of its various versions reads:

Theorem 7: Let P4 < Py € ... € Pn be projections of a

W¥-algebra A and 2,,...,*.. non-negative reals. Then for all
states geﬂA we have

K(g, 2 p;) = 2 A K(g py) (13)
i 479 i J J
The proof we know is rather lengthy. One has first to handle
finite end proper infinite projections for different types of

algebras separately assuming g to be normal. The general case
follows by a Keplanski density argument via the secant dual of A.
Essentially, because of the convexity of the Ky Fan functionals,
the assertion of theorem 7 is equivalent with the existence

for every & >0 of u €U such that

K(g,py) - g“(pj) < E fOr = 1,25.04,m

Remark 3:

Let P be a completely ordered by inclusion set of projection
operators of A . Given g € £2 there is
a state fefl with f > g and

f(p) = K(f,p) = K(g,p) for all p € P

If A is a factor we can choose f ~ g.

Theorem 7 provides us with an explicite proof of theorem 6:

Let p(t) be the spectral resolution of a € Ay and let us de-
note by 2_ resp. A, the upper resp. lower boundary of the spec-
trum of a. Then (integrating from -0+1_ to A,)

a = e + Jle-pt) ) a (14)

9 DBaunmzirtel
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With the help of (13) and the norm continuity of K one gets
easily for all g
Kg,a) = 2_+ [Kig, e -p(t)) at (15)

With an arbitrary monotonously increasing continuous function
X defines on an open interval containing the spectrum of a
one further gets

K(g, ®(a) ) =& (1)) + fK(g, e-p(t) ) a & (t) (16)

In (15) and (16) the integrals have to go as in (14) from

-0 +3_- to A,

Note that the right hand side of (16) is explicitely additive
in « , This remains true for C"-e.lgebras!

Theorem 8:

S
Let A be a C -algebra and a € Ah. By N,"(,’R;we denote monot-

onously increasing continuous functions on open sets contain-
ing the spectrum of a. Then

Vge : Kig wya) + x,(8) ) = Klg, «,(a8) ) + K(g,a¢,(a) )
For a 2 0 the systems of equalities
K(g, &) = K(£,&™), m = 1,2,3...

implies
K(g, X (a) ) = K(f, «(a) )

Remark 4:

Let us consider the set ( ge¢ SL)
29, € A, £ K(g,a) = gla)}

This set is a convex cone. It contains the centre of A and
with every element b also the element o (b) for every monot-
onously increasing continuous function X . The relation

K(f,b) = f(b) with feLL, b € Ay 7))

can be satisfied using remark 3, theorem 7 and norm-continuity
of XK . If (17) is satisfied then f is passive with respect
to the automorphism group
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a —» (exp -ibt) & ( exp ibt) , ¢ ¢ R’

in the sense of Pusz and Woronowicz.

3. The connection with von Neumann's relation

J. von Neumann introduced a pre-semi-ordering in the set of pro-
Jections of a W*—algebre. A : For two of its projections p,q one
writes p » q iff there is en isometry w with w*w = g and

ww® < p.

The following theorems shows von Neumenn's relation to be in some
precise sense "dual" to our order structure of states.

Theorem 9:

Let p,q be projections of a W*-e.lgebra. Then p %q in the sense
of von Neumenn if end only if

K(g,p) > K(g,q) for all ge SL (18)
This naturally demands for a further definition.

Definition 2:

For any two elements a,b € Ah of a C*-algebra A we define

a b (19)
to be equivalent with

K(g,8) > K(g,b) for all g & L2, (20)

Remark 5:

(1) The definition is in accordance with von Neumann ones due
to theorem 9. (ii) There is a dengerous point in this defini-
tion 1: Remind that one has clearly to distinguish between

for states ( > in £2 ) and for "observables" ( & in Ah).

They are, so to say, oppositely directed: compare (5) with (20)!
(1i1i) As in remark 2 it is also here possible to define $ on
the whole algebra A. But in this paper we do not so!

It is clear from the definition that the set
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fv: awb § (21)
is weakly closed, convex, and contains with b also

1/2 (d:’ b d2 + d;b dm) with d1,d2 € E. Trivially,
from & » b it follows &a > b.

Theorem 10:

Let A be a W*-algebra and C its centre.
Given & € Ah there is a uniquely determined z € C with

cnfp’: ax=b} ={z'ec: z22'} (22)

Furthermore, z is in the norm closure of the convex hull of
all elements of the form

waw with ww¥ = e (23)

By theorem 10 to every aeAh there is a uniquely associated
central element z that we denote by

& (a)
In the case of a finite W*-algebra f is on Ah nothing but the
central valued trace. Some general properties are

(1) $(a) 2 $(b) for ar b

(ii) a—»}(a) is convex
(i1i) for all a € A one has  $(a*a) = § (aa*)
(iv) $(e) = e and hE(a)p<ueal

(v) §(za) = 2z §(a) forall =z €C
There is a further property:
¥ geL: K(g,a) = & $(a)) (24)
which now will play a role. Let us denote by
Q,, or £2.(8) (25)

the set of all maximally mixed states, i.e. all states
fe) for which g % f implies f Y g i.e. £ ~ g.



133

Theorem 11:

For a W*;algebra A one has f G.ILAO(A) if end only if
K(f,a) = f( $(a) ) for all a € Ay (25)

If two states are comparable with respect to > then definition 1
easily shows that they have the same restriction on the centre
of A. Hence

$(a) = 0 iff f(a) = O for all f € Q , (26)
The set
I ={aea: f(a) = 0 forall fed2, 3 (27)

is an ¥ -ideal called c-~ideal of A.

Theorem 12:

If A is finite then every maximally mixed state is tracial
and vice versa. A state of a properly infinite W*lalgebra is
a maximally mixed one iff its kermel contains the c-ideal.

Remark 6:

Let a be properly infinite and I its c-ideal.
The X -homomorphism A —> A/I induces a bijection

(AT ) <> 12 (A) (28)

so that these both sets are canonically isomorphic. The
C*lalgebra A/I is of "Chalkin-type", i.e. for two of its states
£f' and g' the relation f' % g' always implies f' ~ g' or,
equivalently, their restrictions on the centre of A/I are equal
one to another.

4. Some special states

In the order structure of states the Ky Fan functionals

K(g,p), p projection, play a crucial role according to theorem 6.
They do depend on the equivalence class of p only (theorem 9).
Can one find states which play the same role for the ordering >
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in Ah? This is possible and the construction below shows another
point of contact with the Pusz-Woronowicz passivity concept. In
short, the functionals we are aiming at is the set of maximally
mixed ones in the algebras pAp, p being a projection of A.

Let us consider an element

g € XL .(pAp) ; p : projection of A (29)
We define the linear functional fE.Q.A by
f(a) = : g(pap) a e A (30)

]
and denote the set of all such functionals by

._Q:(A) (31)

Theorem 13:
Let A be a W*-algebra end a,b two of their hermitian elements.
a % b if and only if
4
K(f,a) > K(f,b) for all p and all £ € K2, (A) (32)

The proof of this theorem is based on a property which is, more
or less, dual to the Z -property:

Theorem 14:

Let A be a W*-algebra, 0<gq, £ 1, € ... £ q, = e a sequence of
projections and g & 2. There is f € {2 with

(1)  f£(qy) = K(f,q,) = K(g,q;)s 1 =1,2,c00yn

(ii) There are non-negative reals 'l,: and fj € —Q.j: (a)

such that

f = ’»\1:?1 + 'llfz + ces + ‘)'ﬁfn

The proof of this is rather complicated. But it is not so diffi-
cult to see that theorem 14 implies theorem 13.
In the further development of the theory one applies what was
said in chapter 3 to the algebras pAp to make theorems 13 and
14 more explicite. e finish, however, with an example.

Let A be a factor of type I,*Il and a ¢ Ay. Let p(s) denote
the spectral resolution of a. We define a function et(a),
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—oe< t £ +00 : Write b(s) = dim p(s)" and
8,(t) = inf{ scR™ Db)s) £ ¢}

Then
e, (a) = eo(°°) and for t < oe
oo
eg(a) = 8, (tft- v(a (tN]- | s dica
So(¢)
Then
aVvy> iff et(a) > et(b) all t

This may be enough to show the mathematical significance of our
concept of the "order structure of states". Though we had pre-

sented only a part of the material it should be understood that
there is a reasonable number of good questions yet to be selved.
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An extended paper containing the results and proofs (especially
for theorems from the last part of this talk) will appear.



