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Let (0, 9 be two states of a *-algebra and let us consider representations of this algebra 
R for which o and p are realized as vector states by vectors x and J’. The transition probability 
P(w, e) is the supremum of all the numbers 1(x, y)l* taken over all such realizations. We 
derive properties of this straightforward generalization of the quantum mechanical transition 
probability and give, in some important cases, an explicit expression for this quantity. 

1. Introduction 

In this paper we consider an expression P(co,, co*), which we shall call the transition 

probability between two states OCR, co2 of a given *- algebra. This name is reasonable especially 

for pure states: For normal pure states of a type I von Neumann algebra P is what is 

usually called the “transition probability” in quantum theory. However, a correct physical 

interpretation in the general case of mixed states is not known, though this quantity 

appears quite naturally in the so-called algebraic approach. 

The expression P, which we are going to define, was already considered by Kaku- 

tam [3] for Abelian and by Bures [2] for general W*-algebras and used by these authors 

in the construction of infinite tensor products. 

The aim of the present paper is to show the concavity of P, to establish the connection 

of P with support properties of states (i.e. their orthogonality), and, using an idea of 

Araki [l], to calculate P in some important examples. 

If, for instance, the two states are given by the density matrices d, and d2 (with respect 

to a type I factor), then 

P = (Sp . sy, s = (d;“d2 d;‘z)“2. (1) 

This rather complicated expression reduces simply to 

1(x, Y)l’ (2) 

if the density matrices represent pure states that are given by the normed vectors x, y 

of the underlying Hilbert space. 
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2. Definition and some properties of P 

Let us denote by R a *-algebra with unit element e. The simple idea underlying the 
definition of P(ol , WJ is the following: Consider a * -representation x of R and suppose 

that there are vectors x1, x2 in its domain of definition D,, which induce the states a>1 , w2, 
i.e. for all b E R 

Ojj(b) = (~j, n(b)xj). (3) 

The number 1(x,. xl)/’ then depends on the representation x and the choice of the vectors 

x, , x2 in D,. We then define [2] accordingly P(a), , 0~~) to be the supremum of all numbers 

I (-Xl 3 x2)/* for which (3) is valid. Hence 

P((,, , 7 c91) = supl(x-, ) x,)1’, (4) 

and the supremum runs over all *’ -representations 7~ for which there are pairs of vectors 

x, , x2 satisfying (3) and over all such pairs x1, x2. To express its dependence on R, we 

sometimes write 

P(RjO), , fO*) 

for the quantity (4). 

From the definition one immediately gets the relations 

0 < P(O), . w2) < 1 ) (5) 

P(rr, 1 7 COOL) = P(o+ , f,) ,) , (6) 

P(ro , 0,)) = 1 (7) 

for all states of a given *-algebra R. 

Next we prove the concavity of P with respect to Gibbsian mixtures, i.e. we prove 

formula (8) below. 

Let us consider three states (II), f!JoI, (rJ2 and two “-representations zl, z2 such that 

CC), Q, may be represented with the help of ,T, by the vectors x1, y, and, similarly, o), f’j2 

by the vectors .x2, y2 in the representation x2. We are allowed to assume 

P(ClJ ) ClJj) < 1 (Xj ) 4>)/’ + F. 

Tn the direct sum x1 +‘zz the state w is representable by every vector .Y = i,,s, +i2~~2r 

li,12+iA21z = I. On the other hand, the state 6 = /I~w~+Y~oJ~, where /),+/J~ = I 

and pj 2 0 is given in 7~~ +x2 by every vector J’ = /L,Y, +,u~J‘~_ I/hj!’ = ljj. Hence 

P(U), &) 3 i(x, ?*)I’ = /j.,,UI(.YI, J’,)+~2iI12(X,,J:2)j2. 

Taking the maximum with respect to all possible values R,, 2, on the right-hand side, 

we get 

P(fo.fn) 3 jul(s, ,~,)i2+llIu2(x2,.1.2)12. 

NOW E 3 0 is arbitrarily chosen. Thus we obtain, with /Jj 3 0 and 11, +/li = 1 
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3. Orthogonality of states 

We recall (Sakai [5]) that two states of a C*-algebra are said to be orthogonal to each 

other if for every decomposition of e = or --o 2 into two positive linear functionals 

w; , co; 
Q = w; -co; 

one has 
w;(e)+wi(e) > fz01(e)+0>)2(e) = 2. 

Assuming now R to be an arbitrary *-algebra with identity e, we define 

llell = sup{&(4+4(4), (9) 

where the supremum runs over all decompositions 

Q = (OI--c&, mJ positive. (10) 

If there is no such decomposition (IO), one writes /IQ// = 00. 

In the above-mentioned case of a P-algebra, two states cur, ot2 are orthogonal one 

to another iff IIcrj, --(+l/ = 2. We show that for all *-algebras with identity the relation 

I/(0, --f~)~(l = 2 implies P(c0,, Q) = 0. This follows from an inequality, which we are 

now going to prove and which reads for any two states 

I/0), -0211 d 2 PI’1 -P(o,, &). (11) 

Let us assume that OJ1, W2 are represented as vector states by the vectors x1, x2 of 

a given *-representation ?c of R. With the help of the one-dimensional projectors qj de- 

termined by x1, .x2 the functional ,o = (I), --~~I~ is given by 

I&) = sP.{(q, -4Jn@)f. (121 

There are projection operators (lj satisfying y, . qr = 0 and 

41--42 = ‘.I41 -n,‘lr. 

It follows that (1~~ -OJ~ = (3,; -PJ~, where 

(13) 

Hence 
~~,J(U) = 3i,Sp. [qj?r(Cr)) . 

/]U’), --OIz// < iL, fL1. (14) 

Now we take the trace in (13) and obtain 3., = I.2 = I.. Squaring (13), we get 

41+42-~lq2-Y2Yl = i’(q, +yzj. 

Taking the trace, one obtains 

2-21(x 1 ) xr)i2 = 22.‘. 

Because of (14) we therefore conclude that 

j/U), -OJ2// < 2 1’1 - ;(I, , S2)i’. 

If x runs over all ‘“-representations, we obtain the inequality (11) and the assertion is 
proved. 
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4. An estimation from above 

A. UHLMANN 

The transition probability is defined as a supremum. Therefore it is interesting to 

have an estimation of P from above. To derive such an inequality we use the notation 

of the “geometrical mean” of two positive Hermitian forms introduced by Woronowicz. 

Let /?r(x, y), pZ(.x, I’) denote two positive semidefinite Hermitian forms on some linear 

space L. Then, according to Pusz and Woronowicz [4], there exists on L one and only 

one form p(x, y) with the properties: 

(i) lB(x, ~91” G A (x, x)B2(y, v). 
(ii) If I/?‘(x, y)/” < pl(x, -u>p2(y, y) with a positive semidetinite form /3’, then 

B’(x, x) G B(x, WY). 

This Hermitian form /3, uniquely determined by p, , p2, will be denoted by the symbol 

V’B1 
and called the geometrical mean of ,81 and /&. 

Let us now consider a state o of a “-algebra R. (u defines two Hermitian forms 

njR(b, a) = w(ab”), (15) 

o’(ba) = o(b*a). 

Now the inequality in question is 

To prove this, we assume z to be a *-representation of R for which (3) holds. Defining 

now 

P’(a, b) = (x1 , 44x2) (x2, dbh), 
we get 

B’(e, e) = I@,, ,y2)12, B’(a, 4 2 0 

and see that ]/?(a, b)i2 is smaller than aA2(aa”)c~~,(b*b) which already shows the validity 

of (16). 

5. Calculation of P 

Let us first mention that in all relevant cases P coincides with the usual quantum 

mechanical transition probability: Let X, , x2 be two normed vectors of a Hilbert space H. 

If R is an operator *-algebra of H, i.e. a *-subalgebra of some algebra L’(D), D dense 
in H, then the following is true (Uhlmann [6]): If 

Wj(A) = (_Yj, AXj), AER, 

we have 

P(Rlo, > 4 = 1(x1, %)I2 

if R contains the projection operators onto x, , x2. 
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However, this gives us P for pure states only. Let us now try to give an explicit ex- 

pression for P allowing (uI, co2 to be mixed and generalizing the above-mentioned result. 

THEOREM. Let ml, co2 be two states of the F-algebra R. If there exists a positive 

linear form w of R and two elements b,, b, E R with 

mj(a) = w(b/*abj), (17) 

b;bz = b;b, > 0, (18) 
then 

P(w, 2 WJ = w(b:b#. (19) 

Before proving the theorem we shall first convince ourselves that it implies equation 

(I), first assuming that R is the algebra B(H) of all bounded operators of the Hilbert 

space H. For this purpose we choose o(a) = Spad such that djd-l is bounded for j = 1,2. 

Condition (17) now reads 

C/j = bjdb; (20) 

and we have to satisfy (18). This is done by writing 

b, = d;“2(d;Pd, d;/2)1/2&-1/2, 

6, = d;Pd-‘12 (21) 

Here we have to define b, by a limiting procedure if d2 is singular. It follows that 

b;b, = &-1Dsd-1/2 with s = (df12 d, dl’2)1’2 (22) 

and according to (19) 

P(B(H)lcj, > 02) = (SPSj2, (23) 
i.e. formula (1). 

We may extend this result considerably with the help of a simple observation. Assum- 

ing for two algebras the relation R, E R2, we find 

P(R, I&I, ;,I 2 HR2h 7 w2) (24) 

if only Gj are the restrictions of the states oj of R, on R,. To see this, we have only to 

take into account that every *-representation of R2 determines a representation of RI, 
namely its restriction to R, . 

Applying this remark and the uniqueness of the extensions of states considered below, 

one can prove the following: Let D be a dense linear manifold of the Hilbert space H 

and let d, , d2 denote two normed density operators. These density operators define two 

states Gj of the algebra L+(D) nK, where K is the *-algebra generated by the identity 

map and the compact operators. If now R is an operator *-algebra satisfying 

L+(D)nK E: R c L+(D) (25) 

and if we can extend the ~j to states wj of R, we get 

P(Rlw,, 4 = (SPS12, (26) 

where s is given by (22). 
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Let us now discuss a special case of the situation described above, in which co2 is a pure 

state. Then there is a vector x E H with 

&Y = (x,Y)Y, YEH 

and a short calculation shows that 

Therefore, from 

we obtain 

which is completely reasonable and natural. 

We further mention the consequences of the theorem for commutative P-algebras. 

Let R = C(X) denote the algebra of continuous functions on the compact X and consider 

two states of R which may be represented on X by a measure dv on X and by their Radon- 

Nikodym derivatives t5j as 

Wj(U) = S Q(t)hj(t)dV. 
x 

We then get 

This indicates the difficulty in interpreting P as a “transition 

are mixed ones. 

Finally, we want to remark that from 

b:b2 = b,b;, 

(27) 

(28) 

probability” if both states 

(29) 

which is true for commuting density operators and in every commutative P-algebra, 

the result of the theorem can be written with the aid of geometrical means as 

P = [1/o.$c&e, e)]“. (30) 

6. Proof of the theorem 

At first we convince ourselves that (19) gives a lower bound for P. Indeed, one only 

has to take the GNS-construction associated with the state w mentioned in the theorem 
to see this. 

In the next step we consider an arbitrary *-representation and two of its vectors x1, xz 

which allow to identify ojl, co2 as vector states (3). Then the complex linear form 

J(a) = (-x1 ,44~2) (31) 
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satisfies the Schwartz-Bunyakowski inequality 

If( G w](u*u)w,(b*b). (32) 

In the last step we consider an arbitrary complex-linear functional f on R for which 

(32) is true. Then, if c is a positive invertible element in R, we have 

If(e)I’ < q(c)w2(c-1). (33) 
We choose 

Then 

c = b2(s+ae)-‘6$+&e 9 F > 0. 

and we have 

wl(c) = w(b:cb,) = &W(b:b,)+o(s(s+&e)-‘s), 

Further 

with 

o,(c) < O(S)+EO(b:bJ. (34) 

w2(c-9 = w(k) 

k = bf(b,(s+&e)-‘b:+se}-lb,. 

If we insert in this expression t = b2(s+ ee)-1/2, we obtain after some straightforward 

calculation 

k < ((s+&e)-‘)-I = s+&e. 

Now E > 0 could be chosen arbitrarily, and so we get from (33) and (34) the desired 

estimate . 

If( < +)2. 
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