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ABSTRACT. Different methods of topologization of algebras of unbounded
operators are described and some results without proofs concerning these topologies

are given.
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In this report we summarize some facts about unbounded topological
observables algebras. In the recent years the theory of unbounded opera-
tor algebras and representations of non-normed topological algebras has
founded some attention, e.g. in [1,2,8,9,11,12] and in papers by the
authors. Here we describe different methods of topologization of algebras
of unbounded operators and give some results without proofs concerning

these topologies.

§ 1. Observable-State-System

We begin with the definition of the observable-state-system

Definition 1.1

(z,R) is called an observable-state-system if
i) R is a % -algebra with identity e, the observable algebra.

The symmetric elements a*=a are the observables.
ii) Z is a convex set of states on R, i.e. a convex set of linear posi-
tive normed functionals on R, that means $ €Z is a linear functional,

$(a*ta)>0 ana  f(e)=1.
iii) 1 $(@)=0 for a11 f €Z  then Q=0 . For a state f and
an observable Q (@) is called the expectation value of the measure-
ment Q in the state f. The condition iii) says, that we have suffici-
ently many states. There are two fundamental examples of observable-state-
systems.

Classical statistical system.
R is the % -algebra. C(_Q_) of all continuous functions Q(X) on
the phase-space .Q, x=0q;,P) .
7 is the set of all probability-measures r« on .Q with compact
support.
The expectation value is fl(O) = ‘ Q(X)dr

Quantum mechanical system. £ — n
R is a ¥ -algebra of differential operators A = LO‘,‘(X)D ,

At =T D LX), D"=(%axi)n1. A 3,(¢)ne .

AMS (MOS) subject classifications (1970). Primary 81A17, 46L15.
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The observable algebra R is generated by the position and momentum

4
operators qk = Xk and Pk=Taxk ’ k=1,2,...,1. For Z we
can take a set of states, which contains, for example, sufficiently many
vector states PV(A) =< A‘?)L,z , Pe D , the Schwartz' space.

We do not assume the observable algebra R to be normed and in gene-
ral R cannot be considered as a normed one.

The mentioned quantum mechanical system is already an example for the
so called standard system in a unitary space, which we are going to
define now. First we give the definition of an OP - algebra.

Definition 1.2 [4]

Let D be & unitary space with the inner product < - ,°> and letH
be the completion of . X+(D) is the ¥ -algebra of all lin-
ear operators T €¢End D for which there exists a T7T €End D
with ¢, Ty) ={T*?,¥). an Op*-algebra A on D isa * -
subalgebra of $£+(:b) whose identity is the indentity transformation.

It is straightforward to show that &XY(D) is in fact a % —

-algebra with the involution 'T —*> T.*

Now we cendefine the notion of a standard system.

Definition 1.3

An observable-state system (3,41 ) where ﬁ is an OP*—algebra
and the states Q eZ are given by density matrices

P(A) =1trace SJA =tr ?A (1.1)

is called a standard system in the unitary space &) . A consequence of
the well-known GNS- theorem is the following

Lemma 1.4

Any cbservable-state system (Z, R ) has a realization as a standard
system (2, A ) in a unitary space D , i.e. there is an ¥ -isomorph-
ism & —=A(a) of R onto A and a one-to-one mapping {'—’ P or2
onto & , such that

£(a) = tr pA(a).

We have yet to explain, what we mean with (1.1). That is hot quite
trivial because of the unboundness of the operators Acd.

Lemma 1.5 [6, 8, 10, 11]

Let 9 be a positive nuclear operator in J{ so that QA is a
nuclear operator for any Ae ﬁ , then

f)'}f = (1 p(A%).
Aed (1.3)

(1.2)

If the Optalgebra ﬂ is self-adjoint, i.e. D= n#'b(A*) then
A€

f’(A) =trPA =trhAp (1.4)

is a positive functional on A. In the general case the assumptions
p'xC D and PA nuclear for any A € A 1ead to the relation
(1.4). Besides the self-adjoint OP*-algebras we have yet other
important types of OP*-algebras. ﬂ is called closed if
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D=2D = Q D(A) ’ A is the closure of and essentially self-
ad joint. if ‘Q‘D(A) = Ar(_]"“.b(A")’ . A state (1.1) on an OP"-algeb-
ra is called a normal one, generalizing the bounded case. The

notion of self-adjointness was used first in connection with the investi-
gation of the commutant ‘ﬁl of an OP*-algebra.

Lemma 1.6 [8,10,11)

The commutant . +

A= {c bounded operator in ’K, <C% A‘P)-_‘(A e C*\P>
for all A€ ﬂ} of a self-adjoint Op*-algebra is a von Neu-
mann algebra. ’

It is well-known that in general the commutant d fails to be an
algebra. For closed Optalgebras one can prove the following

Lemma 1.7 [5] ‘

Let QA — A4(0~) and a—O-Az(Q) ‘be two closed cyclic representa-
tions of a % -algebra R(A,(R) and A,(R) are closed Op’-algeb-
ras on D4 , resp. ﬁz) with the cyclic vectors 2, and Q,
let be

Ha) =<2, AQ,)=(9, A@)Q,) (1.5)

then the two representations are unitary equivalent, i.e. there is a
isometric operator U mapping- of ﬁi onto :Dz and it holds
A1(0»)=U4A2(0)U . In other words, a positive functional on a ¥ -al-
gebra R defines up to unitary equivalence uniquely a cyclic closed
representation.

§ 2. Topology and continuity

For an observable-state system ( Z, R ) we denote by Lz the linear
hull of Z in R# , the space of all linear functionals in R . Now
we want to define in Z and R physical topologies . The weakest condi-
tion which has to be satisfied if a sequence Q¥ of observables converg-
es to the observable @ is 1(@') = §(@&) for any state § €Z. This
leads to the following
Definition 21.

The ‘'weakest physical topology' in the observable algebra R and in
the state set Z is defined by the following systems of seminorms.

G=6(Z)in R: py@)=|f@)|, feZ ; (2.1)
6=6(R)in Z: q,(f)=f@]|, aeR . (2.2)
In R we define further the topology

. § ] ot
6, : P'(@)=max{f(a*a)?, f(a,a )’5], fe?, (2.3)
The convergence of a sequence of observables with respect to the topolo-
G, means the convergence of the first and second moments.
It (i,ﬂ) is a standard system and 4 contains all vector states for
Ye D then we have G in R 1is the weak operator topology,
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(P, AV G, is the symmetric strong topology,

DAL = max{ NAel, IA%N] .

The topologies G and G, are topologies of pointwise convergence.
From these one obtains the topologies of ‘uniform convergence'. .
Definition 2.2

In the observable algebra R we define the topologies @z and @4,
by the following of seminorms

Bz © Pala) = 5up py(@) = sup [@l, Mely s e

By : pa) =sup pf(a) = sup 1rwn<{§(a“a)1,é {(a,a")%}(z.s)
feXN fex

where we take all subsets JM < L'i resp. N ¢ {)\Z, 0< A< 1}
for which the seminorms (2i4) and (2.5) are different from <+ ©0 .

The topologies ﬁz , (5‘! are in certain sence 'physically
motivated' and are generalizations of the norm in’ the B* -case
( C*-case).

Lemma 2.3. .

If for an observable-state system ( Z, R) R is a B*-algebra,
then both topologies (b Bz coincide with the normtopology i -1l
of R. The Lemma is a consequence of the well-known relations

lall=lol=sup |3@)=sup §(a*a)?2,
thi¢q $e)=1 § 211 states, (2.6)
{20
but not quite trivial, since we have not assumed that 2 is the set of
all states. )

In foregoing we have defined topologies of uniform convergence in an
observable-algebra in relation to the state set. If the observable-
algebra d is an Op*-algebra, then we have yet other topologies
in ﬂ ,which rise from the unitary space.

Definition 2.4 [4].

Let ﬂ be an OP‘-algebra in an unitary space D , then one can

define the following generalizations of the norm topology of the bounded

case.
T, ¢ IAN, =suwp <o, Ay, MeD; (2.7)
YyeM
L4
T PRI =sup DAL = sup max{IAel | [ A% 11} (2.8)
> veM YeM

where these seminorms are taken for all subsets .MC D for which the
supremum is different from + 00 | The family of these subsets M is

in both cases the same. We call these sets M d‘ - bounded.
Both topologies ‘l'n , Tm generalize the norm of an algebra of
bounded operators, but T is more suitable than T,,, since

with respect to 'f‘a is in general not a topological ¥ -algebra. We

have, however.
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Lemma 2.5 (4]

@ 4 [T:b] is a topological M -algebra and the topology is a
norm topology if and only of é‘ is an algebra of bounded operators

2) Ty & T 8nd 5 = 4a if and only if the multipli-
cation in A[T,] is jointly continuous.

We call T, the uniform topology of the OP’-algebra # . .

Let now (2, *) be an observable-state-system, where A  is an OP'-
-algebra. We further duppose that contains at least all vector states

p?(A) =P ,Ap) . It rises the question about the connection between
thg 'physical' topologies ﬁz . (’12 nad the topologiea T;n ,T,a
In the case of an algebra of bounded operators all four topologies coin- -
cide with the normtopology. In the unbounded case PZ may be stronger
than .ﬂ'n since for Tz in t_he,seninoms the supremums are over
functionals of the type

CRAe)y , (v, A

where as for @z the supremums are taken over the larger. sets of states
of the form ‘

Z<\P\‘IA¢;> ’ t” ?A, Z(Wi.A\”i>, Zd;.bl P‘A.

First it appears the question whether or mot any normal state t ?A
is uniformly continuous. We cannot give a general answer, but we have the
following Lemma,

Lezma 2.6 [5,6] ,

A normal state ‘bLQA on an OP*-algebra ﬂ is uniformly contin-
uous i.e. continuous with respect to the topology ‘T.'m if one of the
following conditions is satisfied.

(1) A bhas denumberable many generators.

(2) D  is a nuclear space with a atronger topology than the Hilbert
space topology.

(3) The topological ¥ -algebra [Tx] is barreled.

The last condition of the Lemma is also sufficiently for the equiva-
lence of the uniform topology with the 'physical uniform topology® 91 .

Lemma 2.7 [6]

r ﬂ[’th] is a barreled space, then §z =T, .

It is wellrknown that on the algebra of bounded operators Jb('lf) in
a (complete) Hilbert space there are nonnormal positive functionals, i.e.
positive functionals, which cannot be given by a density matrix. It is an
interesting fact that on the maximal algebra i‘(ﬁ) of unbounded
operators every uniformly continuous state is normal, if D is 'suffri-
ciently small’, i.e. if if( D) contains operators which are suffici-
ently unbounded.

lemma 1.8 (6] -

Let D be the domain of a self-adjoint OP" algebra b ¢ (:b) and
suppose there exists in z (3) an operator N which is the restiction
of the invers of the nuclear operator. Then any uniformly continuous
state @ on x+(1)) is a normal one.
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Results of this type for algebras of unbounded operators has been
first proved in [9, 13], where it was shown, that under quite analog assu-
mption on the algebra any stictly positive state is normal. A state W

is called strictly positive if w(A) 20 for any positive -operator
A>0 .
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Discussion

QUESTION (Kastler D.): Do you know of applications of your concept to
the CCR algebra (of unbounded)?

ANSWER: For example in the case of finite degree of freedom tt'1<e CCR
algebra realized by q;, Py, i=l, +.., k on the domain A = 3(R")

(Schwartz space) is self-adjoint, the uniform topology is the

strongest one and the bicommutant A of it ("von Neumann observable
algebra”) is equal to 6(+( S) (in consequence of the irreducibility of
the CCR on S). Hence, all assumptions of Lemma 1.8 are satisfied and
therefore every uniformly continuous state on A is a normal one.



