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1. Introduction.

Sometimes it is usefull to consider a density matrix g
not merely as an individual but as a member of the space of all
density patrices. One may ask what can be said about € 1if only
its "position”™ in this convex set is known. It turns out that the
non~-zero eigenvalues of° Q  are completely determined by the
geosetrical position of this density matrix in that space.
Especially, the entropy and many other state functionals turn
cut to be geometrical invariants of the convex space of all
density mnatrices /13/.

One can now go & step further and ask for the meaning of the
relative position of two density matrices @, in the space

/14/

of all such matrices. This was firstly done in

and further
/15%/ '

exanined in . In this way we arrived at a phenomena which

later on was called "the order structure of states” /11/.

New ideas have been added and the infinite case was solved in 719/
and, concerning the latter point, in {1/ independently. Then a
also singular sfates could be considered and in a Series of

/2,3,16,20/ essential results have been extended to the

papers
state space of an arbitrary von Neumann algebra. There are some
results for more general algebras too.

Possible connections of the order structure of states with the

time development of physical systems have been discussed at the

Torun conference 1972 by Lassner and WYhlmann, see also /5/.



In eddition to the papers already cited, various aspects of the
seni-ordering of states are discussed in /‘7’21’22/.

Mainly dealing with the seni-classical case (i.e. with discrete
probability distributions) some of our results were rediscovered
and some new results, applications and interesting physical ideas

/8,9,10,24/ . (The latter authors are using

have been added in
another,more complicated,and partly inadequate terminology.)

The material,vresented here, is organized in two levels of
difficulty: The first is concerned with finite-dinensional density
matrices from which, considering only the behaviour of diagonal
matrices, the case of diuscrete probability distributions can easily
been read off. The second is dealing with states of an arbitrary

von Neumnann algebra. No proofs are given. Only the (hopefully)

essential "core" of the theory is presented.

2. The definition.

2.1. Let us consider finite dimensional density matrices €

S % o, Sp & = 1
Given two density matrices (O and Q we call €O “"more mixed

than" SQ (or also "more chaotic than € ") and write for this

cO — S

if and only if there is a representation
[P0 = Z P< S

with

P20 ) 2 P =1

such that all Qé are unitarily equivalent to < .



2.2. Here we consider states w, § of a given von Neumann
algedbra u‘l y l.e. normed, positive linear functionals on 4 .

In this case we write

w < S

1f and only if GO 1s & weak limit of sums

2 P % with P; 20, ZP=A

and for wHich with suitable unitary elements W € A one has

R.(a) = Q(u:o‘u‘-) for all a ¢ A
4

3. Examples with density matrices.

3.1, The general exponential ansatz,

Let be A , B hermitian matrices and define

R = Zl-] exp( - A)
o = Z2°' exp( - B)
Let be
a, 28, > 8z > .- and b, > b2 > b}),.

the ordered eigenvalues of A and B repectively.

If for 811 j we have

then it is



A special case of this is the following. Set
?1. = ZT’] exp( - H/kT )

If we have

TS T 0 or O 27T >

then it fellews

= S,

3.2. In a suitable base a quantum measurement (recduction of the
state) can be described by the operation (for simplicity we con=

sider only complete measurements)

S4¢ Sar Sy - Qg

g = &4 gu.. —> Q

"
Vo

o

I o

In such a case we always have
]

R = S
Foar singular reservoirs this also applies to the projection map=

pings in the projection mechanism of Zwanzigem, dori and others.

3.3. Quantum Markovian Master Equation/4’6’7/ .

These equations are the differential equations for complete
positive dynamical semigroups. Implying trace-preserving,the

@most general form (at least for finite dimeqnional density matri=
ces)can be written down.

Let be

y t is time

a solution of



with
. . ¥ <4 . - 1 .-ﬁ
fq =<[sH]+ Zi {W,swi_ggw; W, zwawz.g}

and matrices ", Woy oo satisfying
L 3
. . s A
ZW1 W, L3
If inaddition

—

%
EE: VVi VVi = 1

then we have for all solutions the relation

for t, > t

2 1

%t& .Z gt1
One now can abstract from t'e Markovian master equation and may
consider orly a single procesa t — Qt . If in the run of the
time the states Qg the process become more and more mixed, we
refer this be a "concave process” . If in addition for different

times the staites t nhever are unitarily equivalent, the

procéss is called a "strictly irreversible” one.

3, Criteria for the relation & .

3.4. Criteria for density matrices.

The following criteria are equivalent one to another.
3.1.1. It is W T .% . (See 2.1.)

3.1.2. Let us denote the eigenvalues of &L and © by

1‘2 AL>/ b ’ y‘ >, j‘t ) - -
Then for all m one has
L 5
S
£ 2 M
Kd 1‘:4 1

—S:A

Do Vo3 There exists a bistochastic matrix f with

A, = ;;L-—-{-si)‘«:

1

ik



3.1.4. For all state functionals ¢ > F(e ) fullfilling

F( ZP"; i ) 2 2 Py FO &) ; (concavity) ,
and which are unitarily invariant one has

Flw ) > F(9)

3.1.5. For 811 state functionals of the form
F(e ) = Sp. £( & )

where f 1is concave for s » 0 it is
Flw ) > F(Q )

3.1.6. For all real numbers 8 » O one has for the eigen=

values of W and Q  respectively

> ()\i_s) & = Cpg-9)

| 252 Fi=s
Remark: That 3.1.6. is also sufficient for ¢ S we Tweex
learned from /10/. A simplified proof shows that all that can be

transformed into statements for arbitrary measures /12/ .
3.2. States of a von Neumann algebra u‘q .

To get the desired criteria one has had to consider every class

of von Neumann algebras separatly. This is mainly due to the tact
that one cannot escape to consider the singular states of such

an algebra. Therefore we could not apply such tools as the Tomita-
Takesaki theory. Type II algebras were considered by Wehrl and
Alberti, type I and type III algebras have been examined by Alberti,
Uhlmann and Wehrl., At last, Alberti could handlekcompletely the

case of an arbitrary centre and he could penetrate through the
barrier of separebility assumption for the underlying Hilbert
space.

The following criteria are equivalent one to another.



3:2.]»

3.2.2.

3.2.3.

3.2.4.

Remark:

It is w T 8 . (See 2.2.)

For all projection operators q e\fQ one has

sup W(u"q u) < sup § (u'iq u)
u u

a:d u  runs through all unitary elements of uAQ .

For all projection operators q ¢ A one hasg
%* *
sup «2 (b q b) < sup Q (b qb)
b b

and here b runs over all elements b e\Ja with
foll £ 1
For all state functionals
& > F(§&)

wnich are concave, unitarilly invariant, and weakly
semi-continuous one has

Flw) » F(Q )

There are only partiell results concerning the generalisation

of the criteria 3.1.3 and 3.1.6 to von Neumann algebras.

3.3. Maximally mixed states of & .

A state T 1is called maximally mixed, if (y & ¥ 1implies

T T—W . The results are mainly due to Alberti. See also /20/.

3.3 1,

3.3.2.

If A is of finite type, then the maximally mixed

states are the tracial states.

Let be \AQ denote a properly infinite von Neumann algebra.

There is an ideal I  such that 7 is maximally mixed



if and only if T(a) =0 forsell ael.

The maximally mixed states play a distinguished role. They
can be interpreted as infinite teaperatur states (type I, and
IIl ) or as describing uniform distributions ofp energy hyper=
surfaces (equilibrium micro-canonical enseable).

One can it see also in the tollowing way: In 3.3. the extra
condition on the Markovian master equation just guarenties
the stability of the T = ©2 Gibbsian state.

4. Modifications of the order structure. The relation ¢—

Above we have seen, that the order structure of states
is in some sense connected either with equipartititioned
micro-canonical or with infinite-temperature canonical
states: These states represent the maximally mixed ones.

/9/

It was first putted forward in that possibly the time
evolution of an isolated thermodynamical system is a concave
process with respect to the time-dependence of the micro-
canonical ensemble.

To describe more general situations one has somewhat to
let play the role of the tracial states by a given "reference”
/10/

state & . An ensatz for this appeared in and shown in

4.1, below. In 4.2. we give a definition for the state space of
* . . . . . &

a C -algebra which in our opinion correctly defines T«

in this general situation. 4.3. discusses the connection with

the quantum master equation.

4.1. The case of a discrete probability distribution.

4



Consider further a set & of positive nuabers ot 63 ...
Then one constructs for every concave function f(s), s » O,

the Funktional

Flw,e) = 5 6 f(w/s)

The essential things of the H-theorems of Felderhof /25/ are the

following inequalities. For every stochastic matrix M with

=
&
it
N
~
M
=
PR
a
a

M!> o
4

the relation

implies

F( w, &) 2 F(R,67)
for every concave f .,
In /8,10,24/ the last set of inequalities have been used to
define the modified order structure.
Tt is, however, not known how to correctly define E( w, & )
and how to prove in the quantum case the Felderhof's theorenms.
There is a suggestion of Woronowicz that one has to use for f
the class of operator-concave Funktions. Results which are
relevant in the quantuam case are known to us only for the
functions f = - 8 1n s and f = st with 0 «t < 1, See/ls/.

The discussion sbove indicates the reasons for choosing

another basic definition.

&
4.2, Let be ‘gél a C -algebra and let be € a fixed positive
functional defined on that algebra.

For two states w  and < of this algebra we write

W %—: <



if and only if we have for every number s O

sup w (a) < sup § (a)
a a

with a running through the set

T :{aeﬂzo‘gaée, 6’(8)58}

8

liere, e denotes the identity of A which is assumed to
existg.
A slight extension of this definition arises if we allow 6 to

be only a weight.

4.5. Let us now again consider the Markovian master equation
- - > * *
of 3.3 but without the additional assumption b W»j Wa =4 .

Instead of the later we assume

£ e =0

Then it results

c > t
O\}t& < w‘(:4 -{or tx 1

for all solutions of the Markovian master equation.
To prove this one has to transform the definition 4.2 into

a definition for density matrices. This we leave as an exercise.

4.4, At the end of our report we compare %—  with S— .
Let A be a finite von Neumann algebra. Then w %—¢€ if and
only if w €= § for all tracial states ¢e .
Let \)4 be a type I factor. Then (o QS 1is the same as

w %‘1 ? if ¥ denotes the trace of vQ .
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