A, Uhlmann
Markov Master Equation and the Behavidur of some Entropy-like
Quantities,

1. The Markov Master Equation,

Let us denote by (0 the set of-all (mixed) states of a
physical system or a sufficient large set of probability
distributions or density matrices which describe the (makros—
copic) behaviour of our system. We will consider here,however,
only the simplest classical and the simplest quantum case:

In the first ca.ée, we assume (2 to be the set of all
probability distributions

=1 142 ¥ ( d
w={oh e’ 0"} | @ir0 , Twtad (1)
on a fixed finite index set i = 1y eeey N,

In the second case we assume 0 to be the set of all normed
density matrices of order N, i.e,

all @ : @z o, Tr, & =1 (2)

The most general case in which Q is the set of states of a

*_ algebra, restricted by some linear oconditions, is not
only much more involved but also by far not sufficiently
well known, Already the case N = 00, wvhich we do not consider
here, will bring in some highly non-trivial problems,Hence,
we restrict ourselves to the strictly finite systems (1) and
(2). _
Q 1is naturally imbedded in a linear space L ., L is the N-
dimensional real vector space in case (1) and the linear
space of herrfitian matrices of order N in case (2),
Q 1is a convex set in this linear space L, Indeed, (O is a
simplex in case (1) and a more complicated convex set of
matrices in case (2),
Let us now consider a linear differential equation

Lo =~ 5@ &)

in L, where X denotes a linear operator acting on the
elements of L, Setting

M(t) = expfLt (4)
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we have
M(tq + tp) = M(t) M(ty) , M(0) = 1 &)

and for arbitrary element &
t — M(t) ¢

is a solution of (3) .
The orucial point is now the following: The linear differen -
tial equation (3) is called a master equation if and only
if the following is true: For every solution @ of (3)
from Uio € Q it follows 4 €0 for all t 2 t, -
This is equivalent with

Mt) 0 € Q for t 2 O, (6)
A semigroup (5), i.e. (5) restricted to values t > O,
which satisfies (6) is called a dynamical semigroup (with
respect to &2 ).
An operator M : L —s L 1s called stochastic ( with res-
pect to Q ), if MQREQ . Hence, a linear differen-
tial equation (3) in our space L 1is a master equation, iff
(4) 18 Q. -stochastic for t > O or, what is the same,
1ff it determines a dynamical semigroup.

Remark: The formulation of problems with the help of dynami-
cal semigroups is sometimes easier than considering master
equations, especially in the quantum case. This point of
view has been advocated by the Torun school (Ingarden,
Kossakowski) and is now widely used.

Remark: The explicit structure of the master equation in
case (1) is known (see below), In case (2) its general form
is unknown! Using comlete positivity, Kossakowski, Lindblad,
Gorini, Sudarshan where able to find the most general master
equation which has completely positive M(t) for t > O,

2. The Classical Case.

Here we assume {2 to be defined by (1) |
Then &£ 1s given by a matrix f: :

4'= ¥ .
SHi-0, 2130 fo s -
2.1 Entropy. Define
S(@) = = Swdined (8)

Lemma 1 ¢ If t —» s(wt) increases for all solutions
of the master equation, then the equipartition

So= {1y amy ., an)
fullfills
L3p=o0 and  M(t) S, = €. (9)

Indeed, S (85 ) ” s (@) for 8w #49 + Because the
entropy of M(t) 8o Cannot decrease by assumption, the lemma
is proved. Now, from (9) it follows that M(t) for t = 0

is not only stochastic, but bistochastic as a matrix:

i
MiJ;o,ZMJ=1 DN (10)
i J
Let us now consider the state functional

F (&) = % t(w ) (11)

and let us choose for f an arbitrary concave function, i, e,

a function satisfying f'' <& 0, By Jensen's inequality one
easily gets

Lemms 2: If Yols stationary for the master equation (i.e.
equ.9), then for every functional (11) with concave f
Mo, ) 2 Mo
t, (o) 12 6y 5 8, (12)
for all solutions of the master equation inside Q..

Inserting f = - x 1ln x we see: The entropy is not decrea-
sing for all solution of a master equation 1ff the same is
true for all concave functionals (11) |
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Therefore, from this point of view (and so for many others ),
it make sense to define:

If for two states &r’ and & we have F(w’) » F( & ) for
all concave functionals (11), we write

b]
W e (13)

and call & more mixed or more chaotic than & -

This notation was introduced in the quantum case by Uhlmann,
rediscovered and for the classical case examined by Ruch,
The relation T~ 1induces in 2 an order structure ( at
first, to be more precise, a pre-semi-order)., Lemma 2 means
that the solutions of a master equation with §. as statio-
nary solution are directed with respect to this ordexr
structure,

Let us denote by em(w) the sum of the"m ]‘.za.rgest numbers
ocourring in the distribution & = {_w,w g }zc_ounted with
the correct multiplicity. Denote further by & ° the distri-
bution {(‘72;7&}72')“_ } where ' is a permutation,

Lemma 3: The following three assertions are equivalent:
(2) @’ e
() o( @) & o (@) for all m=1,2,... (14)

(c) There are permutations 7, and numbers p; > 0 with

Zpi = 1 such that

47) -ij&}w; (15)

Je The Classical Case -~ General Situation,

Here we replace the assumption by

L6=0 or Mt)6 =6 , 62 (16)
In the finite~dimensional case such a stationary state 6
glways oxists, With a concave function f 1let us consider

the functionals . . .
P (o, 6) =267 4(w?/67) (17)

Such functionals have been considered by Felderhof (1961),
van Kampen (1965), Csiszar (1967) and others, For £ = =x 1n x
we get the so-called relative entropy resp, information gain
(up to sign ), (Kullback 1951, Umegaki 1962, Rényi 1966 gooo)
Our lematss 1 and 2 are now to be replaced by

Lemms 4: The following assertions are equivalent
(2) Equation (16) is valid,

(b) For every solution @;i4n £ of the master equation
and for gvery oconcave functional (17)

t — F(arhs')
is non-decreasing,

(c) The relative entropy (relative with respect to 6 ) is
non-decreasing for every solution of the master
equation inside Q.

To our knowledge, this lemma is due to Felderhof and van
Kampen, One can prove even more: F(art, 9 t) is non-decrea-
8ing for any two solutions of a master equation,
Now Ruch and Mead used the content of lemma 4 to justify the
following definition, (they use another terminology!)
Let us write

@ Lo (18)
end let us call @’ more 6 -mixed or more 6 —chaotio than
& 1ff for all concave functionals (17) we have

F(wh6 ) 2 Faw,6) (19)

Thus we get what may be called 6 —order structure of the
state space L) . Iemma 4 tells us that the solutionms of a
master equation are directed with respect to this order
struoture ( " 6 -directed " ) if (16) 1s valid.

The question for an adequate to lemma 3 statement is not
easily answered, A straightforward generalization of asser -
tion (c) of lemma 3 does not exist. However, statement (c) can
be generalized.

To this end one considers the set Ta of N-tupels
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time !
t = {t1 yeoeos tlﬁ.} (here t is not )

which satisfy

20
0<t, £ 1 and 25"*;‘8 (20)
3 3
In the next step one defines
°s(w)6)' :up%;:(...yjtJ sy t e Ty (21)

Lemma 5: ¢y’ <& (> if and only if for all s 2 0
o (0 6) & eo(w,6) (22)

The numbers (21) may be calculated explicitely as follows:
Assume (perha.ps after a suitable permutation)

1
iz .&’_2_“_7_}..- (23)
6, 6, 63
Then

1 2 k

eak(ar,b') = W0+ Ot e v W& (23b)

k
with s, = 61 + 6%%...+ 6

For arbitrary s the number L is obtained by linear

interpolation between the e-values for sJ ¢ s & sJ+1 .
The connection between the numbers of lemma 3 is given by

ey (@) = ey (@, goo‘) (24)

4, The Quantum Case ,

From here, <. 1s the set of all density matrices of order
N. Without further assumptions, the general form of the
master equation is unknown, However, all what has been said
in § 2 oan be transformed to the quantum case.
For a density matrix € and with a concave function f we
define the number

F(g) = Tr. £(9 ) (25)
With £ = = x 1n x inserted in (25) one gets the entropy
8 ( g ) of ¢ . In the quantum case lemmata 1 and 2 reads
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lemma 6: For a quantum master equation the following condi-
tions are equivalent one to another:

(8) 9= (1/N) 1 1s stationary, 1.4, L9,.=0

(b) The entropy of every solution is never decreasing
inside O..

(o) Inside Q  for every solution @, the function
t - F((.O't )
never decreases for all oconcave functionals (25).

(Gorini, Kossakowski, Sudarshan, Uhlmann), As in the classi-
cal case we define &’ % & and call @’ more mixed or
more chaotic than @ , 1ff F(w’) > F( @ ) for all
concave functionals (25). (Uhlmann 1971 ).

Next we define em(aJ') to be the sum of the m largest
eigenvalues of ¢« , These are the so-called Ky Fan functio -
nals,

Lemma 7: The following three assertions are equivalent:
(a) w <& w :
(®) e (@) < e, (&) for all ma=1,2,3,...

(c) There are unitary matrices U, and numbers Py >0
with Zpi = 1 such that

) -
@ 2 pyUy @ U (26)

These and some similar theorems can be widely generalised.
After the finite case (Uhlma.nn) infinite density matrices
could be handled (Wehrl, Alberti, Thirring), The state spaces
of type I and type II von Neumann algebras have been conside-
red by Alberti and Uhlmann, of type II algebras by Wehrl, At
last Alberti could generalise the main theorems to all von
Neumann algebras. The mathematios of the finite dimensional
case, which we consider here only, has its roots in the work
of Schur, Birkhoff, Ky Fan, Osgood, Polya, Littlehood and
others, Ky Fan not to forget.
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5. The Quantum Case - General situation,

Besides other things, the main difference and main source of
troubles is the lost of commutativity if we replace 9. by
another density matrix, We come into the difficult domain
where three and more non-commting matrices are involved,
However, we can use a counterpart of lemma 5 as a definition,
Define

e(w,6) = sup, Tr. (T ) (27a)
T
where the supremum is taken all matrices T with
04T <& 1 and Tr. (1 6 ) & s (27v)

Lemma 8: Iet be £6 =0 for a quantum master equation,
Then for all of its solutions inside _Q

t — es(CJt,G) sy, 820 (28)

never decreases,

Therefore, we can use the functionals (27) to define ‘g—
also in the quantum case, It is easily to be seen that this
can be extended also to the infinite dimensional situation
and to the state space of von Neumann algebras.

Because of the missing commtativity it makes little sense to
look for a definition of F(cwr, 6 ) with a general f.
Furthermore, without certain assumptions, the quantum master
equation is a too shy person, The circumstances are much
better, if we assume M(t) not only to be stochastic but also
2-positive or even completely positive (Stinespring and
Umegaki 1955), Assuming complete positivity, which is indeed
a consequence of the superposition principle of quantum
theory for composed systems, Kossakowski, Lindblad and others
oould derive explicit expressions for the most general form

of x .
Let us now define the relative entropy

S(w,6) = Tr.{calnb”- wlnw} (29)
and the functionals s

I (w,6) =1 {o°6°} (30)
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which are related to the skew entropy of Wigner, Yanase and
Dyson., Lieb was the first who broved concavity properties
of (29) and (30), Lindblad examined the behaviour of the
relative entropy under completely positive maps, With a
variant of interpolation theory one can show the same with
2=positivity (Uhlmann),

Lemma 9: Assume L6 =0 for a master equation. Assuime
furthermore 2-positivity for M(t), t > 0, Then

t  — S(wt,b') and
t —> Ys(wt,G)

never decrease, for all solutions w t inside ..
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